首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The discovery of kilohertz quasi-periodic oscillations (kHz QPOs) in low-mass X-ray binaries (LMXBs) with the Rossi X-Ray Timing Explorer has stimulated extensive studies of these sources. Recently, Osherovich & Titarchuk suggested a new model for kHz QPOs and the related correlations between kHz QPOs and low-frequency features in LMXBs. Here we use their results to study the mass-radius relation for the atoll source 4U 1728-34. We find that, if this model is correct, 4U 1728-34 is possibly a strange star rather than a neutron star.  相似文献   

2.
3.
Using the recently published data of twin kHz quasi‐period oscillations (QPOs) in neutron stars of low‐mass X‐ray binaries (LMXBs), we study the different profiles between bright Z sources and less luminous Atoll sources. The quality factors of upper kHz QPOs show a narrow distribution both for Z sources and Atoll sources, which concentrate at 7.98 and 9.75, respectively. The quality factors of lower kHz QPOs show a narrow distribution for Z sources and a broader distribution for Atoll sources, which concentrate at 5.25 and 86.22, respectively. In order to investigate the relation between the quality factor and the peak frequency of kHz QPOs, we fit the data with power‐law, linear, and exponential functions, respectively. There is an obvious trend that the quality factors increase with the peak frequencies both for upper and lower QPOs. The implications of our results are discussed (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
The observation of a pair of simultaneous twin kHz QPOs in the power density spectrum of a neutron star or a black hole allows its mass‐angular‐momentum relation to be constrained. Situations in which the observed simultaneous pairs are more than one allow the different models of the kHz QPOs to be falsified. Discrepancy between the estimates coming from the different pairs would call the used model into question. In the current paper, the relativistic precession model is applied to the twin kHz QPOs that appear in the light curves of three groups of observations of the accreting millisecond X‐ray pulsar IGR J17511–3057. It was found that the predictions of one of the groups are practically in conflict with the other two. Another interesting result is that the region in which the kHz QPOs have been born is rather broad and extends quite far from the ISCO. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We take the recently published data of twin kHz quasi-period oscillations (QPOs) in neutron star (NS) low-mass X-ray binaries (LMXBs) as the samples, and investigate the morphology of the samples, which focuses on the quality factor, peak frequency of kHz QPOs, and try to infer their physical mechanism. We notice that: (1) The quality factors of upper kHz QPOs are low (2~20 in general) and increase with the kHz QPO peak frequencies for both Z and Atoll sources. (2) The distribution of quality factor versus frequency for the lower kHz QPOs are quite different between Z and Atoll sources. For most Z source samples, the quality factors of lower kHz QPOs are low (usually lower than 15) and rise steadily with the peak frequencies except for Sco X-1, which drop abruptly at the frequency of about 750 Hz. While for most Atoll sources, the quality factors of lower kHz QPOs are very high (from 2 to 200) and usually have a rising part, a maximum and an abrupt drop. (3) There are three Atoll sources (4U 1728-34, 4U 1636-53 and 4U 1608-52) of displaying very high quality factors for lower kHz QPOs. These three sources have been detected with the spin frequencies and sidebands, in which the source with higher spin frequency presents higher quality factor of lower kHz QPOs and lower difference between sideband frequency and lower kHz QPO frequency.  相似文献   

6.
In the resonance model, high‐frequency quasi‐periodic oscillations (QPOs) are supposed to be a consequence of nonlinear resonance between modes of oscillations occurring within the innermost parts of an accretion disk. Several models with a prescribed mode–mode interaction were proposed in order to explain the characteristic properties of the resonance in QPO sources. In this paper, we examine nonlinear oscillations of a system having a quadratic nonlinearity and we show that this case is particularly relevant for QPOs. We present a very convenient way how to study autoparametric resonances of a fully general system using the method of multiple scales. We concentrate to conservative systems and discuss their behavior near the 3:2 parametric resonance. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
We suggest an explanation for the twin kilohertz quasi-periodic oscillations (kHz QPOs) in low-mass X-ray binaries (LMXBs) based on magnetohydrodynamics (MHD) oscillation modes in neutron star magnetospheres. Including the effect of the neutron star spin, we derive several MHD wave modes by solving the dispersion equations, and propose that the coupling of the two resonant MHD modes may lead to the twin kHz QPOs. This model naturally relates the upper, lower kHz QPO frequencies with the spin frequencies of the neutron stars, and can well account for the measured data of six LMXBs.  相似文献   

