共查询到20条相似文献,搜索用时 0 毫秒
1.
Xuexiang Gu Oskar Schulz Franz Vavtar Jianming Liu Minghua Zheng Shaohong Fu 《Ore Geology Reviews》2007,31(1-4):319
The Woxi W–Sb–Au deposit in Hunan, South China, is hosted by Proterozoic metasedimentary rocks, a turbiditic sequence of slightly metamorphosed (greenschist facies), gray-green and purplish red graywacke, siltstone, sandy slate, and slate. The mineralization occurs predominantly (> 70%) as stratabound/stratiform ore layers and subordinately as stringer stockworks. The former consists of rhythmically interbedded, banded to finely laminated stibnite, scheelite, quartz, pyrite and silty clays, whereas the latter occurs immediately beneath the stratabound ore layers and is characterized by numerous quartz + pyrite + gold + scheelite stringer veins or veinlets that are typically either subparallel or subvertical to the overlying stratabound ore layers. The deposit has been the subject of continued debate in regard to its genesis. Rare earth element geochemistry is used here to support a sedimentary exhalative (sedex) origin for the Woxi deposit. The REE signatures of the metasedimentary rocks and associated ores from the Woxi W–Sb–Au deposit remained unchanged during post-depositional processes and were mainly controlled by their provenance. The original ore-forming hydrothermal fluids, as demonstrated by fluid inclusions in quartz from the banded ores, are characterized by variable total REE concentrations (3.5 to 136 ppm), marked LREE enrichment (LaN/YbN = 28–248, ∑LREE/∑HREE = 16 to 34) and no significant Eu-anomalies (Eu/Eu = 0.83 to 1.18). They were most probably derived from evolved seawater that circulated in the clastic sediment pile and subsequently erupted on the seafloor. The bulk banded ores are enriched in HREE (LaN/YbN = 4.6–11.4, ∑LREE/∑HREE = 3 to 14) and slightly depleted in Eu (Eu/Eu = 0.63 to 1.14) relative to their parent fluids. This is interpreted as indicating the influence of seawater rather than a crystallographic control on REE content of the ores. Within a single ore layer, the degree of HREE enrichment tends to increase upward while the total REE concentrations decrease, reflecting greater influence and dilution of seawater. There is a broad similarity in chondrite-normalized REE patterns and the amount of REE fractionation of the banded ores in this study and exhalites from other sedex-type polymetallic ore deposits, suggesting a similar genesis for these deposits. This conclusion is in agreement with geologic evidence supporting a syngenetic (sedex) model for the Woxi deposit. 相似文献
2.
Gang Yu Jiangfeng Chen Chunji Xue Yuchuan Chen Fukun Chen Xiaoyue Du 《Ore Geology Reviews》2009,35(3-4):367-382
The Qingchengzi orefield in northeastern China, is a concentration of several Pb–Zn, Ag, and Au ore deposits. A combination of geochronological and Pb, Sr isotopic investigations was conducted. Zircon SHRIMP U–Pb ages of 225.3 ± 1.8 Ma and 184.5 ± 1.6 Ma were obtained for the Xinling and Yaojiagou granites, respectively. By step-dissolution Rb–Sr dating, ages of 221 ± 12 Ma and 138.7 ± 4.1 Ma were obtained for the sphalerite of the Zhenzigou Zn–Pb deposit and pyrargyrite of the Ag ore in the Gaojiabaozi Ag deposit, respectively. Pb isotopic ratios of the Ag ore at Gaojiabaozi (206Pb/204Pb = 18.38 to 18.53) are higher than those of the Pb–Zn ores (206Pb/204Pb = 17.66 to 17.96; Chen et al. [Chen, J.F., Yu, G., Xue, C.J., Qian, H., He, J.F., Xing, Z., Zhang, X., 2005. Pb isotope geochemistry of lead, zinc, gold and silver deposit clustered region, Liaodong rift zone, northeastern China. Science in China Series D 48, 467–476.]). Triassic granites show low Pb isotopic ratios (206Pb/204Pb = 17.12 to 17.41, 207Pb/204Pb = 15.47 to 15.54, 208Pb/204Pb = 37.51 to 37.89) and metamorphic rocks of the Liaohe Group have high ratios (206Pb/204Pb = 18.20 to 24.28 and 18.32 to 20.06, 207Pb/204Pb = 15.69 to 16.44 and 15.66 to 15.98, 208Pb/204Pb = 37.29 to 38.61 and 38.69 to 40.00 for the marble of the Dashiqiao Formation and schist of the Gaixian Formation, respectively).Magmatic activities at Qingchengzi and in adjacent regions took place in three stages, and each contained several magmatic pulses: ca. 220 to 225 Ma and 211 to 216 Ma in the Triassic; 179 to 185 Ma, 163 to 168 Ma, 155 Ma and 149 Ma in the Jurassic, as well as ca. 140 to 130 Ma in the Early Cretaceous. The Triassic magmatism was part of the Triassic magmatic belt along the northern margin of the North China Craton produced in a post-collisional extensional setting, and granites in it formed by crustal melting induced by mantle magma. The Jurassic and Early Cretaceous magmatism was related to the lithospheric delamination in eastern China. The Triassic is the most important metallogenic stage at Qingchengzi. The Pb–Zn deposits, the Pb–Zn–Ag ore at Gaojiabaozi, and the gold deposits were all formed in this stage. They are temporally and spatially associated with the Triassic magmatic activity. Mineralization is very weak in the Jurassic. Ag ore at Gaojiabaozi was formed in the Early Cretaceous, which is suggested by the young Rb–Sr isochron age, field relations, and significantly different Pb isotopic ratios between the Pb–Zn–Ag and Ag ores. Pb isotopic compositions of the Pb–Zn ores suggest binary mixing for the source of the deposits. The magmatic end-member is the Triassic granites and the other metamorphic rocks of the Liaohe Group. Slightly different proportions of the two end-members, or an involvement of