首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 109 毫秒
1.
科其喀尔冰川表碛区冰崖形态调查   总被引:1,自引:1,他引:1  
采用随机抽样的方法对科其喀尔冰川表碛区冰崖的规模及形态进行了调查.在冰崖比较集中的表碛区东侧任意选取了20个冰崖,利用测绳、皮尺并结合GPS测量的方法对冰崖的长度和高度进行了调查,同时用地质罗盘对冰崖的坡向和坡度进行了测量,从而了解冰崖的长度、高度、坡面面积、坡向和坡度等形态特征及其关系.对冰崖形态的分析表明,消融区内冰崖的规模相差很大,且随着海拔高度的增加,冰崖规模有减小的趋势;这可能主要与地形起伏随海拔高度的差异性变化有关,消融区下部冰崖表面消融过程较为活跃也是一个重要的因素.通过对冰崖的坡向和规模之间的分析可以看到,坡向为NW和NNE方向的冰崖最多,其规模也较大,而太阳直接辐射是影响冰崖发育坡向和发育规模的重要因素.  相似文献   

2.
科其喀尔巴西冰川的近地层基本气象特征   总被引:4,自引:3,他引:4  
利用2003-2006年天山托木尔峰地区科其喀尔巴西冰川的考察资料,对该冰川近地层的基本气象特征进行了分析.研究表明:冰川从4月中下旬开始即有明显消融,主消融期为5-9月,1月冰川区的气温最低.冰川中上部的气温直减率较小,说明该处的冰川冷效应较弱;而冰川下部较大的气温直减率,则可能主要与消融区连续的表碛覆盖有关.5-9月集中了全年约75%的降水,而冬季的降水稀少.降水的分布存在明显的高低分带,低降水带位于冰川中上部的海拔3 700 m附近,而冰川末端和冰川上部的降水量较大.受地形和下垫面条件的影响,冰川下部的山谷风非常发育,而冰川上部局地环流较弱.  相似文献   

3.
表碛下冰面消融模型的改进   总被引:1,自引:2,他引:1  
针对已有的表碛下冰面消融模型的缺点,通过对模型算法、模型假设和模型结构等方面进行改进,在模型的易用性和模拟精度上有了较大的提高.科其喀尔冰川的实例研究表明,改进模型对于表碛区不同试验点上地温的模拟是较好的,变化趋势基本一致,变化幅度也相当.但也存在模拟值与实测值之间变化相位差异的突出问题,实际操作可以通过适当的校正程序得以较好的解决.模型中对表碛热参数的常数化处理不会产生较大的模拟误差,此外计算开始时均一表碛温度的假设不会对表碛温度的整体模拟效果产生较大的影响.通过地温模拟得到的冰面消融速率与利用实测表碛热通量计算的冰面消融速率的比较说明,模型思路合理且算法可行.  相似文献   

4.
表碛下冰面消融的模拟与估算   总被引:1,自引:3,他引:1  
根据热传导理论和能量平衡原理建立了一个简单的数学模型,对表碛下冰面的融化热进行了估算.模型将表碛分为三层:第一层冰碛以剧烈的温度变化和夜间负温梯度的存在为特征;第二层为中间过渡层,温差和温度变化都较小;第三层为靠近下伏冰体的薄层冰碛,以温度低和变化稳定为特征.模型仅以地表温度时间序列、表碛厚度和导热系数、土壤热容量等参数为计算输入,即可对表碛不同层位的土壤温度及其下部冰体融化所需热量进行模拟估算.在科其喀尔冰川表碛区选取了3个具有不同表碛厚度的试验点(Spot1,0.8m;Spot2,1.5m;Spot3,2.1m)进行了模型测试.模型试验表明,模型对于不同厚度表碛下冰面融化热的模拟是较好的,然而对于不同层位地温序列的模拟仍有一定的偏差,造成这些偏差的原因主要是来自于模型假设和土壤温度垂向上的时间相位差.模拟结果同时也显示了不同表碛厚度下冰面消融的差异,冰面消融热平均分别为:Spot1:26.87W·m-2,Spot2:9.81W·m-2,Spot3:6.92W·m-2.  相似文献   