8.
On 27th December 2004 SGR 1806–20, one of the most active Soft γ-ray Repeaters (SGRs), displayed an extremely rare event, also known as giant flare, during which up to 1047 ergs were released in the ∼1–1000 keV range in less than 1 s. Before and after the giant flare we carried out IR observations by using adaptive optics (NAOS-CONICA) mounted on VLT which provided images of unprecedented quality (FWHM better than 0.1″). We discovered the likely IR counterpart to SGR 1806–20 based on positional coincidence with the VLA uncertainty region and flux variability of a factor of about 2 correlated with that at higher energies. Moreover, by analysing the Rossi-XTE/PCA data we have discovered rapid Quasi-Periodic Oscillations (QPOs) in the pulsating tail of the 27th December 2004 giant flare of SGR 1806–20. QPOs at ∼92.5 Hz are detected in a 50 s interval starting 170 s after the onset of the giant flare. These QPOs appear to be associated with increased emission by a relatively hard unpulsed component and are seen only over phases of the 7.56 s spin period pulsations away from the main peak. QPOs at ∼18 and ∼30 Hz are also detected ∼200–300 s after the onset of the giant flare. This is the first time that QPOs are unambiguously detected in the flux of a Soft Gamma-ray Repeater, or any other isolated neutron star. We interpret the highest QPOs in terms of the coupling of toroidal seismic modes with Alfvén waves propagating along magnetospheric field lines. The lowest frequency QPO might instead provide indirect evidence on the strength of the internal magnetic field of the neutron star.   相似文献   

9.
There is a general consensus that the frequencies of the kilohertz quasi-periodic oscillations (kHz QPOs) in neutron-star low-mass X-ray binaries are directly linked to the spin of the neutron star. The root of this idea is the apparent clustering of the ratio of the frequency difference of the kHz QPOs, and the neutron-star spin frequency,  Δν/νs  , at around 0.5 and 1 in 10 systems for which these two quantities have been measured. Here, we re-examine all available data of sources for which there exist measurements of two simultaneous kHz QPOs and spin frequencies, and we advance the possibility that Δν and  νs  are not related to each other. We discuss ways in which this possibility could be tested with current and future observations.  相似文献   

10.
In all four microquasars which show double peak kHz QPOs, the ratio of the two frequencies is 3:2. This strongly supports the suggestion that twin peak kHz QPOs are due to a resonance between some modes of accretion disk oscillations. Here, we stress that fits to observations of the hypothetical resonances between vertical and radial epicyclic frequencies (particularly of the parametric resonance) give an accurate estimate of the spin for the three microquasars with known mass. Measurement of double peak QPOs frequencies in the Galaxy centre seems also to be consistent with the 3:2 ratio established by previous observations in microquasars, however the SgrA* data are rather difficult for the same exact analysis. If confirmed, the 3:2 ratio of double peak QPOs in SgrA* would be of a fundamental importance for the black hole accretion theory and the precise measurement could help to solve the question of QPOs nature. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
By analyzing all archival Rossi X-ray timing explorer (RXTE) data of the neutron star low mass X-ray binary 4U1820-303, we investigate the detectability of simultaneous twin kHz quasi-periodic oscillations (QPOs) as a function of their frequency, width and root mean squared (RMS) amplitudes. In a blind search over the whole data set (spanning over about 10 years), we show that in continuous time intervals (2000–3000 s), twin QPOs are preferentially detected over narrow range of frequencies (100 Hz wide), leading to a clustering in the distribution of frequency ratios, and a gap around the point (600, 900) Hz in the correlation line that links the upper QPO frequency to the lower QPO frequency. A deficit of lower QPOs around 600 Hz had already been noticed by Belloni et al. [Belloni, T., Méndez, M., Homan, J., 2005. A&A 437, 209], it is now confirmed using a much larger data set. We show that the lack of twin QPOs within the gap is not due to a lack of sensitivity for QPO detection, if the parameters of the QPOs (RMS and width) can be interpolated within the gap, using values measured before and after. Since as previously noticed, the gap cannot be attributed to an incomplete sampling of the source states, it thus implies a sudden change of the QPO properties within the gap, either a loss of coherence or an amplitude decrease, or alternatively, that there may be forbidden frequencies in this system.  相似文献   