materials from hidden Cretaceous granites with slightly different Pb isotopic ratios, is postulated to interpret the difference of Pb isotopic compositions between the Pb–Zn–(Ag) and Ag ores. Sr isotopic ratios support this conclusion. At the western part of the Qingchengzi orefield, hydrothermal fluid driven by the heat provided by the now exposed Triassic granites deposited ore-forming materials in the low and middle horizons of the marbles of the Dashiqiao Formation near the intrusions to form mesothermal Zn–Pb deposits. In the eastern part, hydrothermal fluids associated with deep, hidden Triassic intrusions moved upward along a regional fault over a long distance and then deposited the ore-forming materials to form epithermal Au and Pb–Zn–Ag ores. Young magmatic activities are all represented by dykes across the entire orefield, suggesting that the corresponding main intrusion bodies are situated in the deep part of the crust. Among these, only intrusions with age of ca. 140 Ma might have released sufficient amounts of fluid to be responsible for the formation of the Ag ore at Gaojiabaozi.Our age results support previous conclusions that sphalerite can provide a reliable Rb–Sr age as long as the fluid inclusion phase is effectively separated from the “sulfide” phase. Our work suggests that the separation can be achieved by a step-resolution technique. Moreover, we suggest that pyrargyrite is a promising mineral for Rb–Sr isochron dating. 相似文献
3.
Porphyry Cu–Au and associated polymetallic Fe–Cu–Au deposits in the Beiya Area, western Yunnan Province, south China 总被引:1,自引:0,他引:1
The Alkaline porphyries in the Beiya area are located east of the Jinshajiang suture, as part of a Cenozoic alkali-rich porphyry belt in western Yunnan. The main rock types include quartz-albite porphyry, quartz-K-feldspar porphyry and biotite–K-feldspar porphyry. These porphyries are characterised by high alkalinity [(K2O + Na2O)% > 10%], high silica (SiO2% > 65%), high Sr (> 400 ppm) and 87Sr/86Sr (> 0.706)] ratio and were intruded at 65.5 Ma, between 25.5 to 32.5 Ma, and about 3.8 Ma, respectively. There are five main types of mineral deposits in the Beiya area: (1) porphyry Cu–Au deposits, (2) magmatic Fe–Au deposits, (3) sedimentary polymetallic deposits, (4) polymetallic skarn deposits, and (5) palaeoplacers associated with karsts. The porphyry Cu–Au and polymetallic skarn deposits are associated with quartz–albite porphyry bodies. The Fe–Au and polymetallic sedimentary deposits are part of an ore-forming system that produced considerable Au in the Beiya area, and are characterised by low concentrations of La, Ti, and Co, and high concentrations of Y, Yb, and Sc.The Cenozoic porphyries in western Yunnan display increased alkalinity away from the Triassic Jinshajiang suture. Distribution of both the porphyries and sedimentary deposits in the Beiya area are interpreted to be related to partial melting in a disjointed region between upper mantle lithosphere of the Yangtze Plate and Gondwana continent, and lie within a shear zone between buried Palaeo-Tethyan oceanic lithosphere and upper mantle lithosphere, caused by the subduction and collision of India and Asia. 相似文献
4.
D. L. Huston 《Journal of Geochemical Exploration》2001,72(1):135
The Western Tharsis disseminated Cu–Au orebody, which occurs within the Cambrian Mt Read Volcanics of Western Tasmania, is surrounded by a pyritic halo that extends 100–200 m stratigraphically above and below the ore zone. Although this halo extends laterally along the same stratigraphic position to the south, it probably closes off to the north based on limited surface and drill hole data. The ore zone is characterized by extreme enrichment (the enrichments and depletions referred to herein are relative to background; these have not been established using mass balance techniques) in As, Bi, Ce, Cu, Mo, Ni, S and Se; with the exception of Mo, these elements are also enriched, but at a much lower level, in the pyrite halo.Pronounced depletion in K, Cs and Mg occurs in 20–30 m wide stratiform zones that flank the orebody on both sides within the pyritic halo. These anomalies and depletions in Be, Ga, Rb, Y, MREE and HREE are associated with a pyrophyllite-bearing alteration zone that wraps around the main pyrite–chalcopyrite-bearing ore zone. This zone is also characterized by positive Eu anomalies which persist up to 150 m both into the hanging wall and footwall of the orebody. The depletion of these elements is consistent with the advanced argillic alteration assemblage developed about acid-sulfate Cu–Au deposits.The pyrite halo is surrounded by a peripheral carbonate halo which is highly enriched in C, CaO and MnO, and weakly enriched in Zn and Tl. Zinc and Tl are most enriched in the upper 100–150 m of the stratigraphically lower halo. In the stratigraphically upper halo, Zn and Tl values are anomalously high but erratic.Barium and Sr enrichment, although mainly restricted to the pyrite halo, extends into the stratigraphically lower carbonate halo by up to 100 m. A Na depletion anomaly extends from 150 m below the orebody and to at least the Owen contact (i.e. ≥400 m)in the hanging wall.The dispersion patterns observed at Western Tharsis are quite unlike those of Zn–Pb-rich volcanic-hosted massive sulfide (VHMS) deposits in western Tasmania. Rather, the dispersion patterns observed at Western Tharsis are more akin to those surrounding porphyry Cu deposits and related acid-sulfate Cu–Au deposits. 相似文献
5.
