首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
High-magnesium andesites associated with basalts erupted after the opening of the Sea of Japan are present at Saga–Futagoyama in northwest Kyushu, southwest Japan. High Mg/(Mg + Fe) [=0.84] of orthopyroxene phenocrysts and bulk rock Mg–Fe–Ni compositions suggest that these high-magnesium andesites were originally primitive melts insignificantly modified in crustal magma chambers. KDCa–Na [= (Ca/Na)pl/(Ca/Na)bulk rock] ranges from 1.21 to 0.97 and suggests that the high-magnesium andesite magmas would originally have contained H2O less than 1.8 wt.%. Nb/La does not show a negative correlation with respect to SiO2. These lines of evidence indicate that hydrous components derived from the subducting slab would not have played a significant role in the genesis of the high-magnesium andesite magmas. Instead, the normative olivine − quartz − [CaTs + Jd] compositions and a negative correlation between Sr/Nd and SiO2 indicate that the basalt-high-magnesium andesite association would have been formed by multi-stage partial melting of relatively anhydrous source at pressure ranging from 1.5 to 0.5 GPa.  相似文献   

2.
Gas concentrations and isotopic compositions of water have been measured in hydrothermal waters from 13°N on the East Pacific Rise. In the most Mg-depleted samples ( 5 × 10−3 moles/kg) the gas concentrations are: 3–4.5 × 10−5 cm3 STP/kg helium, 0.62–1.24 cm3 STP/kg CH4, 10.80–16.71 × 10−3 moles/kg CO2. The samples contain large quantities (95–126 cm3/kg) of H2 and some carbon monoxide (0.26–0.36 cm3/kg) which result from reaction with the titanium sampling bottles. δ13C in methane and CO2 (−16.6 to −19.5 and −4.1 to −5.5 respectively) indicate temperatures between 475 and 550°C, whereas δ13CCO is compatible with formation by reduction of CO2 on Ti at 350°C close to the sampling temperature.3He/4He are very homogeneous at (7.5 ± 0.1)RA(3He/4He = 1.0 × 10−5) and very similar to already published data as well as CH4/3He ratios between 1.4 and 2.1 × 106.18O and D in water show enrichments from 0.39 to 0.69‰ and from 0.62 to 1.49‰ respectively. These values correspond to W/R ratios of 0.4–7. The distinct18O enrichments indicate that the isotopic composition of the oceans is not completely buffered by the hydrothermal circulations. The3He-enthalpy relationship is discussed in terms of both hydrothermal heat flux and3He mantle flux.  相似文献   

3.
The Hasan Dagi volcano is one of the two large Plio-Quaternary volcanoes in Cappadocia (Central Anatolia, Turkey). Three stages of edifice construction have been identified for this volcano: Paleovolcano, Mesovolcano and Neovolcano. Most samples from Hasan Dagi volcano are calc-alkaline and define an almost complete trend from basaltic andesite to rhyolite. However, the more recent (Neovolcano) mafic samples are alkaline basalts. The mineralogical and geochemical characteristics of the oldest lavas (Keçikalesi (13 Ma) and Paleo-Hasan Dagi (7 Ma)) are significantly different from those of the younger lavas (Meso- and Neo-Hasan Dagi (<1 Ma)). Calcic plagioclase and pigeonite are typically observed in these older lavas. The Paleovolcano basalts are depleted in alkalis and display a tholeiitic tendency whereas the differentiated lavas are depleted in Na2O but enriched in K2O compared to younger lavas. There is an evolution through time towards higher TiO2, Fe2O3*, MgO, Na2O and K2O and lower Al2O3 and SiO2 which is reflected in the basalt compositions. All the basalts display multi-element patterns typical of continental margin magmas with a significant enrichment in LILE (K, Rb, Ba and Th) and LREE and strong (Paleovolcano) to moderate (Meso- and Neovolcano) negative Nb, Zr and Ti anomalies. However, the younger basalts are the most enriched in incompatible elements, in agreement with their alkaline affinities and do not systematically display negative HFSE anomalies. REE data suggest an hydrous amphibole-bearing crystallization history for both Meso- and Neovolcano lavas. The distinction between the older and younger lavas is also apparent in trace element ratios such as Nb/Y, Ti/Y and Th/Y. These ratios indicate the role of a subducted component±crustal contamination in the genesis of the Hasan Dagi lavas, particularly for the oldest lavas (Keçikalesi and Paleo-Hasan Dagi). The decreasing influence of this component through time, over the last 6–7 m.y., has been accompanied by an increasing contribution of melt-enriched lithosphere. Although the range of variation of Sr, Nd and Pb isotopic ratios is small (0.70457–0.70515; 0.51262–0.51273; 18.80–18.94; 15.64–15.69; 38.87–39.10), it also reflects the evolution of the magma sources through time. Indeed, the youngest (Neovolcano) and most primitive basalts display significantly lower 87Sr/86Sr than the Paleo- and Mesovolcano basalts, whereas the Mesovolcano basalts display more radiogenic Pb than Paleovolcano samples. Magma mixing processes between initially heterogeneous and/or variably contaminated magmas may account for the genesis of the less differentiated and intermediate lavas (48–57% SiO2). Meso- and Neovolcano differentiated lavas (60–68% SiO2) are either derived from the analyzed basalts or from more primitive and more depleted magmas by fractional crystallization±some crustal contamination (AFC). Furthermore, the highly differentiated samples (72–75% SiO2) are not strongly contaminated. The strong calc-alkaline character of Hasan Dagi lavas, in the absence of contemporaneous subduction, must reflect the heritage of the early subduction of the Afro–Arabian plate under the Eurasian plate. The evolution towards alkaline compositions through time is clearly related to the development of extensional tectonics in Central Anatolia in the Late Miocene.  相似文献   

