首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 The nature of Al–Si ordering across the tetrahedral sites in muscovite, K2Al4(Si6Al2O20)(OH)4, was investigated using various computational techniques. Values of the atomic exchange interaction parameters J l were obtained. From these parameters, a two-dimensional Al–Si ordering scheme was deduced. The transition temperature T c for this two-dimensional ordering is 1900 K. There are several possible ordering schemes in three dimensions, based on different stacking sequences of ordered sheets of tetrahedral sites. Monte Carlo simulations of both two-dimensional and three-dimensional ordering were performed, but in the three-dimensional simulation only the two-dimensional ordering is seen, implying that three-dimensional ordering is too slow to be attained during the timescale of the simulation. The effect of the three-dimensional interactions is to raise the two-dimensional ordering temperature to 2140 K. From the three-dimensional Monte Carlo simulation, the frequency of occurrence of 4Si0Al, 3Si1Al, 2Si2Al and 1Si3Al clusters was determined, which match those inferred by 29Si MAS–NMR measurements reasonably well. In fact, the match suggests that the cation ordering seen in experiments corresponds to a configuration with considerable short-range order but no long-range order, similar to a state that is at a temperature just above an ordering phase transition. Received: 28 August 2000 / Accepted: 12 March 2001  相似文献   

2.
3.
Computer simulation is used to investigate the effect of Al/Si disordering over the tetrahedral sites on the lattice energy and the lattice constants of the mineral sillimanite Al2SiO5. A methodology for an atomistic assessment of the energy of the reaction 2(Si-O-Al)→(Si-O-Si)+(Al-O-Al) and its various contributions is established. This ordering energy is 0.97 eV for nearest neighbour sites in the ab-plane and 0.56 eV for those separated in the c-direction. The large difference is due to a greater constraint on the atomic relaxation in the ab-plane and shows the structural dependence of the ordering energy. Its magnitude appears to be determined by a complicated balance between Coulomb and short-range repulsive energy involving strain over many bonds, both in the ordered and disordered structures. There is also a significant interaction between second neighbour sites whereas the contribution of more distant neighbours is negligible. The lattice energies of most of the 154 configurations studied show a linear behaviour as a function of short-range order, specified by the number of Al-Al pairs. The ordering temperature Tc, estimated on the basis of a statistical mechanical model of disordering, and the calculated ordering energies are in semi-quantitative agreement with experimental values.  相似文献   

4.
Nuclear magnetic resonance spectroscopic data are presented for the cristobalite polymorphs of AlPO4 and SiO2 from RT to 770 K, through their respective α-β transitions. The nuclear magnetic resonance (NMR) data include chemical shifts for 31P, 27Al, and 29Si, 27Al quadrupole coupling parameters, and 31P and 27Al spin-lattice relaxation rates. Also presented are electron diffraction patterns of β-cristobalite AlPO4 that show diffuse scattering similar to that reported previously for SiO2. For the α-phases of both AlPO4 and SiO2, the chemical shifts decrease approximately linearly with increasing temperature from RT to Tc and discontinuously by -2 to -3 ppm from α to β. This result is consistent with a small, continuous increase in the mean T-O-T angle (〈θ〉) of the α-phases with increasing T and an increase of 〈θ〉 by about 4° across the α-β transition for both cristobalite and its AlPO4 analogue. Based on the 29Si chemical shifts, the mean Si-O-Si angle for β-cristobalite is 152.7±1° near Tc. For AlPO4-cristobalite, the 27Al nuclear quadrupole coupling constant (CQ) decreases approximately linearly from 1.2 MHz at RT to 0.94 MHz near Tc (493±10 K). At the α-β transition the 27Al CQ approaches zero, in agreement with the cubic average structure observed by diffraction. The satellite transitions retain a small frequency distribution above the α-β transition from electric field gradients attributed to defects. The short-range cubic symmetry of the Al-site and non-linear Al-O-P angle support a dynamically disordered model of the β-cristobalite structure. Complete averaging of the 27Al quadrupole coupling in the β-phase indicates that the lifetime of any short-range ordered domains must be shorter than about 1 μs.  相似文献   

