首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
According to current observational data, planets of many exoplanetary systems have resonant motion. The formation of resonance configurations is studied within a unified model of planetary migration. Planets in the observed systems 24 Sex, HD 37124, HD 73526, HD 82943, HD 128311, HD 160691, Kepler 9, NN Ser, which are moving in the 2: 1 resonance, could have been captured into this resonance due to both the Type I and II migration with a wide range of parameters. The migration conditions are defined for the formation of HD 45364 and HD 200964 that are in the 3: 2 and 4: 3 first-order resonances, correspondingly. The results obtained for HD 200964 show that planets can be captured in the first-order resonances, when the outer-to-inner orbital period ratios for the planets are less than 3: 2, only if Type I migration rates are large, and the mass of at least one planet is substantially less than the modern masses of the observed giant planets. The formation of the HD 102272, HD 108874, HD 181433 and HD 202206 systems with planets in high-order resonances is considered. The capture into these resonances can be realized with very slow Type II migration. Possible bounds for migration parameters are considered. In particular, it has been found that the capture of HD 108874 into the 4: 1 resonance is possible only if the angle between the plane of planetary orbits and the plane of sky is appreciably less than 90°, i.e., the planetary masses are a few times larger than the minimum values. The capture of HD 202206 into the 5: 1 resonance is possible at low migration rates; however, another mechanism is required to explain the high observed eccentricity of the inner planet (for example, strong gravitational interaction between the planets). Resonant configurations can be disrupted due to the interaction between planets and remaining fragments of the planetesimal disk as, for example, may occur in the three-planet system 47 UMa. The specific orbital features observed for this system are explained.  相似文献   

2.
We consider particles with low free or proper eccentricity that are orbiting near planets on eccentric orbits. Through collisionless particle integration, we numerically find the location of the boundary of the chaotic zone in the planet's corotation region. We find that the distance in semimajor axis between the planet and boundary depends on the planet mass to the 2/7 power and is independent of the planet eccentricity, at least for planet eccentricities below 0.3. Our integrations reveal a similarity between the dynamics of particles at zero eccentricity near a planet in a circular orbit and with zero free eccentricity particles near an eccentric planet. The 2/7th law has been previously explained by estimating the semimajor at which the first-order mean motion resonances are large enough to overlap. Orbital dynamics near an eccentric planet could differ due to first-order corotation resonances that have strength proportional to the planet's eccentricity. However, we find that the corotation resonance width at low free eccentricity is small; also the first-order resonance width at zero free eccentricity is the same as that for a zero-eccentricity particle near a planet in a circular orbit. This accounts for insensitivity of the chaotic zone width to planet eccentricity. Particles at zero free eccentricity near an eccentric planet have similar dynamics to those at zero eccentricity near a planet in a circular orbit.  相似文献   

3.
Massive planets form within the lifetime of protoplanetary disks, and therefore, they are subject to orbital migration due to planet–disk interactions. When the first planet reaches the inner edge of the disk, its migration stops and consequently the second planet ends up locked in resonance with the first one. We detail how the resonant trapping works comparing semi-analytical formulae and numerical simulations. We restrict to the case of two equal-mass coplanar planets trapped in first-order resonances, but the method can be easily generalized. We first describe the family of resonant stable equilibrium points (zero-amplitude libration orbits) using series expansions up to different orders in eccentricity as well as a non-expanded Hamiltonian. Then we show that during convergent migration the planets evolve along these families of equilibrium points. Eccentricity damping from the disk leads to a final equilibrium configuration that we predict precisely analytically. The fact that observed multi-exoplanetary systems are rarely seen in resonances suggests that in most cases the resonant configurations achieved by migration become unstable after the removal of the protoplanetary disk. Here we probe the stability of the resonances as a function of planetary mass. For this purpose, we fictitiously increase the masses of resonant planets, adiabatically maintaining the low-amplitude libration regime until instability occurs. We discuss two hypotheses for the instability, that of a low-order secondary resonance of the libration frequency with a fast synodic frequency of the system, and that of minimal approach distance between planets. We show that secondary resonances do not seem to impact resonant systems at low amplitude of libration. Resonant systems are more stable than non-resonant ones for a given minimal distance at close encounters, but we show that the latter nevertheless play the decisive role in the destabilization of resonant pairs. We show evidence that as the planetary mass increases and the minimal distance between planets gets smaller in terms of mutual Hill radius, the region of stability around the resonance center shrinks, until the equilibrium point itself becomes unstable.  相似文献   

