首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The techniques used for the numerical computation of families of periodic orbits of dynamical systems rely on predictor-corrector algorithms. These algorithms usually depend on the solution of systems of approximate equations constructed from the periodicity conditions of these orbits. In this contribution we transform the root finding procedure to an optimization one which is applied on an objective function based on the exact periodicity conditions. Thus, the determination of periodic solutions and families of such orbits can be accomplished through unconstrained optimization. In this paper we apply and compare some well-known minimization methods for the solution of this problem. The obtained results are promising. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
The famous three-body problem can be traced back to Newton in 1687, but quite few families of periodic orbits were found in 300 years thereafter. In this paper, we propose an effective approach and roadmap to numerically gain planar periodic orbits of three-body systems with arbitrary masses by means of machine learning based on an artificial neural network (ANN) model. Given any a known periodic orbit as a starting point, this approach can provide more and more periodic orbits (of the same family name) with variable masses, while the mass domain having periodic orbits becomes larger and larger, and the ANN model becomes wiser and wiser. Finally we have an ANN model trained by means of all obtained periodic orbits of the same family, which provides a convenient way to give accurate enough predictions of periodic orbits with arbitrary masses for physicists and astronomers. It suggests that the high-performance computer and artificial intelligence (including machine learning) should be the key to gain periodic orbits of the famous three-body problem.  相似文献   

3.
We construct a non-stationary form of the Lagrangian of a material point with a known integral of motion and given monoparametric family of evolving orbits. An equation for non-stationary space symmetrical ‘potential’ function of such Lagrangian is given and this stands for the analog of Szebehely's (1974) equation. As an application of the problem, an integrable equation from celestial mechanics of variable mass with use of non-perturbed orbits of evolving type is constructed. On its basis adiabatic invariants of non-stationary two-body problem containing a tangential force are found. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
For the n-centre problem of one particle moving in the potential of attracting centres of small mass fixed in an arbitrary smooth potential and magnetic field, we prove the existence of periodic and chaotic trajectories shadowing sequences of collision orbits. In particular, we obtain large subshifts of solutions of this type for the circular restricted 3-body problem of celestial mechanics. Poincaré had conjectured existence of the periodic ones and given them the name ‘second species solutions’. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
数值积分方法是进行天体力学研究的重要工具, 尤其对于行星历表的研究工作而言. 由于在使用数值方法计算天体轨道时, 最终误差通常是难以预知的, 所以在面对精度要求较高或者积分时间较长的工作时具体积分方案的设计---尤其是当使用定步长方法时的步长选择---需要十分谨慎, 因为这将意味着是否能在时间成本可以被接受的范围内使解的精度达到要求. 因此, 在使用数值方法解决实际问题时如何快速寻找效率与精度之间的最佳平衡点是每一个数值积分方法的设计者与使用者都会面临的难题. 为解决这一问题, 在定步长条件下对数值积分方法的舍入误差概率分布函数以及截断误差积累量对步长的依赖关系和随时间的增长关系进行了深入研究. 基于所得结论, 提出了一种仅需较少的数值实验资料即可对选择任意时间步长积分至任意积分时刻时的舍入误差概率分布函数与截断误差积累量进行准确估计的方法, 并使用Adams-Cowell方法对该误差估计方法在圆周期轨道条件下进行了验证. 该误差估计方法在未来有望用于不同数值算法的性能对比研究, 同时也可以对数值积分方法求解实际轨道问题时的决策工作带来重要帮助.  相似文献   

6.
Numerical methods have become a very important type of tool for celestial mechanics, especially in the study of planetary ephemerides. The errors generated during the computation are hard to know beforehand when applying a certain numerical integrator to solve a certain orbit. In that case, it is not easy to design a certain integrator for a certain celestial case when the requirement of accuracy were extremely high or the time-span of the integration were extremely large. Especially when a fixed-step method is applied, the caution and effort it takes would always be tremendous in finding a suitable time-step, because it is about whether the accuracy and time-cost of the final result are acceptable. Thus, finding the best balance between efficiency and accuracy with the least time cost appeared to be a major obstruction in the face of both numerical integrator designers and their users. To solve this problem, we investigate the variation pattern of truncation error and the pattern of rounding error distributions with time-step and time-span of the integration. According to those patterns, we promote an error estimation method that could predict the distribution of rounding errors and the total truncation errors with any time-step at any time-spot with little experimental cost, and test it with the Adams-Cowell method in the calculation of circular periodic orbits. This error estimation method is expected to be applied to the comparison of the performance of different numerical integrators, and also it can be of great help for finding the best solution to certain cases of complex celestial orbits calculations.  相似文献   