5.
The crystal structures of synthetic hexagonal and orthorhombic Fe-cordierite polymorphs with the space groups P6/mcc and Cccm were refined from single-crystal X-ray diffraction data to R 1, hex?=?3.14 % and R 1, ortho?=?4.48 %. The substitution of the larger Fe2+ for Mg leads to multiple structural changes and an increase of the unit cell volumes, with a, c (hex)?=?9.8801(16) Å, 9.2852(5) Å and a, b, c (ortho)?=?17.2306(2) Å, 9.8239(1) Å, 9.2892(1) Å in the end-members. Furthermore Fe incorporation results in an increase of the volumes of the octahedra, although the diameters of the octahedra in direction of the c-axis decrease in both polymorphs. X-ray powder diffraction analysis indicates a high degree of Al/Si ordering in the orthorhombic polymorph, the Miyashiro distortion index is ~0.24. Estimations of site occupancies based on the determined tetrahedral volumes result in the following values for hexagonal Fe-cordierite: ~73 % Al for T1 and ~28 % Al for T2. For the first time Raman spectroscopy was performed on the hexagonal Fe-cordierite polymorph. In the hexagonal Fe-cordierite polymorph most Raman peaks are shifted towards lower wavenumbers when compared with the Mg-end-member.  相似文献   

6.
Single crystals of CaAl4Si2O11 were synthesised at 1,500?°C and 14 GPa in a multi-anvil press, and the structure of the phase determined by single-crystal X-ray diffraction at room conditions. The structure-type is that of the “hexagonal barium ferrites”. The space group of the average structure is P6 3 /mmc and the cell parameters are a?=?5.4223(4) Å, c?=?12.7041(6) Å, V?=?323.28(5) Å3, with Z?=?2, and its density is 3.905?g?cm?3, which is reasonable for a high-pressure alumino-silicate phase. The 22 oxygen and two calcium atoms within the unit-cell form an approximate hexagonal-close-packed array. Ten of the twelve octahedral interstices within this array that have only oxygen atoms for apices are filled with Si and/or Al. M1 octahedra share edges to form a spinel-like sheet of octahedra. The average bond length ?=?1.833 Å suggests mixed occupancy by Si and Al. The M1 octahedral sheets are linked by shared corners to pairs of face-sharing M2 octahedra containing Al, with ?= 1.918 Å. The remaining two cations of the unit-cell contents statistically occupy four tetrahedrally-coordinated interstices, which occur as face-sharing pairs. The average bond length for these sites (1.742 Å) suggests that they are occupied by Al, although Si occupancy cannot be excluded by the data. It is proposed that only one interstice of each pair is locally occupied, with the possibility of some short-range ordering of such occupancies. Complete long-range order leading to the acentric space group P6 3 mc is excluded by the data, as is the possibility of the average structure being comprised of merohedral (0?0?0?1) twins of P6 3 mc symmetry.  相似文献   

7.
Microsommite, ideal formula [Na4K2(SO4)] [Ca2Cl2][Si6Al6O24], is a rare feldspathoid that occurs in volcanic products of Vesuvius. It belongs to the cancrinite–davyne group of minerals, presenting an ABAB… stacking sequence of layers that contain six-membered rings of tetrahedra, with Si and Al cations regularly alternating in the tetrahedral sites. The structure was refined in space group P63 to R=0.053 by means of single-crystal X-ray diffraction data. The cell parameters are a=22.161?Å=√3a dav, c=5.358?Å=c dav; Z=3. The superstructure arises due to the long-range ordering of extra-framework ions within the channels of the structure. This ordering progressively decreases with rising temperature until it is completely lost and microsommite transforms into davyne. The order–disorder transformation has been monitored in several crystals by means of X-ray superstructure reflections and the critical parameters T c?≈?750?°C and β?≈?0.12 were obtained. The kinetics of the ordering process were followed at different temperatures and the activation energy was determined to be about 125?kJ?mol?1. The continuous order–disorder phase transition in microsommite has been discussed on the basis of a two-dimensional Ising model in a triangular lattice with nn (nearest neighbours) and nnn (next-nearest neighbours) interactions. Such a model was simulated using a Monte Carlo technique. The theoretical model well matches the experimental data; two phase transitions were indicated by the simulated runs: at low temperature only one of the three sublattices begins to disorder, whereas the second transition involves all three sublattices.  相似文献   