DING Hui GE Wensheng DONG Lianhui ZHANG Liangliang CHEN Xiaodong LIU Yan NIE Junjie 《《地质学报》英文版》2018,92(3):1100-1122
The Weiquan Ag-polymetallic deposit is located on the southern margin of the Central Asian Orogenic Belt and in the western segment of the Aqishan-Yamansu arc belt in East Tianshan,northwestern China. Its orebodies, controlled by faults, occur in the lower Carboniferous volcanosedimentary rocks of the Yamansu Formation as irregular veins and lenses. Four stages of mineralization have been recognized on the basis of mineral assemblages, ore fabrics, and crosscutting relationships among the ore veins. Stage I is the skarn stage(garnet + pyroxene), Stage Ⅱ is the retrograde alteration stage(epidote + chlorite + magnetite ± hematite 士 actinolite ± quartz),Stage Ⅲ is the sulfide stage(Ag and Bi minerals + pyrite + chalcopyrite + galena + sphalerite + quartz ± calcite ± tetrahedrite),and Stage IV is the carbonate stage(quartz + calcite ± pyrite). Skarnization,silicification, carbonatization,epidotization,chloritization, sericitization, and actinolitization are the principal types of hydrothermal alteration. LAICP-MS U-Pb dating yielded ages of 326.5±4.5 and 298.5±1.5 Ma for zircons from the tuff and diorite porphyry, respectively. Given that the tuff is wall rock and that the orebodies are cut by a late diorite porphyry dike, the ages of the tuff and the diorite porphyry provide lower and upper time limits on the age of ore formation. The δ~(13)C values of the calcite samples range from-2.5‰ to 2.3‰, the δ~(18)O_(H2 O) and δD_(VSMOW) values of the sulfide stage(Stage Ⅲ) vary from 1.1‰ to 5.2‰ and-111.7‰ to-66.1‰, respectively,and the δ~(13)C, δ~(18)O_(H2 O) and δD_(V-SMOW) values of calcite in one Stage IV sample are 1.5‰,-0.3‰, and-115.6‰, respectively. Carbon, hydrogen, and oxygen isotopic compositions indicate that the ore-forming fluids evolved gradually from magmatic to meteoric sources. The δ~(34)S_(V-CDT) values of the sulfides have a large range from-6.9‰ to 1.4‰, with an average of-2.2‰, indicating a magmatic source, possibly with sedimentary contributions. The ~(206)Pb/~(204)Pb, ~(207)Pb/~(204)Pb, and ~(208)Pb/~(204)Pb ratios of the sulfides are 17.9848-18.2785,15.5188-15.6536, and 37.8125-38.4650, respectively, and one whole-rock sample at Weiquan yields~(206)Pb/~(204)Pb,~(207)Pb/~(204)Pb, and ~(208)Pb/~(204)Pb ratios of 18.2060, 15.5674, and 38.0511,respectively. Lead isotopic systems suggest that the ore-forming materials of the Weiquan deposit were derived from a mixed source involving mantle and crustal components. Based on geological features, zircon U-Pb dating, and C-H-OS-Pb isotopic data, it can be concluded that the Weiquan polymetallic deposit is a skarn type that formed in a tectonic setting spanning a period from subduction to post-collision. The ore materials were sourced from magmatic ore-forming fluids that mixed with components derived from host rocks during their ascent, and a gradual mixing with meteoric water took place in the later stages. 相似文献
6.
《Resource Geology》2018,68(4):446-454
The Jinchang Cu–Au deposit in Heilongjiang Province, NE China, is located in the easternmost part of the Central Asian Orogenic Belt. Rb–Sr analyses of auriferous pyrite from the deposit yielded an isochron age of 113.7 ±2.5 Ma, consistent with previously reported Re–Os ages. Both sets of ages represent the timing of Cu–Au mineralization because (i) the pyrite was separated from quartz–sulfide veins of the mineralization stage in granite porphyry; (ii) fluid inclusions have relatively high Rb, Sr, and Os content, allowing precise measurement; (iii) there are no other mineral inclusions or secondary fluids in pyrite to disturb the Rb–Sr or Re–Os decay systems; and (iv) the closure temperatures of the two decay systems are ≥500°C (compared with the homogenization temperatures of fluid inclusions of 230–510°C). It is proposed that ore‐forming components were derived from mantle–crust mixing, with ore‐forming fluids being mainly exsolved from magmas with minor amounts of meteoric water. The age of mineralization at Jinchang and in the adjacent regions, combined with the tectonic evolution of the northeast China epicontinental region, indicates that the formation of the Jinchang porphyry Cu–Au deposit was associated with Early Cretaceous subduction of the paleo‐Pacific Plate. 相似文献
7.