7.
This paper focuses on some aspects of the motion of a small particle moving near the Lagrangian points of the Earth–Moon system. The model for the motion of the particle is the so-called bicircular problem (BCP), that includes the effect of Earth and Moon as in the spatial restricted three body problem (RTBP), plus the effect of the Sun as a periodic time-dependent perturbation of the RTBP. Due to this periodic forcing coming from the Sun, the Lagrangian points are no longer equilibrium solutions for the BCP. On the other hand, the BCP has three periodic orbits (with the same period as the forcing) that can be seen as the dynamical equivalent of the Lagrangian points. In this work, we first discuss some numerical methods for the accurate computation of quasi-periodic solutions, and then we apply them to the BCP to obtain families of 2-D tori in an extended neighbourhood of the Lagrangian points. These families start on the three periodic orbits mentioned above and they are continued in the vertical (z and ż) direction up to a high distance. These (Cantor) families can be seen as the continuation, into the BCP, of the Lyapunov family of periodic orbits of the Lagrangian points that goes in the (z, ż) direction. These results are used in a forthcoming work [9] to find regions where trajectories remain confined for a very long time. It is remarkable that these regions seem to persist in the real system. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
A systematic and detailed discussion of planar periodic orbits, of a charged particle moving under the influence of an electromagnetic field of three celestial bodies, is given for the first time. In this problem the periodic orbits are all asymmetric. Numerical procedures are applied to find the families of these orbits and to study their stability. Moreover, the bifurcations of these families with families of three dimensional asymmetric periodic orbits are given.  相似文献   

9.
The importance of the stability characteristics of the planar elliptic restricted three-body problem is that they offer insight about the general dynamical mechanisms causing instability in celestial mechanics. To analyze these concerns, elliptic–elliptic and hyperbolic–elliptic resonance orbits (periodic solutions with lower period) are numerically discovered by use of Newton's differential correction method. We find indications of stability for the elliptic–elliptic resonance orbits because slightly perturbed orbits define a corresponding two-dimensional invariant manifold on the Poincaré surface-section. For the resonance orbit of the hyperbolic–elliptic type, we show numerically that its stable and unstable manifolds intersect transversally in phase-space to induce instability. Then, we find indications that there are orbits which jump from one resonance zone to the next before escaping to infinity. This phenomenon is related to the so-called Arnold diffusion. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
For the circular restricted three-body problem of celestial mechanics with small secondary mass, we prove the existence of uniformly hyperbolic invariant sets of non-planar periodic and chaotic almost collision orbits. Poincaré conjectured existence of periodic ones and gave them the name “second species solutions”. We obtain large subshifts of finite type containing solutions of this type.  相似文献   

11.
The results of the computation of the family h of symmetric periodic solutions of the circular planar restricted three-body problem for μ = 0.3, 0.4, and 0.5 are presented. This family begins with retrograde circular orbits around a massive body. Associated with each value of μ are the table of critical orbits, the orbit pictures, the graphs of characteristics of the family in four coordinate systems, and the graphs of the period and traces (planar and vertical). Regularities on the family and its evolution as μ increased were observed.  相似文献   

12.
We present an improved grid search method for the global computation of periodic orbits in model problems of Dynamics, and the classification of these orbits into families. The method concerns symmetric periodic orbits in problems of two degrees of freedom with a conserved quantity, and is applied here to problems of Celestial Mechanics. It consists of two main phases; a global sampling technique in a two-dimensional space of initial conditions and a data processing procedure for the classification (clustering) of the periodic orbits into families characterized by continuous evolution of the orbital parameters of member orbits. The method is tested by using it to recompute known results. It is then applied with advantage to the determination of the branch families of the family f of retrograde satellites in Hill’s Lunar problem, and to the determination of irregular families of periodic orbits in a perturbed Hill problem, a species of families which are difficult to find by continuation methods.   相似文献   

13.
We study the periodic orbits and the escapes in two different dynamical systems, namely (1) a classical system of two coupled oscillators, and (2) the Manko-Novikov metric which is a perturbation of the Kerr metric (a general relativistic system). We find their simple periodic orbits, their characteristics and their stability. Then we find their ordered and chaotic domains. As the energy goes beyond the escape energy, most chaotic orbits escape. In the first case we consider escapes to infinity, while in the second case we emphasize escapes to the central ??bumpy?? black hole. When the energy reaches its escape value, a particular family of periodic orbits reaches an infinite period and then the family disappears (the orbit escapes). As this family approaches termination it undergoes an infinity of equal period and double period bifurcations at transitions from stability to instability and vice versa. The bifurcating families continue to exist beyond the escape energy. We study the forms of the phase space for various energies, and the statistics of the chaotic and escaping orbits. The proportion of these orbits increases abruptly as the energy goes beyond the escape energy.  相似文献   