8.
The concentrations of Na, Al, and Si in an aqueous fluid in equilibrium with natural albite, paragonite, and quartz have been measured between 350°C and 500°C and 1 to 2.5 kbar. Si is the dominant solute in solution and is near values reported for quartz solubility in pure H2O. At 1 kbar the concentrations of Na and Al remain fairly constant from 350°C to 425°C but then decrease at 450°C. At 2 kbar, Na increases slightly with increasing temperature while Al remains nearly constant. Concentrations of Si, Na, and Al all increase with increasing pressure at constant temperature.The molality of Al is close to that of Na and is nearly a log unit greater than calculated molalities assuming Al(OH)03 is the dominant Al species. This indicates a Na-Al complex is the dominant Al species in solution as shown by Anderson and Burnham (1983) at higher temperature and pressure. The complex can be written as NaAl(OH)04 ± nSiO2 where n is the number of Si atoms in the complex. The value of n is not well constrained but appears to be less than or equal to 3.The results indicate Al can be readily transported in pure H2O solutions at temperatures and pressures as low as 350°C and 1 kbar.  相似文献   

9.
The main driving force behind Al/Si ordering in tetrahedral framework aluminosilicates is nearest-neighbour Al/Al avoidance. Computer simulation is used to explore the direct consequences of such Al/Al avoidance. The main result is that the order-disorder transition temperature T c falls dramatically as the concentration x of Al in the structure is reduced, and if the only interactions are those associated with nearest-neighbour Al/Al avoidance, T c becomes zero for x less than some critical value x c , where x c =0.31 for the feldspar framework and x c =0.34 for cordierite. Also a large degree of short range order is found above T c . Both results differ radically from the standard Bragg-Williams model. Plots of entropy and enthalpy of ordering are given as functions of x and T, which may be used to interpret experimental data or for extrapolation into ranges of x and T inaccessible to experiment. Received: 14 May 1997 / Revised, accepted: 2 June 1997  相似文献   

10.
A number of previous investigations have examined the ordering behavior of magnesium cordierite using X-ray diffraction, transmission electron microscopy, infrared spectroscopy and solution calorimetry. In the present investigation, one series of samples from the above studies has been examined by Raman spectroscopy. Systematic modifications in the spectra with annealing time at 1,200° C are consistent with a continuous ordering of the average Al/Si distribution from 4 h to at least 64 h, and which may begin earlier. Spectral changes are first definitely observed when the ordered domains are around 100 Å across, suggesting that Raman spectroscopy is sensitive to this distance scale. The spectra of samples annealed at 1,200° C are compared with samples annealed at 1,400°; C where ordering proceeds much faster, and the possible use of Raman spectroscopy in characterization of Al/Si order in cordierite is discussed. Finally, the Raman spectrum of Mg2Al4Si5O18 with a stuffed β-quartz structure has been obtained. Comparison of its spectrum with that of cordierite glass suggests similar structures for both, which seem different to that of disordered cordierite.  相似文献   

11.
Natural nepheline, a synthetic Na-rich nepheline, and synthetic kalsilite were ion exchanged in molten MNO3 or MCl (M = Li, Na, K, Ag) at 220–800° C. Crystalline products were characterized by wet chemical and electron microprobe analysis, single crystal and powder X-ray diffraction, and transmission electron microscopy and diffraction. Two new compounds were obtained: Li-exchanged nepheline with a formula near (Li,K0.3,□)Li3[Al3(Al,Si)Si4O16] and a monoclinic unit cell with a = 951.0(6) b = 976.1(6) c = 822.9(5)pm γ = 119.15°, and Ag-exchanged nepheline with a formula near (K,Na,□)Ag3[Al3(Al,Si)Si4O16] and a hexagonal unit cell with a = 1007.4(8) c = 838.2(1.0) pm. Both compounds apparently retain the framework topology of the starting material. Ion exchange isotherms and structural data show that immiscibility between the end members is a general feature in the systems Na-Li, Na-Ag, and Na-K. For the system Na-K, a stepwise exchange is observed with (K,D)Na3[Al3(Al,Si)Si4O16] as an intermediate composition which has the nepheline structure and is miscible with the sodian end member (Na,□)Na3[Al3(Al,Si)Si4O16], but not with the potassian end member (K,□)4[Al3(Al,Si)Si4O16] which shows the kalsilite structure; there was no indication for the formation of trior tetrakalsilite (K/(K + Na)≈0.7) at the temperatures studied (350 and 800° C). The exact amount of vacancies □ on the alkali site depends upon the starting material and was found to be conserved during exchange, with ca 0–0.2 and 0.3–0.4 vacancies per 16 oxygen atoms for the synthetic and natural precursors, respectively. Thermodynamic interpretation of the Na-K exchange isotherms shows, as one important result, that the sodian end member is unstable with respect to the intermediate at K/(K+Na)≈0.25 by an amount of ca 45 kJ/mol Na in the large cavity at 800° C (52 kJ/mol at 350° C).  相似文献   