4.
Basalt and diabase from the Cretaceous Dumisseau Formation, southern Haiti have Mg-numbers of 43–63, TiO2 contents of 1.6–3.9% and La abundances of 3.6–15.3 ppm.La/Ta ratios average 10, and indicate that the basalts are oceanic in character, distinct from the arc associations forming the northern part of Haiti. Oldest lavas have low TiO2 (1.6%) and are LREE-depleted, similar to N-MORBs, whereas overlying lavas have higher TiO2 (2–3.9%) and are LREE-enriched, similar to E-MORBs or hotspot basalts.87Sr86Sr ratios vary from 0.70280 to 0.70316,143Nd144Nd from 0.512929 to 0.513121, and206Pb204Pb from 19.00 to 19.27. LREE-depleted lavas have high143Nd144Nd (0.51309–0.51310) typical of MORBs, whereas143Nd144Nd in the LREE-enriched lavas varies widely (0.512929–0.513121).Chemical features of the Dumisseau basalts are equivalent to those of Caribbean seafloor basalts recovered on DSDP Leg 15, and support the contention that the Dumisseau is an uplifted section of Caribbean Sea crust. Oldest lavas are analogous to MORB-like basalts cored at Leg 15 Sites 146, 150, 152 and 153, and the overlying lavas are analogous to incompatible-element-enriched basalts cored at Site 151 on the Beata Ridge. Isotopic compositions of the Dumisseau basalts overlap with those of the eastern Pacific Galapagos and Easter Island hotspots. However, the presence of N-MORB basalts in the lower part of the Dumisseau and at the majority of Leg 15 Sites indicates that the anomalously thick Caribbean crust probably did not originate as a hotspot-related basaltic plateau, but may have been generated by on-ridge or near-ridge hotspot magmatism.  相似文献   

5.
Major-element, Cl, S, F analyses have been performed on a wide selection of melt inclusions trapped in olivine (Fo81–87) from scoria and crystal-rich lapilli samples of Piton de la Fournaise volcano. As a whole, they display a transitional basaltic composition. The melt inclusions (8–9 wt.% MgO, 0.62–0.73 wt.% K2O) are in equilibrium with olivines (Fo81–85) in the samples from the Central Feeding Zone and the South-East Feeding Zone and show a slight alkaline affinity. The melt inclusions in olivines (Fo85–87) from the North-West Rift (NWR) contain 9.3–9.7 wt.% MgO and 0.54–0.58 wt.% K2O, with a more tholeiitic tendency. In oceanitic lavas and crystal-rich lapilli, the olivine xenocrysts are recognisable by the presence of one or more secondary shear plane fracture(s) filled up with CO2 and alkali-rich basaltic melt inclusions. In dunite nodules, olivines present also contain several secondary shear plane fracture(s) filled up with CO2 and high-SiO2 melt inclusions. Secondary CO2-rich fluid inclusions in olivine (Fo85–87) from the NWR samples indicate PCO2 up to 500 MPa whereas, PCO2 ranges from 95 MPa to few tenths of bars in the other samples. Both the primary melt inclusions and the secondary fluid inclusions strongly suggest that the olivine crystallises and accumulates over a wide depth range (15 km). It is envisioned that cumulative pockets with low residual porosity are repeatedly percolated with a CO2-rich fluid phase, possibly associated with basaltic to SiO2-rich melts, and are finally disrupted and entrained to the surface when vigorous magma transfer occurs. The SiO2-rich residual melts in early-formed dunitic or gabbroic bodies may have acted as contaminant agents for the more alkali character of magmas vented through the central feeding system, where a well-developed cumulative system is thought to exist. Finally, the existence of secondary fluid and melt inclusions in olivines implies that the dunitic bodies are weakened on the micrometric scale.  相似文献   