5.
基于2009年5月至2011年10月科其喀尔冰川的花杆观测资料,对其消融区的表面运动特征进行分析. 结果表明:冰川消融区的年水平运动速度最大值为86.69 m·a-1,年垂直运动速度最大值为15.34 m·a-1,均出现在冰川海拔4 000~4 200 m的消融区上部;在靠近冰川末端的冰舌下部,受冰量补给减弱、厚层表碛覆盖等影响,冰川运动缓慢,年水平运动速度小于5 m·a-1,而垂直运动速度值小于2 m·a-1. 大多数横剖面的水平运动速度具有从中部向边缘逐渐减小的特征,而有的剖面却出现局部速度增大的区域. 整体而言,冰川水平及垂直运动速度随海拔降低而减小,符合冰川运动的一般规律,但主要受地形作用的影响,垂直运动速度随海拔的变化会出现波动. 消融期月水平运动速度与同期气温和降水的变化具有一定的相关性,可能反映出气候快速变化对冰川运动的影响.  相似文献   

6.
天山南坡科其卡尔巴契冰川度日因子变化特征研究   总被引:7,自引:7,他引:7  
度日模型是估算冰川消融的一种简单而有效的方法.根据科其卡尔巴契冰川2003年的观测资料,分析了该冰川度日因子的空间变化规律及其影响因素.研究表明:各高度上的度日因子,介于2.0~9.7mm·℃-1·d-1之间变化,平均值为5.7mm·℃-1·d-1,与青藏高原各冰川及其它地区冰川相比较小;随着海拔的增高,度日因子随之递增;随平均气温的升高而随之递减.由于冰面状况复杂,度日因子变化幅度较大,裸冰区的度日因子明显大于表碛覆盖区.人为测量误差、反照率、地形等对度日因子的影响也不容忽视.  相似文献   

7.
近30a来托木尔峰南麓科其喀尔冰川冰舌区变化   总被引:1,自引:6,他引:1  
20世纪80年代中期以来,托木尔峰南麓地区冰雪融水量明显增加,冰川处于强烈的消融退缩状态.根据对科其喀尔冰川冰舌区不同海拔探测表明,近30 a来冰川厚度明显减薄,冰舌区平均厚度减薄在0.5~1.5 m·a-1之间.对科其喀尔冰川末端位置研究表明,科其喀尔冰川进入20世纪90年代以来处于比较强烈的退缩状态.相对于1974年的冰川位置,冰川退缩了380 m左右.科其喀尔冰川的全面退缩,标志着托木尔峰地区冰川处于全面的负物质平衡状态.  相似文献   

8.
天山托木尔峰科其喀尔巴西冰川表面运动速度特征分析   总被引:4,自引:2,他引:4  
天山托木尔峰科其喀尔巴西冰川是典型的树枝状山谷冰川,利用3组(6期)ASTER遥感影像通过COSI-corr软件反演了该冰川表面运动速度.与花杆测量数据进行对比,反演冰川表面运动速度平均绝对误差为3.1 m·a-1,相对误差为11.9%,二者在空间上的分布基本一致,表明其反演精度符合要求.在此基础上,分析冰川表面运动速...  相似文献   

9.
两类度日模型在天山科其喀尔巴西冰川消融估算中的应用   总被引:1,自引:0,他引:1  
采用辐射传输参数化方案估算太阳入射短波辐射,并以小时气温作为输入数据,在200、100和50 m 3种海拔梯度下,分别应用传统度日模型和改进度日模型对科其喀尔巴西冰川2008年夏季消融区非表碛覆盖区消融进行了模拟分析.研究表明:太阳小时入射总辐射计算与实测结果具有较好的一致性;科其喀尔巴西冰川度日因子存在明显的时空差异性;随着空间分辨率提高,2类度日模型的模拟效果都变好;在200和100 m海拔梯度下,改进度日模型的模拟结果优于传统度日模型,而在50 m海拔梯度下,无明显改进.  相似文献   

10.
唐古拉山冬克玛底冰川雪冰度日因子研究   总被引:4,自引:3,他引:4  
度日模型通过正积温将冰雪消融和气温有效的联系到一起,模型中的关键参数是度日因子,即为正积温对应时段内的消融量.根据唐古拉山冬克玛底冰川2008年的实测资料,计算得到夏季消融期内冰川上的度日因子,并分析其空间变化规律.雪度日因子平均值为8.5mm.℃-1.d-1,大冬克玛底冰川雪冰混融度日因子和冰度日因子从海拔5330~5520m分别为4.5~9.6mm.℃-1.d-1和8.7~11.6mm.℃-1.d-1;小冬克玛底雪冰混融度日因子和冰度日因子从海拔5460~5710m分别为4.4~14.6mm.℃-1.d-1和9.9~16.1mm.℃-1.d-1.度日因子随海拔升高而递增,可能是随海拔增加,温度降低而太阳辐射增强所致.局地气候,地形等其它因素也使得度日因子在空间上的分布存在差异.  相似文献   