12.
In this paper, we address the question of whether existing X-ray observations of Seyfert galaxies are sufficiently sensitive to detect quasi-periodic oscillations (QPOs) similar to those observed in the X-ray variations of Galactic black holes (GBHs). We use data from XMM–Newton and simulated data based on the best Rossi X-ray Timing Explorer ( RXTE ) long-term monitoring light curves to show that if X-ray QPOs are present in Seyfert X-ray light curves – with similar shapes and strengths to those observed in GBHs, but at lower frequencies commensurate with their larger black hole masses – they would be exceedingly difficult to detect. Our results offer a simple explanation for the present lack of QPO detections in Seyferts. We discuss the improvements in telescope size and monitoring patterns needed to make QPO detections feasible. The most efficient type of future observatory for searching for X-ray QPOs in active Galactic nuclei (AGN) is an X-ray All-Sky Monitor (ASM). A sufficiently sensitive ASM would be ideally suited to detect low-frequency QPOs in nearby AGN. The detection of AGN QPOs would strengthen the AGN–GBH connection, and could serve as powerful diagnostics of the black hole mass and the structure of the X-ray emitting region in AGN.  相似文献   

13.
Low and intermediate frequency quasi-periodic oscillations (QPOs) are thought to be due to oscillations of Comptonizing regions or hot regions embedded in Keplerian discs. Observational evidence of evolutions of QPOs would therefore be very important as they throw lights on the dynamics of the hotter region. Our aim is to find systems in which there is a well-defined correlation among the frequencies of the QPOs over a range of time so as to understand the physical picture. In this paper, we concentrate on the archival data of XTE J1550−564 obtained during 1998 outburst, and study the systematic drifts during the rising phase from the 1998 September 7 to the 1998 September 19, when the QPO frequency increased monotonically from 81 mHz to 13.1 Hz. Immediately after that, QPO frequency started to decrease and on the 1998 September 26, the QPO frequency became 2.62 Hz. After that, its value remained almost constant. This frequency drift can be modelled satisfactorily with a propagatory oscillating shock solution where the post-shock region behaves as the Comptonized region. Comparing with the nature of a more recent 2005 outburst of another black hole candidate GRO 1655−40, where QPOs disappeared at the end of the rising phase, we conjecture that this so-called 'outburst' may not be a full-fledged outburst.  相似文献   

14.
We report the discovery of quasi-periodic oscillations (QPOs) at roughly 187 and 150 Hz in the X-ray intensity of X-ray nova XTE J1859+226. The source was observed during a recent outburst with the Rossi X-Ray Timing Explorer. Besides these high-frequency QPOs, we have also detected QPOs (and sometimes their harmonics) at 6-7 Hz and significant broadband variability at low frequencies. These properties, as well as the observed hard X-ray spectrum, make XTE J1859+226 a black hole candidate (BHC). The detection of QPOs at two distinct frequencies greater, similar100 Hz in two observations separated by about 4 hr provide additional insights into the high-frequency QPO phenomenon in BHCs. The importance lies in the proposed interpretations, which invariably involve the effects of strong gravity near a black hole. We compare our results to those of other BHCs and discuss the impact of the observational data on the models in a global context.  相似文献   