6.
Fluorine contents in about 160 representative Quaternary volcanic rocks and 15 hornblende and biotite phenocrysts in a calc-alkali series in Japan have been determined by a selective ion-electrode method. Tholeiites have the lowest contents and the narrowest range (58–145 ppm), while alkali basalts have the highest contentws and the widest range (301–666 ppm), high-alumina basalts have intermediate values (188–292 ppm). F contents in basalts clearly increase from east to west across the Japanese Islands, as do alkalies, P2O5 REE, U, Th and H2O.The volcanic rocks studied are divided into two groups on the basis of F: (1) witt, increasing % SiO2 or advancing fractionation, F contents show either progressive enrichment; or (2) with increasing fractionation, F contents show rather constant values. The former is produced by fractionation of anhydrous phases from basalt to mafic andesite magmas; the tholeiite series of Nasu volcanic zone (outer zone), northeastern, Japan is a typical example. The latter group is derived through separation of amphibole-bearing phases from basaltic magmas at various depths from upper mantle (about 30 km) to upper crust; the alkali series in southwestern Japan and the calc-alkali series of Chokai volcanic zone (inner zone), northeastern Japan, are examples.  相似文献   

7.
Geochemical and textural investigations have been simultaneously performed on spinel-lherzolite xenoliths from the Oligo-Miocene alkali basalts of Montferrier (southern France).All the investigated samples have undergone a deformation very particular by intense shearing under high stresses (up to 1.75 kbar), low temperatures ( 900°C) and strain rates of about 10−18 to 10−15 s−1.Mineral chemistry reveals that the Montferrier lherzolites are fragments of an undepleted relatively shallow upper mantle level located at a depth of 50 km (15 kbar). Moreover, Na and Ti enrichment in diopside would reflect a metasomatic event, also emphasized by the common occurrence of pargasite in 50–70% of the investigated samples.Crystallization of this amphibole is attributed to a hydrous infiltration which is related in time and space to the deformation. Indeed, amphibole is preferentially concentrated in strongly deformed zones and in kink-band boundaries of orthopyroxene porphyroclasts. Moreover, the grain boundaries were used by the pervasive agent to percolate into the lherzolite: significant chemical variations (increase in MgO: 15% and decrease in Al2O3: 55%) are observed within the range of 7–5 μm adjacent to the grain boundary.Finally, Sr isotopic data (87Sr/86Sr) demonstrate that the amphibole, i.e. the metasomatic agent, is genetically related to the host lava of the xenoliths. Thus, the hydrous silicate liquid from which the amphibole has crystallized may be an early percolation of the ascending alkali magma.This silicate liquid hydrated the shear zone, located at a depth of 50 km, induced the hydraulic fracturation of the lherzolite and the magmatic conduit opening. Subsequently, the alkali magma sampled some fragments of this strongly deformed and metasomatized undepleted upper mantle level and brought them to the surface.  相似文献   