槐树坪金矿床位于河南省洛阳市嵩县境内,是豫西熊耳山地区近年来新发现的大型金矿床。本次研究对槐树坪金矿区地表及井下不同类型的较新鲜围岩、蚀变岩和矿石以及地表1∶20000面积性土壤采样,分析29项微量元素,从岩石和土壤两种采样介质来确定槐树坪金矿床的地球化学找矿指示元素。一方面基于较新鲜围岩的元素含量特征确定每个微量元素在该区岩石中的异常下限,进而分别计算了蚀变岩和矿石中微量元素平均含量与异常下限的比值,即异常衬度。按照异常衬度大于1.4的标尺确定了蚀变岩与矿石中明显富集的微量元素组合。另一方面,基于Au与28项微量元素在较新鲜围岩、蚀变岩、矿石三种介质中含量关系散点图直观确定了指示金成矿的微量元素组合。综合二者确定出槐树坪金矿区岩石地球化学找矿的指示元素组合为Au、Ag、As、Sb、Hg、Sn、Mo、Bi、Cu、Pb、Zn、Cd、Nb计13项。针对地表1∶20000面积性土壤调查,采用上述岩石中异常衬度为1.4作为土壤异常下限绘制了槐树坪金矿区微量元素的地球化学异常剖析图,以槐树坪金矿区已探明鸡公山一带的主成矿段为模型确定了土壤地球化学找矿的指示元素组合为Au、Ag、As、Sb、Hg、Bi、Cu、Pb、Zn、Cd、B计11项。综合上述结果认为在找矿指示元素组合方面土壤对岩石具有明显的继承性。基于岩石与土壤介质中共同的10项找矿指示元素,构建了归一化的综合异常指标,以鸡公山矿段为标准对整个槐树坪矿区进行了综合评价,发现槐树坪矿区内马蹄沟、秦佛爷沟、姜疙瘩和天坪西4处具有类似鸡公山矿段的找矿潜力。 相似文献
8.
A‐Juan Pang Sheng‐Rong Li M. Santosh Qing‐Yu Yang Bao‐Jian Jia Cheng‐Dong Yang 《Geological Journal》2014,49(1):52-68
The Jilongshan skarn Cu–Au deposit is located at the Jiurui ore cluster region in the southwestern part of the Middle–Lower Yangtze River valley metallogenic belt. The region is characterized by NW‐, NNW‐ and EW‐trending faults and the mineralization occurs at the contact of lower Triassic carbonate rocks and Jurassic granodiorite porphyry intrusions. The intrusives are characterized by SiO2, K2O, and Na2O concentrations ranging from 61.66 to 67.8 wt.%, 3.29 to 5.65 wt.%, and 2.83 to 3.9 wt.%, respectively. Their A/CNK (A/CNK = n(Al2O3)/[n(CaO) + n(Na2O) + n(K2O)]) ratio, δEu, and δCe vary from 0.77 to 1.17, 0.86 to 1, and 0.88 to 0.96, respectively. The rocks show enrichment in light rare earth elements ((La/Yb)N = 7.61–12.94) and large ion lithophile elements (LILE), and depletion in high field strength elements (HFSE), such as Zr, Ti. They also display a peraluminous, high‐K calc‐alkaline signature typical of intrusives associated with skarn and porphyry Cu–Au–Mo polymetallic deposits. Laser ablation inductively coupled plasma spectrometry (LA‐ICP‐MS) zircon U–Pb age indicates that the granodiorite porphyry formed at 151.75 ± 0.70 Ma. A few inherited zircons with older ages (677 ± 10 Ma, 848 ± 11 Ma, 2645 ± 38 Ma, and 3411 ± 36 Ma) suggest the existence of an Archaean basement beneath the Middle–Lower Yangtze River region. The temperature of crystallization of the porphyry estimated from zircon thermometer ranges from 744.3 °C to 751.5 °C, and 634.04 °C to 823.8 °C. Molybdenite Re–Os dating shows that the Jilongshan deposit formed at 150.79 ± 0.82 Ma. The metallogeny and magmatism are correlated to mantle–crust interaction, associated with the subduction of the Pacific Plate from the east. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
9.