14.
The Sitnikov configuration is a special case of the restricted three-body problem where the two primaries are of equal masses and the third body of a negligible mass moves along a straight line perpendicular to the orbital plane of the primaries and passes through their center of mass. It may serve as a toy model in dynamical astronomy, and can be used to study the three-dimensional orbits in more applicable cases of the classical three-body problem. The present paper concerns the straight-line oscillations of the Sitnikov family of the photogravitational circular restricted three-body problem as well as the associated families of three-dimensional periodic orbits. From the stability analysis of the Sitnikov family and by using appropriate correctors we have computed accurately 49 critical orbits at which families of 3D periodic orbits of the same period bifurcate. All these families have been computed in both cases of equal and non-equal primaries, and consist entirely of unstable orbits. They all terminate with coplanar periodic orbits. We have also found 35 critical orbits at which period doubling bifurcations occur. Several families of 3D periodic orbits bifurcating at these critical Sitnikov orbits have also been given. These families contain stable parts and close upon themselves containing no coplanar orbits.  相似文献   

15.
A study has been made of a dynamical system composed of a pendulum and a harmonic oscillator, in order to show the remarkable resemblance with many classical celestial mechanics problems, in particular the restricted three-body problem. It is shown that the well-known investigations of periodic orbits can be applied to the present dynamics problem.Presented at the Conference on Celestial Mechanics, Oberwolfach, Germany, August 27–September 2, 1972.  相似文献   

16.
In this paper we deal with the circular Sitnikov problem as a subsystem of the three-dimensional circular restricted three-body problem. It has a first analytical part where by using elliptic functions we give the analytical expressions for the solutions of the circular Sitnikov problem and for the period function of its family of periodic orbits. We also analyze the qualitative and quantitative behavior of the period function. In the second numerical part, we study the linear stability of the family of periodic orbits of the Sitnikov problem, and of the families of periodic orbits of the three-dimensional circular restricted three-body problem which bifurcate from them; and we follow these bifurcated families until they end in families of periodic orbits of the planar circular restricted three-body problem. We compare our results with the previous ones of other authors on this problem. Finally, the characteristic curves of some bifurcated families obtained for the mass parameter close to 1/2 are also described.  相似文献   

17.
Many modern space projects require the knowledge of orbits with certain properties. Most of these projects assume the motion of a space vehicle in the neighborhood of a celestial body, which in turn moves in the field of the Sun or another massive celestial body. A good approximation of this situation is Hill’s problem. This paper is devoted to the investigation of the families of spatial periodic solutions to the three-dimensional Hill’s problem. This problem is nonintegrable; therefore, periodic solutions are studied numerically. The Poincare theory of periodic solutions of the second kind is applied; either planar or vertical impact orbits are used as generating solutions.  相似文献   

18.
In this paper three results on the linearized mapping associated with the plane three body problem near a periodic orbit are established. It is first shown that linear stability of such an orbit is independent of initial position on the orbit and of coordinate system. Second, the relation of Hénon connecting the rates of change of rotation angle and period on an isoenergetic family of periodic orbits is proved, together with a similar relation for families of orbits closing exactly in a rotating coordinate system. Finally, a condition for a critical orbit is given which is applicable to any family of periodic orbits.  相似文献   

19.
We investigate the break-down threshold of librational invariant curves. As a model problem, we consider a variant of a mapping introduced by M. Hénon, which well describes the dynamics of librational motions surrounding a stable invariant point. We verify in concrete examples the applicability of Greene's method, by computing the instability transition values of a sequence of periodic orbits approaching an invariant curve with fixed noble frequency. However, this method requires the knowledge of the location of the periodic orbits within a very good approximation. This task appears to be difficult to realize for a libration regime, due to the different topology of the phase space. To compute the break-down threshold, we tried an alternative method very easy to implement, based on the computation of the fast Lyapunov indicators and frequency analysis. Such technique does not require the knowledge of the periodic orbits, but again, it appears very difficult to have a precision better than Greene's method for the computation of the critical parameter.  相似文献   

20.
In this article a method is described for the determination of families of periodic orbits, of the restricted problem of three bodies, as branchings of a given family of stable periodic orbits. Poincaré's method of successive crossings of a surface of section is applied for a value of the mass parameter corresponding to the Sun-Jupiter case of the restricted problem. New families are found, of the type of direct asteroids, having long periods and closing in space after many revolutions of the third body about the Sun. Their stability parameters are also given. The generating family, from which they branch, seems to have special significance for stability considerations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号