8.
Since the March–April 1982 eruption of El Chichòn volcano, intense hydrothermal activity has characterised the 1-km-wide summit crater. This mainly consists of mud and boiling pools, fumaroles, which are mainly located in the northwestern bank of the crater lake. During the period 1998–2000, hot springs and fumaroles discharging inside the crater and from the southeastern outer flank (Agua Caliente) were collected for chemical analyses. The observed chemical fluctuations suggest that the physico-chemical boundary conditions regulating the thermodynamic equilibria of the deep rock/fluid interactions have changed with time. The chemical composition of the lake water, characterised in the period 1983–1997 by high Na+, Cl, Ca2+ and SO42− contents, experienced a dramatic change in 1998–1999, turning from a Na+–Cl- to a Ca2+–SO42−-rich composition. In June 2000, a relatively sharp increase in Na+ and Cl contents was observed. At the same time, SO2/H2S ratios and H2 and CO contents in most gas discharges increased with respect to the previous two years of observations, suggesting either a new input of deep-seated fluids or local variations of the more surficial hydrothermal system. Migration of gas manifestations, enhanced number of emission spots and variations in both gas discharge flux and outlet temperatures of the main fluid manifestations were also recorded. The magmatic-hydrothermal system of El Chichòn is probably related to interaction processes between a deep magmatic source and a surficial cold aquifer; an important role may also be played by the interaction of the deep fluids with the volcanic rocks and the sedimentary (limestone and evaporites) basement. The chemical and physical changes recorded in 1998–2000 were possibly due to variations in the permeability of the conduit system feeding the fluid discharges at surface, as testified by the migration of gas and water emanations. Two different scenarios can be put forward for the volcanic evolution of El Chichòn: (1) build-up of an infra-crater dome that may imply a future eruption in terms of tens to hundreds of years; (2) minor phreatic–phreatomagmatic events whose prediction and timing is more difficult to constrain. This suggests that, unlike the diminished volcanic activity at El Chichòn after the 1982 paroxistic event, the volcano-hydrothermal fluid discharges need to be more constantly monitored with regular and more frequent geochemical sampling and, at the same time, a permanent network of seismic stations should be installed.  相似文献   

9.
Stable isotope ratios of S, O and Sr have been measured for active vent materials which were first found and sampled in April 1987 from the Mariana backarc spreading axis at 18°N. Chimneys consisted mostly of barite with a lesser proportion of sulfide minerals such as sphalerite, galena, chalcopyrite and pyrite. Theδ34S values of sphalerite and galena taken from several chimneys and various parts of a chimney showed a narrow range from 2.1 to 3.1‰, suggesting uniform conditions of fluid chemistry during chimney growth. The sulfur isotopic results imply a contribution of hydrogen sulfide reduced from seawater sulfate in the deep hydrothermal reaction zone, considering that fresh glasses of the Mariana Trough basalts haveδ34S= −0.6 ± 0.3‰. Sulfur isotopic compositions of hydrogen sulfide in the high temperature vent fluids (δ34S= 3.6–4.8‰) which are higher than those of the sulfide minerals suggest the secondary addition of hydrogen sulfide partially reduced from entrained seawater SO42− at a basal part of the chimneys. This interpretation is consistent with theδ34S values of barite (21–22‰) that are higher than those of seawater sulfate. The residence time of the entrained SO42− was an order of an hour on a basis of oxygen isotopic disequilibrium of barite. Strontium isotopic variations of barite and vent waters indicated that Sr in barite was mostly derived from the Mariana Trough basalts with a slight contribution from Sr in circulating sea-water, and that 10–20% mixing of seawater with ascending hydrothermal fluids induced precipitation of barite at the sea-floor.  相似文献   

10.
Thermal waters of the Ömer–Gecek geothermal field, Turkey, with temperatures ranging from 32 to 92°C vary in chemical composition and TDS contents. They are generally enriched in Na–Cl–HCO3 and suggest deep water circulation. Silica and cation geothermometers applied to the Ömer–Gecek thermal waters yield reservoir temperatures of 75–155°C. The enthalpy–chloride mixing model, which approximates a reservoir temperature of 125°C for the Ömer–Gecek field, accounts for the diversity in the chemical composition and temperature of the waters by a combination of processes including boiling and conductive cooling of deep thermal water and mixing of the deep thermal water with cold water. It is also determined that the solubility of silica in most of the waters is controlled by the chalcedony phase. Equilibrium states of the Ömer–Gecek thermal waters studied by means of the Na–K–Mg triangular diagram, Na–K–Mg–Ca diagram, K–Mg–Ca geoindicator diagram, activity diagrams in the systems composed of Na2O–CaO–K2O–Al2O3–SiO2–CO2–H2O phases, log SI diagrams, and finally the alteration mineralogy indicate that most of the spring and low-temperature well waters in the area can be classified as shallow or mixed waters which are likely to be equilibrated with calcite, chalcedony and kaolinite at predicted temperature ranges similar to those calculated from the chemical geothermometers. It was also observed that mineral equilibrium in the Ömer–Gecek waters is largely controlled by CO2 concentrations.  相似文献   