4.
The discovered exoplanetary systems have highly diverse dynamic properties, which differ from those of the Solar System. A single model including planet migration effects and their gravitational interaction is used to investigate the features of dynamic processes that lead to the formation of giant-planet systems with different orbital characteristics. It is shown for a system of four giant planets similar to the Solar System how Type I migration could lead to all the planets being captured into resonant configurations. The resonant motion can continue for a long period of time after the transition to Type II migration and after the dissipation of the gas-and-dust disk. The three-planet system of GJ 876 is used to investigate the migration of the planets inward the orbit of the most massive planet and their capture into low-order resonant configurations under the conditions of Type II migration. A system similar to the exoplanetary system of HD 102272 is used to study the capture into high-order resonances followed by an increase in the orbit’s eccentricity.  相似文献   

5.
A Hamiltonian model is constructed for the spin axis of a planet perturbed by a nearby planet with both planets in orbit about a star. We expand the planet–planet gravitational potential perturbation to first order in orbital inclinations and eccentricities, finding terms describing spin resonances involving the spin precession rate and the two planetary mean motions. Convergent planetary migration allows the spinning planet to be captured into spin resonance. With initial obliquity near zero, the spin resonance can lift the planet’s obliquity to near 90\(^\circ \) or 180\(^\circ \) depending upon whether the spin resonance is first or zeroth order in inclination. Past capture of Uranus into such a spin resonance could give an alternative non-collisional scenario accounting for Uranus’s high obliquity. However, we find that the time spent in spin resonance must be so long that this scenario cannot be responsible for Uranus’s high obliquity. Our model can be used to study spin resonance in satellite systems. Our Hamiltonian model explains how Styx and Nix can be tilted to high obliquity via outward migration of Charon, a phenomenon previously seen in numerical simulations.  相似文献   

6.
We study orbits of planetary systems with two planets, for planar motion, at the 1/1 resonance. This means that the semimajor axes of the two planets are almost equal, but the eccentricities and the position of each planet on its orbit, at a certain epoch, take different values. We consider the general case of different planetary masses and, as a special case, we consider equal planetary masses. We start with the exact resonance, which we define as the 1/1 resonant periodic motion, in a rotating frame, and study the topology of the phase space and the long term evolution of the system in the vicinity of the exact resonance, by rotating the orbit of the outer planet, which implies that the resonance and the eccentricities are not affected, but the symmetry is destroyed. There exist, for each mass ratio of the planets, two families of symmetric periodic orbits, which differ in phase only. One is stable and the other is unstable. In the stable family the planetary orbits are in antialignment and in the unstable family the planetary orbits are in alignment. Along the stable resonant family there is a smooth transition from planetary orbits of the two planets, revolving around the Sun in eccentric orbits, to a close binary of the two planets, whose center of mass revolves around the Sun. Along the unstable family we start with a collinear Euler–Moulton central configuration solution and end to a planetary system where one planet has a circular orbit and the other a Keplerian rectilinear orbit, with unit eccentricity. It is conjectured that due to a migration process it could be possible to start with a 1/1 resonant periodic orbit of the planetary type and end up to a satellite-type orbit, or vice versa, moving along the stable family of periodic orbits.  相似文献   