12.
The kinetics of non-convergent cation ordering in MgFe2O4 have been studied by measuring the Curie temperature (T c) of synthetic samples as a function of isothermal annealing time. The starting material was a synthetic sample of near-stoichiometric MgFe2O4, synthesised from the oxides in air and quenched from 900 °C in water. Ordering experiments were performed using small chips of this material and annealing them at temperatures between 450 °C and 600 °C. The chips were periodically removed from the furnace, and their Curie temperatures were determined from measurements of alternating-field magnetic susceptibility (χ) as a function of temperature (T) to 400 °C. The Curie temperature of MgFe2O4 is very sensitive to the intracrystalline distribution of Fe3+ and Mg cations between tetrahedral and octahedral sites of the spinel crystal structure, and hence provides a very sensitive probe of the cation ordering process. The χ-T curve for the starting material displays a single sharp magnetic transition at a temperature of 303 °C. During isothermal annealing, the χ-T curve develops two distinct magnetic transitions; the first at a temperature corresponding to T c for the disordered starting material and the second at a higher temperature corresponding to T c for the equilibrium ordered phase. The size of the magnetic signal from the ordered phase increases smoothly as a function of time, until equilibrium is approached and the shape of the χ-T curve corresponds to a single sharp magnetic transition for the homogeneous ordered phase. These observations demonstrate that cation ordering in MgFe2O4 proceeds via a heterogeneous mechanism, involving the nucleation and growth of fine-scale domains of the ordered phase within a matrix of disordered material. Disordering experiments were performed by taking material equilibrated at 558 °C and annealing it at 695 °C. The mechanism of isothermal disordering is shown to involve nucleation and growth of disordered domains within an ordered matrix, combined with continuous disordering of the ordered matrix. This mixed mechanism of disordering may provide an explanation for the difference between the rates of ordering and disordering observed in MgFe2O4 using X-ray diffraction. The origin of the heterogeneous ordering/disordering mechanism is discussed in terms of the Ginzburg-Landau rate law. It is argued that heterogeneous mechanisms are likely to occur in kinetic experiments performed far from equilibrium, whereas a homogeneous mechanism may operate under slow equilibrium cooling. The implications of these observations for geospeedometry are discussed. Received: 12 May 1998 / Accepted: 25 June 1998  相似文献   

13.
The time evolution of the Al, Si ordering and the ferroelastic distortion of the Mg-cordierite structure are quantified on a local length scale by Hard Mode Infrared Spectroscopy (HMIS). The line profiles of various absorption peaks were measured at room temperature and at 80 K. Their integrated intensities, frequencies and half width are correlated with the interacting order parameters Q od (Al, Si ordering), Q (displacive orthorhombic distortion) and their equivalent short-range analogs. It is shown that the phase transition between hexagonal and modulated cordierite is stepwise, as predicted earlier. The local structural state of quenched, modulated cordierite is essentially equivalent to that of the orthorhombic phase. A general concept is outlined which allows, in general, the independent determination of various interacting order parameters using HMIS.  相似文献   

14.
The tetrahedral-site order-disorder transformation in gallium albite (NaGaSi3O8) has been investigated using Rietveld structure refinement. Study of gallium-substituted albite (in contrast to pure albite [NaAlSi3O8]) is facilitated by a relatively rapid order-disorder transformation and the large difference in X-ray scattering efficiencies of gallium and silicon. High albite-structure NaGaSi3O8, grown in a Na2WO4 flux, was ordered by hydrothermal annealing below 820° C and dry annealing above 820° C, to avoid melting, using a load pressure of approximately 1 kbar. Equilibration of the order-disorder reaction has been verified by three independent reversals of ordering. The transformation between low gallium albite and high gallium albite occurs over the temperature range 890° C 970° C. The gallium content of the T 1o site increases continuously with decreasing temperature. The gallium contents of the T 1m and T 2m sites decrease smoothly with increasing ordering while the gallium content of the T 2o site decreases, then increases and then decreases again with decreasing temperature. Unit-cell parameters and the triclinic obliquity vary throughout the order-disorder transformation and undergo abrupt changes at 913±3° C and 937±3° C. These abrupt changes correlate with changes in the gallium content of the T 2o site, the X and Z ordering parameters and the configurational entropy. The order-disorder transformation in gallium-aluminum albite (NaGa0.5Al0.5Si3O8) occurs in the temperature range 765° C-850° C, at a temperature intermediate to the transformation in albite (50% order at about 680±20° C) and gallium albite.  相似文献   