11.
Diffuse CO<Subscript>2</Subscript> degassing at Vesuvio,Italy   总被引:1,自引:0,他引:1  
At Vesuvio, a significant fraction of the rising hydrothermal–volcanic fluids is subjected to a condensation and separation process producing a CO2–rich gas phase, mainly expulsed through soil diffuse degassing from well defined areas called diffuse degassing structures (DDS), and a liquid phase that flows towards the outer part of the volcanic cone. A large amount of thermal energy is associated with the steam condensation process and subsequent cooling of the liquid phase. The total amount of volcanic–hydrothermal CO2 discharged through diffuse degassing has been computed through a sequential Gaussian simulation (sGs) approach based on several hundred accumulation chamber measurements and, at the time of the survey, amounted to 151 t d–1. The steam associated with the CO2 output, computed assuming that the original H2O/CO2 ratio of hydrothermal fluids is preserved in fumarolic effluents, is 553 t d–1, and the energy produced by the steam condensation and cooling of the liquid phase is 1.47×1012 J d–1 (17 MW). The location of the CO2 and temperature anomalies show that most of the gas is discharged from the inner part of the crater and suggests that crater morphology and local stratigraphy exert strong control on CO2 degassing and subsurface steam condensation. The amounts of gas and energy released by Vesuvio are comparable to those released by other volcanic degassing areas of the world and their estimates, through periodic surveys of soil CO2 flux, can constitute a useful tool to monitor volcanic activity.Editorial responsibility: H. Shinohara  相似文献   

12.
The flow of carbon and nitrogen in sediments of the far northern and northern sections of the Great Barrier Reef continental shelf was examined. Most of the organic carbon (81–94%) and total nitrogen (74–92%) depositing to the seabed was mineralized, with burial of carbon (6–19%) and nitrogen (8–20%) being proportionally less on this tropical shelf compared with other non-deltaic shelves. Differences in carbon and nitrogen mineralization among stations related best to water depth and proximity to river basins, with rates of mineralization based on net ∑CO2 production ranging from 17 to 39 ( mean=23) mmol C m−2 d−1. The overall ratio of O2:CO2 flux was 1.3, close to the Redfield ratio, implying that most organic matter mineralized was algal. Sulfate reduction was estimated to account for ≈30% (range: 6–62%), and denitrification for ≈5% (range: 2–13%), of total C mineralization; there was no measurable CH4 production. Discrepancies between ∑CO2 production across the sediment–water interface and sediment incubations suggest that as much as 5 mmol m−2 d−1 (≈25% of ∑CO2 flux) was involved in carbonate mineral formation. Most microbial activity was in the upper 20 cm of sediment. Rates of net NH4+ production ranged from 1.6 to 2.7 mmol N m−2 d−1, with highly variable N2 fixation rates contributing little to total N input. Ammonification and nitrification rates were sufficient to support rapid rates of denitrification (range: 0.1–12.4 mmol N m−2 d−1). On average, nearly 50% of total N input to the shelf sediment was denitrified. The average rates of sedimentation, mineralization, and burial of C and N were greater in the northern section of the shelf than in the far northern section, presumably due to higher rainfall and river discharge, as plankton production was similar between regions. The relative proportion of plankton primary production remineralized at the seafloor was in the range of 30–50% which is at the high end of the range found on other shelves. The highly reactive nature of these sediments is attributed to the deposition of high-quality organic material as well as to the shallowness of the shelf, warm temperatures year-round, and a variety of physical disturbances (cyclones, trawling) fostering physicochemical conditions favorable for maintaining rapid rates of microbial metabolism. The rapid and highly efficient recycling of nutrients on the inner and middle shelf may help to explain why the coral reefs on the outer shelf have remained unscathed from increased sediment delivery since European settlement.  相似文献   