7.
Effect of stellar electromagnetic radiation on the motion of spherical dust particle in mean motion orbital resonances with a planet is investigated. Planar circular restricted three-body problem with the Poynting–Robertson (P–R) effect yields monotonic secular evolution of eccentricity when the particle is trapped in the resonance. Planar elliptic restricted three-body problem with the P–R effect enables nonmonotonous secular evolution of eccentricity and the evolution of eccentricity is qualitatively consistent with the published results for the complicated case of interaction of electromagnetic radiation with nonspherical dust grain. Thus, it is sufficient to allow either nonzero eccentricity of the planet or nonsphericity of the grain and the orbital evolutions in the resonances are qualitatively equal for the two cases. This holds both for exterior and interior mean motion orbital resonances. Evolutions of argument of perihelion in the planar circular and elliptical restricted three-body problems are shown. Numerical integrations show that an analytic expression for the secular time derivative of the particle’s argument of perihelion does not exist, if only dependence on semimajor axis, eccentricity and argument of perihelion is admitted. Connection between the shift of perihelion and oscillations in secular eccentricity is presented for the planar elliptic restricted three-body problem with the P–R effect. Period of the oscillations corresponds to the period of one revolution of perihelion. Change of optical properties of the spherical grain with the heliocentric distance is also considered. The change of the optical properties: (i) does not have any significant influence on the secular evolution of eccentricity, (ii) causes that the shift of perihelion is mainly in the same direction/orientation as the particle motion around the Sun. The statements hold both for circular and noncircular planetary orbits.  相似文献   

8.
We consider a two-planet system migrating under the influence of dissipative forces that mimic the effects of gas-driven (Type II) migration. It has been shown that, in the planar case, migration leads to resonant capture after an evolution that forces the system to follow families of periodic orbits. Starting with planets that differ slightly from a coplanar configuration, capture can, also, occur and, additionally, excitation of planetary inclinations has been observed in some cases. We show that excitation of inclinations occurs, when the planar families of periodic orbits, which are followed during the initial stages of planetary migration, become vertically unstable. At these points, vertical critical orbits may give rise to generating stable families of \(3D\) periodic orbits, which drive the evolution of the migrating planets to non-coplanar motion. We have computed and present here the vertical critical orbits of the \(2/1\) and \(3/1\) resonances, for various values of the planetary mass ratio. Moreover, we determine the limiting values of eccentricity for which the “inclination resonance” occurs.  相似文献   

9.
The rotation of Mercury is presently captured in a 3/2 spin-orbit resonance with the orbital mean motion. The capture mechanism is well understood as the result of tidal interactions with the Sun combined with planetary perturbations [Goldreich, P., Peale, S., 1966. Astron. J. 71, 425-438; Correia, A.C.M., Laskar, J., 2004. Nature 429, 848-850]. However, it is now almost certain that Mercury has a liquid core [Margot, J.L., Peale, S.J., Jurgens, R.F., Slade, M.A., Holin, I.V., 2007. Science 316, 710-714] which should induce a contribution of viscous friction at the core-mantle boundary to the spin evolution. According to Peale and Boss [Peale, S.J., Boss, A.P., 1977. J. Geophys. Res. 82, 743-749] this last effect greatly increases the chances of capture in all spin-orbit resonances, being 100% for the 2/1 resonance, and thus preventing the planet from evolving to the presently observed configuration. Here we show that for a given resonance, as the chaotic evolution of Mercury's orbit can drive its eccentricity to very low values during the planet's history, any previous capture can be destabilized whenever the eccentricity becomes lower than a critical value. In our numerical integrations of 1000 orbits of Mercury over 4 Gyr, the spin ends 99.8% of the time captured in a spin-orbit resonance, in particular in one of the following three configurations: 5/2 (22%), 2/1 (32%) and 3/2 (26%). Although the present 3/2 spin-orbit resonance is not the most probable outcome, we also show that the capture probability in this resonance can be increased up to 55% or 73%, if the eccentricity of Mercury in the past has descended below the critical values 0.025 or 0.005, respectively.  相似文献   