11.
利用能量平衡原理、热传导理论和通量传输理论建立了一个热量平衡参数的估算模型,对西天山的科奇喀尔冰川夏季消融区中部表碛区的热量平衡参数进行估算与分析.结果表明:净辐射是表碛面热量收支的主要热源,吸收的热量主要以潜热和感热的形式向大气输送水汽和热量,剩余部分用于表碛增温耗热.与消融区上部的冰面和表碛面相比,在消融区中部表碛面热量收入中感热输送减小,同时向上的地热输送增加.热平衡支出项中,感热交换、蒸发耗热和地热通量的比例分别为39.1%、39.9%和21%,其中感热通量与蒸发耗热的比例比消融区上部有所提高,蒸发耗热的增加比较显著.在总的热量支出中,平均只有7.8%的热量可以用于表碛下部的增温和向深层传导.  相似文献   

12.
贡嘎山海螺沟冰川冰舌地段的泥石流   总被引:4,自引:0,他引:4  
海螺沟冰川冰舌地段1976年以来发生过两次大的冰雪雨水泥石流。1989年7月8日和26日观景台西沟的泥石流通过1.7km长的冰面后,在冰川末端前形成一个5.5×10~4m~3的扇形地;1976年8月长草坝3号冰川下部冰碛体边坡的两处滑坡泥石流在开阔地上扩散堆积后,达1317.8m~3/s的泥石流和洪水下到冰川上。今后每年雨季还有可能发生更大规模的泥石流,值得人们警惕。  相似文献   

13.
Glacier flow is a key factor in understanding the nature of glaciers, and it is also one of the main research contents of glacier dynamics, which can provide basic support for rational utilization of glacier resources and early warning of glacier disasters. There are many mountain glaciers located in the west of China. The study on the spatiotemporal variation of surface velocity of glaciers also has great significance for the social and economic development of the western China. Koxkar Baxi Glacier, locates on the southern slopes of the Tomur Peak, is a typical dendritic glacier. In order to obtain the conditions of Koxkar Baxi Glacier’flow rates and its variation to further reveal the future of the variation of glacier, the spatiotemporal variability of glacier velocity was surveyed using correlation(COSI-Corr)method on Landsat imagery from 2014 to 2020. The results show that: (1)The average annual flow velocity of the Koxkar Baxi Glacier was 0. 04~0. 05 m·d-1 during 2014 to 2020. (2)The glacier reaches its maximum flow velocity near the center part, and the velocity decreased towards both lateral margins. In a longitudinal profile, ice flow velocity in the accumulation area increased down to the equilibrium line, while decreased towards the glacier terminal. The maximum velocity with 0. 17~ 0. 20 m·d-1 was found near the equilibrium line altitude. (3)The glacier flow velocity in warm seasons were 16. 67% faster than that in cold seasons. (4)The glacier flow velocity from 2014 to 2020 showed a slight decreasing trend, and the average flow velocity decreased 0. 01 m·d-1. (5)Temperature and precipitation had certain influence on the seasonal fluctuation and interannual variation of the flow velocity of the glacier. © 2022 Science Press (China). All rights reserved.  相似文献   

14.
魏文霞  李真  李亚楠 《冰川冻土》2022,44(3):822-829
冰厚分布和冰储量是冰川水资源、冰川变化和冰川动力学模拟研究的基础数据。本文基于七一冰川冰厚度雷达测量结果,结合GPS位置数据、遥感数据和冰川地形数据,运用协同克里金空间插值算法,绘制了冰厚分布图和冰床地形图,并运用厚度积分法估算了冰川冰储量。2015年七一冰川的面积为2.517km^(2),平均冰厚和冰储量分别为44.9m和0.1129km^(3),实测最大冰厚为115m。海拔4 480~4 600m和海拔4 640~4 800m是七一冰川两个冰厚值较大的区域,平均冰厚分别为88m和97m。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号