13.
Small euhedral chromite crystals are found in olivine macrophenocrysts (Fo80–84) from the basaltic andesites (150 ppm Cr) erupted in 1943–1947, and in orthopyroxene macrophenocrysts of the andesites (75 ppm Cr) erupted in 1947–1952. The majority of the chromite octahedra are 5–20 μm in diameter, and some are found in clusters and linear chains of three or more oriented chromite crystals. The composition of the majority of the chromite grains within olivine and orthopyroxene macrophenocrysts is Fe2+/(Fe2++Mg)=0.5–0.6, Cr/(Cr+Al)=0.5–0.6 and Fe3+/(Fe3++Al+Cr)=0.2–0.3. The chromite crystals in contact with the groundmass are larger, subhedral, and grade in composition from chromite cores to magnetite rims. Comparison of the composition of chromite with those of other volcanic rocks shows that the most primitive Paricutin chromite is richer in total iron and higher in Fe3+/(Fe3++Al+Cr) than primary chromite in most lavas. The linear chains of oriented chromite octahedra are found in olivine and orthopyroxene macrophenocrysts, and in the groundmass. These chromite chains are thought to result from diffusion-controlled crystallization because of the very high partition coefficient (1000) of Cr between chromite and melt. We conclude that chromite was a primary phase in the lavas at the time of extrusion and that magnetite only crystallized after extrusion during cooling of the lava flows. The presence of chromite microphenocrysts in andesitic lavas containing as little as 70 ppm Cr can be explained by dissolved H2O in the melt depressing the liquidus temperature for orthopyroxene such that chromite becomes a liquidus phase. The influence of dissolved H2O can also explain the lack of plagioclase macrophenocrysts in most of the lavas and the relatively high partition coefficient (20) of Ni between olivine and melt and the high partition coefficient (40) of Cr between orthopyroxene and melt. The liquidus temperature of the basaltic andesite is estimated to have been less than 1140°C, assuming H2O>1 wt.%, and the log fO2 to have been above that of the QFM buffer. The chromite and orthopyroxene liquidus temperature of the andesites, assuming H2O>1 wt.%, is estimated to have been 1100°C or less. The derivation of the later andesites from the earlier basaltic andesites has been explained by a combination of fractional crystallization of olivine, orthopyroxene and plagioclase, and assimilation of xenoliths. The significantly lower Cr, Ni and Mg of the andesites may have been in part due to the separation of olivine macrophenocrysts plus enclosed chromite crystals from the earlier basaltic andesites.  相似文献   

14.
CO2 fluid inclusions in mantle minerals are an im-portant source for us to get the information of mantle fluids. Fluid inclusions are mainly composed of CO2, with minor CO, H2O, CH4, N2, H2S, SO2, F, etc., which were demonstrated by lots of Raman spec-trometer analyses in recent years. In contrast, there are very few researches on CO2-bearing melt inclusions since it is more difficult to do so. The available studies have found that the primary CO2-bearing melt inclu-sions are basaltic …  相似文献   

15.
Cave air PCO2 at two Irish sites varied dramatically on daily to seasonal timescales, potentially affecting the timing of calcite deposition and consequently climate proxy records derived from stalagmites collected at the same sites. Temperature-dependent biochemical processes in the soil control CO2 production, resulting in high summer PCO2 values and low winter values at both sites. Large Large-amplitude, high-frequency variations superimposed on this seasonal cycle reflect cave air circulation. Here we model stalagmite growth rates, which are controlled partly by CO2 degassing rates from drip water, by considering both the seasonal and high-frequency cave air PCO2 variations. Modeled hourly growth rates for stalagmite CC-Bil from Crag Cave in SW Ireland reach maxima in late December (0.063 μm h− 1) and minima in late June/early July (0.033 μm h− 1). For well-mixed ‘diffuse flow’ cave drips such as those that feed CC-Bil, high summer cave air PCO2 depresses summer calcite deposition, while low winter PCO2 promotes degassing and enhances deposition rates. In stalagmites fed by well-mixed drips lacking seasonal variations in δ18O, integrated annual stalagmite calcite δ18O is unaffected; however, seasonality in cave air PCO2 may influence non-conservative geochemical climate proxies (e.g., δ13C, Sr/Ca). Stalagmites fed by ‘seasonal’ drips whose hydrochemical properties vary in response to seasonality may have higher growth rates in summer because soil air PCO2 may increase relative to cave air PCO2 due to higher soil temperatures. This in turn may bias stalagmite calcite δ18O records towards isotopically heavier summer drip water δ18O values, resulting in elevated calcite δ18O values compared to the ‘equilibrium’ values predicted by calcite–water isotope fractionation equations. Interpretations of stalagmite-based paleoclimate proxies should therefore consider the consequences of cave air PCO2 variability and the resulting intra-annual variability in calcite deposition rates.  相似文献   