15.
Natural samples of K-feldspar representing various states of Al, Si order were characterised using X-ray methods, transmission electron microscopy, and Fourier transform infrared spectroscopy. Line profiles of infrared absorption bands were observed to show strong correlation with the degree of Al, Si order present. In particular, the absorption frequencies of the 540 cm?1 and 640 cm?1 bands were seen to vary by ca. 10 cm?1 between sanidine and microcline, with modulated samples respresenting intermediate behaviour. Linewidths of these modes also decrease by ca. 50% in this series. The experimental results are discussed within the framework of Hard Mode Infrared Spectroscopy (HMIS), and it is shown that the absorption frequencies vary with the short range order parameter τ = (4t1-1)2 and the symmetry breaking order parameter describing Al, Si order, Q od=(t1 0?t1 m)/Q od=(t1 0+t1 m), where t1 is the average Al occupancy on the T1 sites and t1 o and t1 m are the individual site occupancies of the T1 o and T1 m sites, respectively. The structural state of orthoclase is characterised by strain-induced modulations with large spatial variations of the modulation wavelength. No such modulations were observed in the degree of local Al, Si order. Sanidine shows mode hardening in excess of the extrapolated effect of symmetry breaking Al, Si order, which is presumably related to nonsymmetry breaking ordering between T1 and T2 sites and/or as yet unobserved short range order of the symmetry breaking ordering scheme. The possibility of an additional phase transition in K-feldspar at temperatures above 1300 K is discussed.  相似文献   

16.
Thermal transformations of kaolinite of different degree of crystallinity have been monitored by 27Al and 29Si high-resolution NMR with magic-angle spinning (MAS NMR), X-ray diffraction, Fourier transform infrared, atomic absorption spectrophotometry and thermogravimetric analysis. NMR shows differences in the dehydroxylation process of kaolinites with different degree of crystallinity and reveals the presence of short-range order in metakaolinite. 29Si NMR spectra acquired with a 30 s recycle delay of poorly and highly crystalline samples heated at 480 and 500° C, respectively, contain three distinct signals; we discuss their assignment in the light of experiments involving leaching of the samples with aqueous KOH. Ca. 40% of Si sites retain their original Q 3 symmetry just above the onset of dehydroxylation and the Q 4 environment is present showing that a small amount of amorphous silica has already segregated. The spectrum of samples treated at 1000° C contains a signal at -110ppm (from Q 4 silicons) and a faint resonance, from mullite, at ca. -87 ppm. 29Si NMR also shows that cristobalite germs are already present at 950–1000° C. The 27Al MAS NMR spectra of metakaolinite reveal the presence of 4-, 5-and 6-coordinated Al. Changes in the three Al populations as a function of temperature have been monitored quantitatively. Below 800° C, 4-and 5-coordinated Al appears at the expense of 6-coordinated Al, but above 800° C the amount of 6-coordinated Al increases again. We suggest a dehydroxylation scheme which accounts for the presence of 4-and 5 coordinated Al. Above 900–950° C the latter signal is no longer present in the 27Al NMR spectra and new 4-and 6-coordinated Al species (mullite and γ-alumina) appear. We propose new ideas for the structure of metakaolinite.  相似文献   

17.
The published 29Si NMR data on synthetic Mg-cordierites have been used to estimate the changes in configurational Al-Si entropy of the samples due to metastable disorder. The results show that with the increase of the time of annealing in the range of 2 min-2000 h at 1185 °C the entropy of disorder in cordierite decreases from 17.1 to 6.4 J/mol K, while at 1400 °C in the range of 2 min–88 h the entropy changes from 15.4 to 8.8 J/mol K. The decrease in entropy is followed by the appearance and increase of long-range ordering which is reflected in changes of T1 and T2 site occupancies, decrease in the number of Si-O-Si and Al-O-Al groupings around O1 oxygens and in a decrease in the number of Al-O-Si-O-Al contacts among hexagonal 6T2-rings. The derived values of entropy effects together with published calorimetric data suggest that the enthalpy of metastable disordering strongly depends on the temperature of annealing.  相似文献   