10.
Jiang & Yeh proposed gas-drag-induced resonant capture as a mechanism able to explain the dominant 3:2 resonance observed in the trans-Neptunian belt. Using a model of a disc–star–planet system they concluded that gaseous drag in a protoplanetary disc can trap trans-Neptunian object (TNO) embryos into the 3:2 resonance rather easily although it could not trap objects into the 2:1 resonance. Here we further investigate this scenario using numerical simulations within the context of the planar restricted four-body problem by including both present-day Uranus and Neptune. Our results show that mean motion and corotation resonances are possible and trapping into both the 3:2 and 2:1 resonances as well as other resonances is observed. The associated corotation centres may easily form larger planetesimals from smaller ones. Corotation resonances evolve into pure Lindblad resonances in a time-scale of 0.5 Myr. The non-linear corotation and mean motion resonances produced are very size selective. The 3:2 resonance is dominant for submetric particles but for larger particles the 2:1 resonance is stronger. In summary, our calculations show that confined chaotic motion around the resonances not only increases trapping efficiency but also the orbital eccentricities of the trapped material, modifying the relative abundance of trapped particles in different resonances. If we assume a more compact planetary system, instead of using the present-day values of the orbital elements of Uranus and Neptune, our results remain largely unchanged.  相似文献   

11.
Rodney S. Gomes 《Icarus》2011,215(2):661-668
Numerical integrations of the equations of motion of the giant planets and scattering particles show that there is a possible orbital itinerary that a particle may follow from a scattering mode up to a stable position near the orbit of 2004 XR190. This orbital evolution requires that the particle gets trapped in a mean motion resonance with Neptune coupled with the Kozai resonance. Imposing migration on Neptune while a particle is experiencing both resonances can entail an escape from resonance at a low particle’s eccentricity. This eccentricity and the associated inclination are always similar to those of 2004 XR190. I conclude that 2004 XR190 was most likely a scattered object that went through those resonance processes and was eventually deposited at its current position. By the same argument, it is expected that there must exist several other objects with similar semimajor axis, eccentricity and inclination as those of 2004 XR190.  相似文献   

12.
The temporary capture of the dust grains in the exterior resonances with planets is studied in the frames of the planar circular three-body problem with Poynting-Robertson (PR) drag. For the Earth and particles ~ 10 Μm the resonances 4/5, 5/6, 6/7, 7/8 are shown to be most effective. The capture is only temporary (of order 105 years) and the position of resonance may be calculated from semi-analytical model using averaged disturbing function. These semi-analytical results are confirmed by numerical integration. For various planet this picture changes as with increasing planetary mass the more exterior resonances become more important. We showed that for Jupiter (at least in the space between Jupiter and Saturn) the resonance 1/2 plays the dominant role. The capture time is here several myr but again eccentricity is evolving to eccentricity e 0 ~ 0.48 of libration point for this resonance.  相似文献   