Sedimentary rock-hosted Au deposits in the Dian–Qian–Gui area in southwest China are hosted in Paleozoic and early Mesozoic sedimentary rocks along the southwest margin of the Yangtze (South China) Precambrian craton. Most deposits have characteristics similar to Carlin-type Au deposits and are spatially associated, on a regional scale, with deposits of coal, Sb, barite, As, Tl, and Hg. Sedimentary rock-hosted Au deposits are disseminated stratabound and(or) structurally controlled. The deposits have many similar characteristics, particularly mineralogy, geochemistry, host rock, and structural control. Most deposits are associated with structural domes, stratabound breccia bodies, unconformity surfaces or intense brittle–ductile deformation zones, such as the Youjiang fault system. Typical characteristics include impure carbonate rock or calcareous and carbonaceous host rock that contains disseminated pyrite, marcasite, and arsenopyrite—usually with μm-sized Au, commonly in As-rich rims of pyrite and in disseminations. Late realgar, orpiment, stibnite, and Hg minerals are spatially associated with earlier forming sulfide minerals. Minor base–metal sulfides, such as galena, sphalerite, chalcopyrite, and Pb–Sb–As–sulphosalts also are present. The rocks locally are silicified and altered to sericite–clay (illite). Rocks and(or) stream-sediment geochemical signatures typically include elevated concentrations of As, Sb, Hg, Tl, and Ba. A general lack of igneous rocks in the Dian–Qian–Gui area implies non-pluton-related, ore forming processes. Some deposits contain evidence that sources of the metal may have originated in carbonaceous parts of the sedimentary pile or other sedimentary or volcanic horizons. This genetic process may be associated with formation and mobilization of petroleum and Hg in the region and may also be related to As-, Au-, and Tl-bearing coal horizons. Many deposits also contain textures and features indicative of strong structural control by tectonic domes or shear zones and also suggest syndeformational ore deposition, possibly related to the Youjiang fault system. Several sedimentary rock-hosted Au deposits in the Dian–Qian–Gui area also are of the red earth-type and Au grades have been concentrated and enhanced during episodes of deep weathering. 相似文献
10.
11.
双河金矿床位于华北克拉通南缘的卢氏金多金属矿集区,为一石英脉型金矿;矿体呈脉状产于中元古代宽坪群石英二云母片岩切层断裂中;金主要产在黄铁矿和多金属硫化物石英/铁白云石脉中。以含金石英矿脉为中心由内到外围岩蚀变主要发育硅化、黄铁矿化及碳酸盐化。流体成矿过程包括早、中、晚3个阶段,分别以无矿白石英、石英-黄铁矿-多金属硫化物-铁白云石组合和石英-方解石组合为标志,矿石矿物主要沉淀于中阶段。双河金矿流体包裹体类型丰富,不同成矿阶段的流体包裹体主要有H_2O-CO_2包裹体、H_2O包裹体、含子晶(NaCl、CaCO_3)包裹体和含C单质包裹体。显微测温学研究表明,成矿早阶段乳白色石英中包裹体类型有H_2O-CO_2包裹体和H_2O包裹体,H_2O-CO_2包裹体均一温度为220~350℃,盐度为3. 89%~16. 55%NaCleqv; H_2O包裹体均一温度介于220~285℃之间,盐度为1. 40%~1. 70%NaCleqv。成矿主阶段烟灰色石英中包裹体类型包括H_2O-CO_2包裹体、H_2O包裹体、含NaCl子晶包裹体和含C单质包裹体,其中H_2O-CO_2包裹体均一温度为189~345℃,盐度为3. 33%~20. 23%NaCleqv; H_2O包裹体的均一温度介于180~348℃之间,盐度为0. 88%~14. 97%NaCleqv;含NaCl子晶包裹体均一温度为210~359℃,盐度为30. 92%~42. 50%NaCleqv。氢氧同位素研究表明成矿流体来自岩浆水与变质水(δ~(18)O_水=5. 3‰~8. 6‰,δD=-72. 6‰~-38. 4‰);热液碳酸盐的δ~(13)C_(V-PDB)值为-7. 5‰~-5. 2‰,δ~(18)O_(V-SMOW)值为14. 7‰~17. 0‰。包裹体及C-H-O同位素的研究表明,流体的沸腾及水岩反应可能是双河金矿金沉淀的主要原因。 相似文献
12.
13.
Dajing is a large-scale tin–polymetallic deposit that hosts the largest tin mine in North China. It is a hydrothermal vein-type deposit containing Sn, Cu, Pb, Zn, Ag, and minor components Co and In. The deposit consists of more than 690 veins hosted within Upper Permian sedimentary rocks.Three mineralization stages and six ore types are recognized with cassiterite constituting the dominant tin mineral. The SnO2 content of cassiterite increases in the sequence of mineralization stages shear-deformation→cassiterite–quartz→cassiterite–sulfide (or chalcopyrite–pyrite) stage, while the content of FeO, TiO2, Nb2O5, Ta2O5, and In2O5 tends to decrease with increases in NiO and Ga2O5. It is considered that the negative correlation between SnO2 and FeO, Nb2O5, Ta2O5, and In2O5 results from elemental substitutions. The early stage cassiterite is much richer in Ta and the later stage cassiterite is much poorer in Ti and Fe than is usual in hydrothermal vein type tin deposits. This is interpreted to indicate that the component of early stage cassiterite reflects a granitic magma source while the composition of later stage cassiterite has a more obvious strata source. The compositional variation of cassiterite corresponds to decreasing crystallization temperatures within each stage and between sequential stages with time. The characteristics of REE in cassiterite from two stages are in accord with that of subvolcanic rocks and the Linxi formation. It suggests that tin transported during the cassiterite–quartz stage may have originated from subvolcanic dikes (e.g., dacite porphyry), while in the cassiterite–sulfide stage, tin may have been derived from wallrock (e.g. siltstone) of the Upper Permian-age Linxi Formation. 相似文献
14.