15.
We study strong‐gravity effects on modulation of radiation emerging from accreting compact objects as a possible mechanism for flux modulation in QPOs. We construct a toy model of an oscillating torus in the slender approximation assuming thermal bremsstrahlung for the intrinsic emissivity of the medium and we compute observed (predicted) radiation signal including contribution of indirect (higher‐order) images and caustics in the Schwarzschild spacetime. We show that the simplest oscillation mode in an accretion flow, axisymmetric up‐and‐down motion at the meridional epicyclic frequency, may be directly observable when it occurs in the inner parts of accretion flow around black holes. Together with the second oscillation mode, an in‐and‐out motion at the radial epicyclic frequency, it may then be responsible for the high‐frequency modulations of the X‐ray flux observed at two distinct frequencies (twin HF‐QPOs) in micro‐quasars. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
We propose three mechanisms for the generation of quasi-periodic oscillations (QPOs) in X-ray binaries. Two of them are based on an analogy with nonlinear oscillations of gaseous cavities in a fluid. The first mechanism, called magnetocavitation, implies that X-ray QPOs are produced by radial oscillations of the neutron-star magnetosphere interacting with accreted plasma. The photon-cavitation mechanism is considered when studying X-ray QPOs in neutron stars with critical (Eddington) luminosities. In this case, X-ray QPOs are generated by radial oscillations of photon cavities in the fully ionized hydrogen plasma that settles in the accretion column of a compact object. The mechanism according to which X-ray QPOs result from nonlinear oscillations of current sheets originating in accretion disks is suggested to explain QPOs in X-ray binaries with black holes and in cataclysmic variables. The calculated values of basic physical parameters of QPOs, such as the characteristic frequency, the dependences of QPO frequency and amplitude on X-ray flux, photon energy, and QPO lag time between photons at different energies are in good agreement with observational data.  相似文献   

17.
A model for the high-frequency (20–2400 Hz) quasi-periodic oscillations (QPOs) of magnetars based on the representation of coronal magnetic loops as equivalent electric RLC circuits is proposed. The observed periods of the QPOs and their high Q-factor (Q ≈ 104–105) are explained. It follows from the model that the QPOs can be excited not only in the tail of a flare but also before the main pulse. The parameters of the QPO source at the “ringing tail” stage of the flare from SGR 1806–20 on December 27, 2004, have been estimated: electric current I ≈ 3 × 1019 A, minimum magnetic field strength B min ≈ 1013 G, and electron density n ≈ 2 × 1016 cm−3.  相似文献   

18.
Aspects of QPOs in the X‐ray flux of low mass X‐ray binaries are reviewed, with particular attention to the comparison between the QPOs in black holes and those in neutron stars. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
The kHz quasi‐periodic oscillations (QPOs) have been detected by the RXTE satellite in about thirty neutron stars (NSs) in low mass X‐ray binaries (LMXBs), which are usually interpreted to be related to the Keplerian motions in the orbit close to NS surface where the accreted matter is sucked onto the star. Based on the MHD Alfvén wave oscillation model and the relativistic precession model for the neutron star (NS) kHz QPOs, estimations of mass M and radius R of some NSs are given, which can give clues to evaluate the models. Furthermore, comparisons with theoretical MR relations by stellar equations of state (EOSs) are presented (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
We numerically examine centrifugally supported shock waves in 2D rotating accretion flows around a stellar mass  (10 M)  and a supermassive  (106 M)  black holes over a wide range of input accretion rates of     . The resultant 2D shocks are unstable with time and the luminosities show quasi-periodic oscillations (QPOs) with modulations of a factor of 2–3 and with periods of a tenth of a second to several hours, depending on the black hole masses. The shock oscillation model may explain the intermediate frequency QPOs with 1–10 Hz observed in the stellar mass black hole candidates and also suggest the existence of QPOs with the period of hours in active galactic nuclei. When the accretion rate     is low, the luminosity increases in proportion to the accretion rate. However, when     greatly exceeds the Eddington critical rate     , the luminosity is insensitive to the accretion rate and is kept constantly around  ∼3 L E  . On the other hand, the mass-outflow rate     increases in proportion to     and it amounts to about a few per cent of the input mass-flow rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号