13.
We use numerical integrations to investigate the dynamical evolution of resonant Trojan and quasi-satellite companions during the late stages of migration of the giant planets Jupiter, Saturn, Uranus, and Neptune. Our migration simulations begin with Jupiter and Saturn on orbits already well separated from their mutual 2:1 mean-motion resonance. Neptune and Uranus are decoupled from each other and have orbital eccentricities damped to near their current values. From this point we adopt a planet migration model in which the migration speed decreases exponentially with a characteristic timescale τ (the e-folding time). We perform a series of numerical simulations, each involving the migrating giant planets plus test particle Trojans and quasi-satellites. We find that the libration frequencies of Trojans are similar to those of quasi-satellites. This similarity enables a dynamical exchange of objects back and forth between the Trojan and quasi-satellite resonances during planetary migration. This exchange is facilitated by secondary resonances that arise whenever there is more than one migrating planet. For example, secondary resonances may occur when the circulation frequencies, f, of critical arguments for the Uranus-Neptune 2:1 mean-motion near-resonance are commensurate with harmonics of the libration frequency of the critical argument for the Trojan and quasi-satellite 1:1 mean-motion resonance . Furthermore, under the influence of these secondary resonances quasi-satellites can have their libration amplitudes enlarged until they undergo a close-encounter with their host planet and escape from the resonance. High-resolution simulations of this escape process reveal that ≈80% of jovian quasi-satellites experience one or more close-encounters within Jupiter’s Hill radius (RH) as they are forced out of the quasi-satellite resonance. As many as ≈20% come within RH/4 and ≈2.5% come within RH/10. Close-encounters of escaping quasi-satellites occur near or even below the 2-body escape velocity from the host planet. Finally, the exchange and escape of Trojans and quasi-satellites continues to as late as 6-9τ in some simulations. By this time the dynamical evolution of the planets is strongly dominated by distant gravitational perturbations between the planets rather than the migration force. This suggests that exchange and escape of Trojans and quasi-satellites may be a contemporary process associated with the present-day near-resonant configuration of some of the giant planets in our Solar System.  相似文献   

14.
We analyse the global structure of the phase space of the planar planetary 2/1 mean-motion resonance in cases where the outer planet is more massive than its inner companion. Inside the resonant domain, we show the existence of two families of periodic orbits, one associated to the librational motion of resonant angle (σ-family) and the other related to the circulatory motion of the difference in longitudes of pericentre (  Δϖ  -family). The well-known apsidal corotation resonances (ACR) appear as intersections between both families. A complex web of secondary resonances is also detected for low eccentricities, whose strengths and positions are dependent on the individual masses and spatial scale of the system.
The construction of dynamical maps for various values of the total angular momentum shows the evolution of the families of stable motion with the eccentricities, identifying possible configurations suitable for exoplanetary systems. For low–moderate eccentricities, several different stable modes exist outside the ACR. For larger eccentricities, however, all stable solutions are associated to oscillations around the stationary solutions.
Finally, we present a possible link between these stable families and the process of resonance capture, identifying the most probable routes from the secular region to the resonant domain, and discussing how the final resonant configuration may be affected by the extension of the chaotic layer around the resonance region.  相似文献   

15.
We review here some relevant problems connected to the evolution of circumstellar dust grains, subjected to Poynting-Robertson (PR) drag, and perturbed by first-order resonances with a planet on a circular orbit. We show that only outer mean motion resonances are able to counteract the damping effect of PR drag. However, the high orbital eccentricities reached by the particle lead to orbit crossings with the planet. This is a serious difficulty for a permanent trapping to be achieved. In any case, we show that the time spent in the resonance is long enough for statistical effects (accumulation at the resonant radius) to be significant. We underline some difficulties associated with this problem, namely, the non-adiabaticity of motion in the resonance phase space and the existence of close encounters with the planet at high eccentricities.  相似文献   

16.
Circumstellar dust particles can be captured in a mean-motion resonance (MMR) with a planet and simultaneously be affected by non-gravitational effects. It is possible to describe the secular variations of a particle orbit in the MMR analytically using averaged resonant equations. We derive the averaged resonant equations from the equations of motion in near-canonical form. The secular variations of the particle orbit depending on the orientation of the orbit in space are taken into account. The averaged resonant equations can be derived/confirmed also from Lagrange’s planetary equations. We apply the derived theory to the case when the non-gravitational effects are the Poynting–Robertson effect, the radial stellar wind, and an interstellar wind. The analytical and numerical results obtained are in excellent agreement. We found that the types of orbits correspond to libration centers of the conservative problem. The averaged resonant equations can lead to a system of equations which holds for stationary points in a subset of resonant variables. Using this system we show analytically that for the considered non-gravitational effects, all stationary points should correspond to orbits which are stationary in interplanetary space after an averaging over a synodic period. In an exact resonance, the stationary orbits are stable. The stability is achieved by a periodic repetition of the evolution during the synodic period. Numerical solutions of this system show that there are no stationary orbits for either the exact or non-exact resonances.  相似文献   