18.
Single-phase K-cymrite, K[AlSi3O8]·H2O, has been synthesized in the P-T range 3≤P(GPa)≤4 and 350≤T(°C)≤650, and characterized by a variety of techniques like SEM, FTIR, and 29Si MAS-NMR. Its thermal expansivity and compressibility have been measured up to 375?°C and 6.0?GPa, respectively. Within the uncertainty of the microchemical determination of H2O by Karl-Fischer titration, it invariably contains 1?mol of H2O per mol of KAlSi3O8. Under the SEM, it appears a small idiomorphic prisms. It is optically negative, with n o=1.553(1) and n e=1.521(1). FTIR spectrum identifies the water in its structure as molecular H2O. Its lattice constants are a=5.3348(1)?Å, c=7.7057(1) Å, V= 189.924 Å3, the space group being P6/mmm. The 29Si MAS-NMR suggests a weak short-range order of Al and Si in the symmetrically equivalent tetrahedral sites. A Rietveld structure refinement demonstrates that it is isostructural with cymrite (BaAl2Si2O8·H2O), the structure comprising double tetrahedral sheets with H2O molecules residing in their cavities, K serving as an interlayer cation. Whereas cymrite, with its ordered tetrahedral Al/Si distribution, shows a Pm symmetry, the weak short-range Al/Si order in K-cymrite (abbreviated below as KCym) makes it crystallize in the space group P6/mmm. Three reversal experiments on the reaction K[AlSi3O8]·H2O (KCym)=K[AlSi3O8] (Kfs)+H2O, executed in this study, confirm the earlier results of Thompson (1994) and supplement her data. A simultaneous treatment of those reversals, together with the thermodynamic data for Kfs and H2O available in the literature, helps derive the standard enthalpy of formation (?4233±9.4?kJ/mol) and standard entropy (276.3±10.2 J/K·mol) for K-cymrite. The computed phase relations of KCym in the KAlSi3O8-H2O binary are shown in Figure 4 for three different values of aH 2O. Given a 5?°C/km isotherm in a subducting slab of metasediments in a ultra-high-pressure metamorphic environment, KCym will be expected to grow by hydration of Kfs, unless the aH 2O had been substantially less than 0.5. Nevertheless, how far it can survive exhumation of the subducted terrain will depend critically on the rate of uplifting and on the aH 2O prevailing during that process.  相似文献   

19.
Five natural acid volcanic glasses (perlites) from the Eastern Rhodope mountains, Bulgaria, have been studied by X-ray diffraction. The quantity of the microlites varies from 1–3.5 weight percent. It is higher in the glasses from the rhyolite-perlite transition zone. Total pair correlation functions have been calculated for three of the glasses with less than 2 weight percent microlites. All total pair correlation functions are quite similar and have six well defined peaks up to 8 Å. Beyond 8 Å they are practically featureless. The general form of the curves and peak positions suggests that the short-range order in all the three glasses is compatible with a 6-membered tetrahedral ring polymerization scheme with some contribution of fourmembered rings. The T-01 (T=Si, Al) distance shows linear correlation with the weight percent ratio Al2O3/SiO2. The averaged first nearest neighbour distances T-01, O-01 and T-T1 are 1.615±0.005 Å, 2.66±0.02 Å and 3.16±0.02 Å, respectively. The mean T-O-T bond angle is 157±4°. Energy minimization and topology considerations of the possible distribution of different tetrahedral rings are discussed.  相似文献   

20.
Silicon-29 “magic angle spinning” nuclear magnetic resonance (NMR) spectroscopy has been used to study the changes in local Si environment during Al, Si ordering in synthetic cordierite, Mg2Al4Si5O18. In the most disordered form, crystallized from a glass, eight distinct tetrahedral sites for silicon can be identified and assigned, while there are only two distinguishable Si sites in the well-annealed ordered form. This allows the changes in the Si site environments to be determined as a function of annealing time for the transformation from the disordered to the ordered form. The first crystallized state has a considerable degree of partitioning between T1 and T2 sites with the following site occupancies: T1 ? Al:Si=0.80:0.20, T2?Al:Si=0.27:0.73 The changes in Si environment are approximately linear with log time. The measured values of 29Si isotropic chemical shift do not fit well to previously determined correlations of shift with various structural parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号