The Xiangxi Au–Sb–W deposit, the largest of its type in northwestern Hunan, China, is a sulfide-dominated ore body hosted by low grade metamorphic red slates of the Neoproterozoic Madiyi Formation. Three stages of mineralization, quartz–scheelite, quartz–gold–pyrite, quartz–gold–stibnite, and one metal-barren stage of veining, quartz–calcite, are recognized. Arsenopyrite occurs only as a minor mineral phase in the second stage. Analyses for 21 trace elements show that the enrichment factors of As in the metal deposit (EC [=element concentration of sample/average content of an element in the upper crust]: 190; 43 samples) in ore veins and in the Guanzhuang and Yuershan reference sections (3.7 km and 2.7 km away from the Xiangxi mine, EC: 3.5; 96 samples) are much smaller than those of Sb (52855 [in ore veins], 117 [in the sections]), W (5665, 7.5) and Au (2727, 5.3). The background concentrations of Au and As in the two sections were 1.4 ppb and 1.4 ppm, respectively. Arsenic (with an anomaly coefficient [AC = number of anomalous samples/total number of samples] of 76%) forms a larger geochemical halo than W (AC: 8%) and Au (AC: 32%). Gold and As in the deposit were transported mainly as metal complexes such as Au(HS)−2, HnAs3S−(3−n)6 (n=1, 2 or 3) and HAsS02. Au(HS)−2 is rapidly precipitated by a geochemical oxidation barrier — the red slates of the Madiyi Formation. As–S complexes in the stratigraphic horizon can be transformed into As–O complexes (e.g., H3AsO03) under oxidizing conditions, and are continuously transported. Therefore, they can be widely distributed in the red slate units, thus forming extensive geochemical haloes, so that As can be used as an indicator element for Au exploration in the Xiangxi region. 相似文献
15.
Taofa Zhou Feng Yuan Shucang Yue Xiaodong Liu Xin Zhang Yu Fan 《Ore Geology Reviews》2007,31(1-4):279-303
The Yueshan mineral belt is geotectonically located at the centre of the Changjiang deep fracture zone or depression of the lower Yangtze platform. Two main types of ore deposits occur in the Yueshan orefield: Cu–Au–(Fe) skarn deposits and Cu–Mo–Au–(Pb–Zn) hydrothermal vein-type deposits. Almost all deposits of economic interest are concentrated within and around the eastern and northern branches of the Yueshan dioritic intrusion. In the vicinity of the Zongpu and Wuhen intrusions, there are many Cu–Pb–Zn–Au–(S) vein-type and a few Cu–Fe–(Au) skarn-type occurrences.Fluid inclusion studies show that the ore-forming fluids are characterised by a Cl−(S)–Na+–K+ chemical association. Hydrothermal activity associated with the above two deposit types was related to the Yueshan intrusion. The fluid salinity was high during the mineralisation processes and the fluid also underwent boiling and mixed with meteoric water. In comparison, the hydrothermal activity related to the Zongpu and Wuhen intrusions was characterised by low salinity fluids. Chlorine and sulphur species played an important role in the transport of ore-forming components.Hydrogen- and oxygen-isotope data also suggest that the ore-forming fluids in the Yueshan mineral belt consisted of magmatic water, mixed in various proportions with meteoric water. The enrichment of ore-forming components in the magmatic waters resulted from fluid–melt partitioning. The ore fluids of magmatic origin formed large Cu–Au deposits, whereas ore fluids of mixed magmatic-meteoric origin formed small- to medium-sized deposits.The sulphur isotopic composition of the skarn- and vein-type deposits varies from − 11.3‰ to + 19.2‰ and from + 4.2‰ to + 10.0‰, respectively. These variations do not appear to have been resulted from changes of physicochemical conditions, rather due to compositional variation of sulphur at the source(s) and by water–rock interaction. Complex water–rock interaction between the ore-bearing magmatic fluids and sedimentary wall rocks was responsible for sulphur mixing. Lead and silicon isotopic compositions of the two deposit types and host rocks provide similar indications for the sources and evolution of the ore-forming fluids.Hydrodynamic calculations show that magmatic ore-forming fluids were channelled upwards into faults, fractures and porous media with velocities of 1.4 m/s, 9.8 × 10− 1 to 9.8 × 10− 7 m/s and 3.6 × 10− 7 to 4.6 × 10− 7 m/s, respectively. A decrease of fluid migration velocity in porous media or tiny fractures in the contact zones between the intrusive rocks and the Triassic sedimentary rocks led to the deposition of the ore-forming components. The major species responsible for Cu transport are deduced to have been CuCl, CuCl2−, CuCl32− and CuClOH, whereas Au was transported as Au2(HS)2S2−, Au(HS)2−, AuHS and AuH3SiO4 complexes. Cooling and a decrease in chloride ion concentration caused by fluid boiling and mixing were the principal causes of Cu deposition. Gold deposition was related to decrease of pH, total sulphur concentration and fO2, which resulted from fluid boiling and mixing.Geological and geochemical characteristics of the two deposit types in the Yueshan mineral belt suggest that there is a close genetic relationship with the dioritic magmatism. Geochronological data show that the magmatic activity and the mineralisation took place between 130 and 136 Ma and represent a continuous process during the Yanshanian time. The cooling of the intrusions and the mineralisation event might have lasted about 6 Ma. The cooling rate of the magmatic intrusions was 80 to 120 °C my− 1, which permitted sufficient heat supply by magma to the ore-forming system. 相似文献
16.