17.
The temporary capture of the dust grains in the exterior resonances with planets is studied in the frames of the planar circular three-body problem with Poynting-Robertson (PR) drag. For the Earth and particles ~ 10 m the resonances 4/5, 5/6, 6/7, 7/8 are shown to be most effective. The capture is only temporary (of order 105 years) and the position of resonance may be calculated from semi-analytical model using averaged disturbing function. These semi-analytical results are confirmed by numerical integration. For various planet this picture changes as with increasing planetary mass the more exterior resonances become more important. We showed that for Jupiter (at least in the space between Jupiter and Saturn) the resonance 1/2 plays the dominant role. The capture time is here several myr but again eccentricity is evolving to eccentricity e 0 ~ 0.48 of libration point for this resonance.  相似文献   

18.
The dynamics of circumbinary planetary systems (the systems in which the planets orbit a central binary) with a small binary mass ratio discovered to date is considered. The domains of chaotic motion have been revealed in the “pericentric distance–eccentricity” plane of initial conditions for the planetary orbits through numerical experiments. Based on an analytical criterion for the chaoticity of planetary orbits in binary star systems, we have constructed theoretical curves that describe the global boundary of the chaotic zone around the central binary for each of the systems. In addition, based on Mardling’s theory describing the separate resonance “teeth” (corresponding to integer resonances between the orbital periods of a planet and the binary), we have constructed the local boundaries of chaos. Both theoretical models are shown to describe adequately the boundaries of chaos on the numerically constructed stability diagrams, suggesting that these theories are efficient in providing analytical criteria for the chaoticity of planetary orbits.  相似文献   

19.
In a previous paper, we have found that the resonance structure of the present Jupiter Trojan swarms could be split up into four different families of resonances. Here, in a first step, we generalize these families in order to describe the resonances occurring in Trojan swarms embedded in a generic planetary system. The location of these families changes under a modification of the fundamental frequencies of the planets and we show how the resonant structure would evolve during a planetary migration. We present a general method, based on the knowledge of the fundamental frequencies of the planets and on those that can be reached by the Trojans, which makes it possible to predict and localize the main events arising in the swarms during migration. In particular, we show how the size and stability of the Trojan swarms are affected by the modification of the frequencies of the planets. Finally, we use this method to study the global dynamics of the Jovian Trojan swarms when Saturn migrates outwards. Besides the two resonances found by Morbidelli et al. which could have led to the capture of the current population just after the crossing of the 2:1 orbital resonance, we also point out several sequences of chaotic events that can influence the Trojan population.  相似文献   

20.
通过结合理论分析和数值模拟方法,可以对热海王星系统HD 106315轨道迁移中的近2:1平运动共振捕获机制以及潮汐作用下的演化过程进行研究.在轨道迁移阶段,初始轨道半长径、初始偏心率以及行星c的偏心率衰减系数K会对系统轨道构型产生影响.数值模拟结果显示当初始轨道半长径分别为ab~0.4 au、ac~0.8 au,偏心率eb和ec均小于0.03时, HD 106315b和HD 106315c在中央恒星的引力作用以及原行星盘粘滞作用下向内迁移, 65000 yr左右两颗行星均可迁移至当前观测位置附近并形成近2:1平运动共振捕获.此外,中央恒星的潮汐效应也可能会对行星系统共振构型产生影响,理论分析表明当行星潮汐耗散系数Q=100时,潮汐效应造成的轨道半长径衰减使系统轨道周期比发生的变化可能是系统脱离共振构型的原因.数值模拟结果显示, HD 106315系统内两颗行星Q103时,来自中央恒星的潮汐效应并不会使行星系统产生明显的偏心率和轨道半长径衰减,不足以使HD 106315行星系统在剩余寿命内脱离2:1平运动共振轨道构型.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号