16.
Pressure–volume–temperature relations have been measured to 32 GPa and 2073 K for natural magnesite (Mg0.975Fe0.015Mn0.006Ca0.004CO3) using synchrotron X-ray diffraction with a multianvil apparatus at the SPring-8 facility. A least-squares fit of the room-temperature compression data to a third-order Birch–Murnaghan equation of state (EOS) yielded K0 = 97.1 ± 0.5 GPa and K′ = 5.44 ± 0.07, with fixed V0 = 279.55 ± 0.02 Å3. Further analysis of the high-temperature compression data yielded the temperature derivative of the bulk modulus (∂KT/∂T)P = −0.013 ± 0.001 GPa/K and zero-pressure thermal expansion α = a0 + a1T with a0 = 4.03 (7) × 10−5 K−1 and a1 = 0.49 (10) × 10−8 K−2. The Anderson–Grüneisen parameter is estimated to be δT = 3.3. The analysis of axial compressibility and thermal expansivity indicates that the c-axis is over three times more compressible (KTc = 47 ± 1 GPa) than the a-axis (KTc = 157 ± 1 GPa), whereas the thermal expansion of the c-axis (a0 = 6.8 (2) × 10−5 K−1 and a1 = 2.2 (4) × 10−8 K−2) is greater than that of the a-axis (a0 = 2.7 (4) × 10−5 K−1 and a1 = −0.2 (2) × 10−8 K−2). The present thermal EOS enables us to accurately calculate the density of magnesite to the deep mantle conditions. Decarbonation of a subducting oceanic crust containing 2 wt.% magnesite would result in a 0.6% density reduction at 30 GPa and 1273 K. Using the new EOS parameters we performed thermodynamic calculations for magnesite decarbonation reactions at pressures to 20 GPa. We also estimated stability of magnesite-bearing assemblages in the lower mantle.  相似文献   

17.
Worldwide alkali olivine basalts (AOB) and their differentiation series have been subdivided into continental, oceanic, or island-arc assemblages according to the inferred crustal environment at their time and place of eruption. No systematic differences have been found in major element composition of the AOB's from these three different environments. As plotted on (Na2O + K2O) vs. SiO2 and AMF diagrams, AOB differentiation trends also show no differences between environments. Thus, AOB appears to be a primary magma generated at sufficient depth in the mantle that its major element content is unaffected by chemical or thermal differences between mantle regions underlying continents, ocean basins, or island arcs. The major element chemistry of AOB is also apparently unaffected by passage through different types of crust.  相似文献   

18.
A swath bathymetric survey was conducted on Marsili Volcano, the biggest seamount in the Tyrrhenian Sea. It stands 3000 m above the surrounding oceanic crust of the 3500 m-deep Marsili back-arc basin and is axially located within the basin. The seamount has an elongated shape and presents distinctive morphology, with narrow (<1000 m) ridges, made up of several elongated cones, on the summit zone and extensive cone fields on its lower flanks. A dredging campaign carried out at water depths varying between 3400 and 600 m indicates that most of Marsili Seamount is composed of medium-K calc-alkaline basalts. Evolved high-K andesites were only recovered from the small cones on the summit axis zone. Petrological and geochemical characteristics of the least differentiated basalts reveal that at least two varieties of magmas have been erupted on the Marsili Volcano. Group 1 basalts have plagioclase and olivine as dominant phases and show lower Al, Ca, K, Ba, Rb and Sr, and higher Fe, Na, Ti and Zr with respect to a second type of basaltic magma. Group 2 basalts reveal the presence of clinopyroxene as an additional phenocryst phase. In addition, the two basaltic magmas have different original pre-eruptive H2O content (group 1, H2O-poor and group 2, H2O-rich). Moreover, comparison of the compositional trends and mineralogical compositions obtained from MELTS [Ghiorso, M.S., Sack, R.O., Contrib. Mineral. Petrol. 119 (1995) 197–212] fractional crystallization calculations reveal that the evolved andesites can only exclusively be derived from a low-pressure (0.3 kbar) fractionation of magmas compositionally similar to the least evolved group 2 basalts. Finally, we suggest that the high vesicularity of the basalts sampled at relatively great depths (>2400 m) on the edifice is governed by H2O and, probably, CO2 exsolution and is not a feature indicative of shallow water depth eruption.  相似文献   