Noble Gas and Stable Isotopic Constraints on the Origin of the Ag–Cu Polymetallic Ore Deposits in the Baiyangping Area,Yunnan Province,SW China 下载免费PDF全文
Zhichao Zou Ruizhong Hu Xianwu Bi Liyan Wu Jinrang Zhang Yongyong Tang Na Li 《Resource Geology》2016,66(2):183-198
The Lanping basin, Yunnan province, SW China, is located at the juncture of the Eurasian and Indian Plates in the eastern part of the Tibetan Plateau. The Lanping basin, in the Sanjiang Tethyan metallogenic province, is a significant Cu–Ag–Zn–Pb mineralized belt in China that includes the largest sandstone‐hosted Zn–Pb deposit in the world, the Jinding deposit, as well as several Ag–Cu deposits (the Baiyangping and Jinman deposits). These deposits, with total reserves of over 16.0 Mt Pb + Zn, 0.6 Mt Cu, and 7,000 t Ag, are mainly hosted in Meso‐Cenozoic clastic rocks and are dominantly controlled by two Cenozoic thrust systems developed in the western and eastern segments of the basin. The Baiyangping, Babaoshan, and Hetaoqing ore deposits are representative of the epithermal base metal deposits in the Lanping basin. The microthermometric data show that the ore‐forming fluids for these deposits were low temperature (110–180 °C) and had bimodal distribution of salinity at moderate and mid to high salinities (approximately 2–8 wt.% and 18–26 wt.% NaCl equivalent). The C and O isotope data indicate that the ore‐forming fluids were related to hot basin brines. We present new He and Ar isotope data on volatiles released from fluid inclusions contained in sulfides and in barite in these three deposits. 3He/4He ratios of the ore‐forming fluids are 0.01 to 0.14 R/Ra with a mean of 0.07 Ra (where R is the 3He/4He ratio and Ra is the ratio for atmospheric helium). This mean value is intermediate to typical 3He/4He ratios for the crust (R/Ra = 0.01 to 0.05) and the ratio for air‐saturated water (R/Ra = 1). The mean ratio is also significantly lower than the ratios found for mantle‐derived fluids (R/Ra = 6 to 9). The 40Ar/36Ar ratios of the ore‐forming fluids range from 298 to 382 with a mean of 323. This value is slightly higher than that for the air‐saturated water (295.5). The 3He/4He ratios of fluids from the fluid inclusions imply that the ore‐forming fluid for the Baiyangping, Babaoshan, and Hetaoqing deposits was derived from the crust and that any mantle‐derived He was negligible. The content of the radiogenic Ar ranges between 0.2 to 20.4%, and the proportion of air‐derived 40Ar averages 94.1%. This indicates that atmospheric Ar was important in the formation of these deposits but that some radiogenic 40Ar was derived from crustal rocks. Based on these observations coupled with other geochemical evidence, we suggest that the ore‐forming fluids responsible for the formation of the Ag–Cu–Pb–Zn polymetallic ore deposits in the Baiyangping area of the Lanping basin were mainly derived from crustal fluids. The fluids may have mixed with some amount of air‐saturated water, but there was no significant involvement of mantle‐derived fluids. 相似文献
17.
The Xiaoxinancha Au–Cu deposit is located at the eastern segment of the Tianshan–Xingmeng orogenic belt in northeast China. The deposit includes porphyry Au–Cu orebodies, veined Au–Cu orebodies and veined Mo mineralizations. All of them occur within the diorite intrusion. The Late Permian diorite, Late Triassic granodiorite, Early Cretaceous granite and granite porphyry are developed in the ore area. The studies on geological features show that the porphyry Au–Cu mineralization is related to the Late Permian diorite intrusion. New geochronologic data for the Xiaoxinancha porphyry Au–Cu deposit yield Permian crystallization zircon U–Pb age of 257 ± 3 Ma for the diorite that hosts the Au–Cu mineralization. Six molybdenite samples from quartz + molybdenite veins imposed on the porphyry Au–Cu orebodies yield an isochron age of 110.3 ± 1.5 Ma. The ages of the molybdenites coeval to zircon ages of the granite within the errors suggest that the Mo mineralization was genetically related to the Early Cretaceous granite intrusion. The formation of the diorite and the related Au–Cu mineralization were caused by the partial melting of the subduction slab during the Late Palaeozoic palaeo‐Asia Ocean tectonic stage. The Re contents and Re–Os isotopic data indicate that the crustal resource is dominated for the Mo mineralization during the Cretaceous extensional setting caused by the roll‐back of the palaeo‐Pacific plate. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
18.
《Resource Geology》2018,68(3):209-226
Shin‐Otoyo, Suttsu, Teine, Date, Chitose, and Koryu are sites rich in precious and base metal Miocene–Pleistocene epithermal deposits, and located in southwestern Hokkaido, Japan. The deposits are predominantly hosted by the Green Tuff Formation of Middle Miocene age. Ore petrographic study of these deposits shows the occurrence of variable quantities of Cu–As–Sb–Ag–Bi–Pb–Te sulfosalt minerals. Determination of mineralogical and chemical compositions of the sulfosalt minerals was undertaken to elucidate the time and spatial changes of the sulfide‐sulfosalt minerals. Various types of sulfosalt minerals identified from gold–silver and base metal quartz–sulfide veins represented some sulfosalt mineralization phases, such as the Cu–Fe–Sn–S phase of mawsonite and stannite; Cu–(As,Sb)–S phase of tetrahedrite–tennantite and luzonite–famatinite series minerals; (Cu,Ag)–Bi–Pb–S phase of emplectite, pavonite, friedrichite, aikinite, and lillianite–gustavite series minerals; (Ag,Cu)–(As,Sb)–S phase of proustite–pyrargyrite and pearceite–polybasite series minerals; and Bi–Te–S phase of tetradymite and kawazulite minerals. There are some trends in the paragenetic sequence of sulfosalt mineralization in southwestern Hokkaido (in complete or partial) as follows: sulfide → Cu–Fe–Sn–S → (Cu,Ag)–Bi–Pb–S → (Bi–Te–S) → Cu–(As,Sb)–S → ([Ag,Cu]–[As,Sb]–S). The formation of sulfosalt minerals is characterized by the introduction of some elements such as Sn, Bi, and Te at an earlier stage and an increase or decrease of some elements such as As and Sb, followed by the introduction of Ag at the later stage of ore mineral paragenesis sequence. Mineral composition of the Chitose and Koryu deposits are slightly different from those of Shin‐Otoyo, Suttsu, Teine, and Date due to their lack of Sn (tin) and Bi (bismuth) mineralization. The variable concentrations and relationships are not simply with redistributed trace elements from the original sulfide minerals of chalcopyrite, pyrite, galena, and sphalerite. Some heavier elements were also introduced during the replacement reaction, which is consistent with the occurrence of their associated minerals. 相似文献
19.
Run-Sheng Han Cong-Qiang Liu Zhi-Long Huang Jin Chen De-Yun Ma Li Lei Geng-Sheng Ma 《Ore Geology Reviews》2007,31(1-4):360
The Huize Zn–Pb–(Ag) district, in the Sichuan–Yunnan–Guizhou Zn–Pb–(Ag) metallogenic region, contains significant high-grade, Zn–Pb–(Ag) deposits. The total metal reserve of Zn and Pb exceeds 5 Mt. The district has the following geological characteristics: (1) high ore grade (Zn + Pb ≥ 25 wt.%); (2) enrichment in Ag and a range of other trace elements (Ge, In, Ga, Cd, and Tl), with galena, sphalerite, and pyrite being the major carriers of Ag, Ge, Cd and Tl; (3) ore distribution controlled by both structural and lithological features; (4) simple and limited wall-rock alteration; (5) mineral zonation within the orebodies; and (6) the presence of evaporite layers in the ore-hosting wall rocks of the Early Carboniferous Baizuo Formation and the underlying basement.Fluid-inclusion and isotope geochemical data indicate that the ore fluid has homogenisation temperatures of 165–220 °C, and salinities of 6.6–12 wt.% NaCl equiv., and that the ore-forming fluids and metals were predominantly derived from the Kunyang Group basement rocks and the evaporite-bearing rocks of the cover strata. Ores were deposited along favourable, specific ore-controlling structures. The new laboratory and field studies indicate that the Huize Zn–Pb–(Ag) district is not a carbonate-replacement deposit containing massive sulphides, but rather the deposits can be designated as deformed, carbonate-hosted, MVT-type deposits. Detailed study of the deposits has provided new clues to the localisation of concealed orebodies in the Huize Zn–Pb–(Ag) district and of the potential for similar carbonate-hosted sulphide deposits elsewhere in NE Yunnan Province, as well as the Sichuan–Yunnan–Guizhou Zn–Pb–(Ag) metallogenic region. 相似文献
20.
Limu W–Sn–Nb–Ta mining district is located in the Nanling Range W–Sn poly‐metallic mineralization belt in south China. The district includes a number of Sn–Nb–Ta and W–Sn ore occurrences; all of them are spatially associated with granite stocks of a largely‐unexposed pluton, the Limu granitic pluton. A granite sample collected from the Sn–Nb–Ta‐bearing Jinzhuyuan granite stock yields a zircon SHRIMP U–Pb age of 218.3 ± 2.4 Ma, a muscovite 40Ar/39Ar plateau age of 212.4 ± 1.4 Ma, and a muscovite 40Ar/39Ar isochron age of 213.2 ± 2.2 Ma. Another granite sample collected from the W–Sn‐bearing Sangehuangniu granite stock yields a zircon SHRIMP U–Pb age of 214 ± 5 Ma. The geochronological data provide new constraints on the age of the Limu granite pluton and the timing of the associated W–Sn–Nb–Ta mineralization—at least it sets a reasonable upper age limit for the mineralization of the W–Sn–Nb–Ta ores. The reported ages suggest an active Late Triassic granitic magmatism in Limu area which is part of a regional magmatic event near the end of the Indosinian orogeny in south China. 相似文献