19.
The Fe/Mg+Fe) ratios (XFe) of the Quaternary basalts (SiO2 < 53 wt.%) in the Japanese arcs were examined. The XXFe of relatively magnesian basalts decreases from the volcanic front toward the Japan Sea across the arcs. Based on the partition coefficient of Mg-Fe2+ between olivine and liquid, it is suggested that all the basalts near the volcanic front, which are mostly tholeiitic basalts, are significantly fractionated, whereas many basalts near the Japan Sea, which are mostly alkali basalts, are little fractionated. The K2 O content in the primary basalt magmas increases toward the Japan Sea. Combining the XFe and K2 O data, it is suggested that relatively large amounts of tholeiitic magmas are produced near the volcanic front, but they fractionate during their ascent, whereas smaller amounts of alkali basalt magmas are formed near the Japan Sea, but they can ascend with less fractionation. The density of primary tholeiite magma is significantly larger than that of primary alkali basalt magmas. It is most likely that primary tholeiite magmas cannot ascend beyond the upper crust and would fractionate to produce less dense tholeiitic magmas near the volcanic front, whereas primary alkali basalt magmas can ascend through the upper crust without fractionation, as far as buoyancy is the principal ascending force. In the Japanese arcs, the stress field may be less compressional near the Japan Sea than near the volcanic front, so that magmas can ascend more rapidly in the latter region than in the former. These two factors may be responsible for the above mentioned chemical variations of basalt magmas across the arcs. The variation in volume of the Quaternary volcanic rocks across the arcs can be explained by the presence of a melt-rich zone above but nearly parallel to the subducted slab.  相似文献   

20.
Submersible investigations along the East Rift segments, the Pito Deep and the Terevaka transform fault of the Easter microplate eastern boundary, and on a thrust-fault area of the Nazca Plate collected a variety of basalts and dolerites. The volcanics consist essentially of depleted (N-MORB), transitional (T-MORB) and enriched (E-MORB) basalts with low (0.01−0.1, < 0.7), intermediate (0.12–0.25, 0.7–1.2) and high (> 0.25, > 1.2–2) K/Ti and(La/Sm)N ratios, respectively. The Fe-Ti-rich ferrobasalt encountered among the N-MORBs are found on the Pito Deep Central volcano, on the Terevaka intra-transform ridge, on the ancient (< 2.5 Ma) Easter microplate (called EMP, comprising the East Rift Inner pseudofaults and Pito Deep west walls) and on thrust-fault crusts. The most enriched (T- and E-MORB) volcanics occur along the East Rift at 25 °50′–27 °S (called 26 °S East Rift) and on the Pito seamount located near the tip of the East Rift at 23 °00′–23 °40′S (called 23 °S East Rift). The diversity in incompatible element ratios of the basalts in relation to their structural setting suggests that the volcanics are derived from a similar heterogenous mantle which underwent variable degrees of partial melting and magma mixing. In addition the Pito seamount volcanics have undergone less crystal fractionation (< 20%) than the lavas from the other Easter microplate structures (up to 35–45%). The tectonic segmentation of the East Rift observed between 23 and 27 °S corresponds to petrological discontinuities related to Mg# variations and mantle melting conditions. The highest Mg# (> 61) are found on topographic highs (2000–2300 m) and lower values (Mg# < 56) at the extremities of the East Rift segments (2500–5600 m depths). The deepest area (5600 m) along the East Rift is located at 23 °S and coincides with a Central volcano constructed on the floor of the Pito Deep. Three major compositional variabilities of the volcanics are observed along the East Rift segments studied: (1) the 26 °S East Rift segment where the volcanics have intermediate Na8 (2.5–2.8%) and Fe8 (8.5–11%) contents; (2) the 23 °S East Rift segment (comprising Pito seamount and Pito Deep Central volcano) which shows the highest (2.9–3.4%) values of Na8 and a low (8–9%) Fe8 content; and (3) the 25 °S (at 24 °50′–26 °10′S) and the 24 °S (at 24 °10′–25 °S) East Rift segments where most of the volcanics have low to intermediate Na8 (2.6–2.0%) and a high range of Fe8 (9–13%) contents. When modeling mantle melting conditions, we observed a relative increase in the extent of partial melting and decreasing melting pressure. These localized trends are in agreement with a 3-D type diapiric upwelling in the sense postulated by Niu and Batiza (1993). Diapiric mantle upwelling and melting localized underneath the 26, 25 and 23 °S (Pito seamount and Central volcano) East Rift segments are responsable for the differences observed in the volcanics. The extent of partial melting varies from 14 to 19% in the lithosphere between 18 and 40 km deep as inferred from the calculated initial (Po=16kbar) and final melting (Pf=7kbar) pressures along the various East Rift segments. The lowest range of partial melting (14–16%) is confined to the volcanics from 23 °S East Rift segment including the Pito seamount and the Central volcano. The Thrust-fault area, and the Terevaka intra-transform show comparable mantle melting regimes to the 25 and 26 °S East Rift segments. The older lithosphere of the EMP interior is believed to have been the site of high partial melting (17–20%) confined to the deeper melting area (29–50 km). This increase in melting with increasing pressure is similar to the conditions encountered underneath the South East Pacific Rise (13–20 °S).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号