首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
国际合作INDEPTH项目横穿青藏高原的深部探测与综合研究   总被引:15,自引:1,他引:15  
国际合作青藏高原与喜马拉雅深部剖面探测(INDEPTH)计划自1992年开展以来,圆满完成Ⅰ、Ⅱ、Ⅲ、3个阶段研究任务,揭示了喜马拉雅山和青藏高原腹地的地壳结构和深部构造,在同际核心期刊公开发表10多篇有重要影响的学术论文,受到国际地球科学界的高度评价.第四阶段计划是研究高原北部边缘,即东昆仑造山带和柴达木盆地的结构构造及其形成演化,并与南部喜马拉雅造山带加以对比.经过多次野外地质踏勘,选定剖面的工作路线,2007年各方正式签订协议,并共同开展了野外调查,圆满完成了横穿东昆仑造山带和柴达木盆地的100km垂直深反射地震、300 km广角地震反射以及59个宽频带天然地震台站的野外观测施工任务.中方项目组还在东昆仑南部厘定出渐新世晚期-中新世早期大型逆冲推覆构造系统,发现青藏高原渐新世晚期-中新世早期整体隆升的重要证据.2008年将继续天然地震观测,还将开展大地屯磁测深、重力、地质构造剖面观测和反射地震数据处理;2009~2010年将利用各类深部探测资料,综合研究青藏高原北部的地壳结构、岩石圈构造和深部过程.  相似文献   

2.
深反射地震资料处理和解释的初步研究   总被引:3,自引:0,他引:3  
徐明才  高景华  胡振远 《物探与化探》1995,19(5):360-365,367,368
深反射地震资料处理的关键是从干扰背景中提取和增强深层弱有效信号,提高剖面的信噪比和分辨率.深反射地震剖面的解释要着眼于大的地质构造运动和成因,运用地质规律进行综合地质解释.在解释中,通过分析和研究某些相干干扰波的形成和特点,有助于对深反射地震剖面进行可靠的地质推断解释.  相似文献   

3.
青藏高原是由印度板块和亚洲板块于50~60 Ma碰撞而形成的全球最高最大的高原,已成为多数国内外学者的共识.然而,关于它的岩石圈变形机制却是长期争论的问题.深地震反射剖面是精细揭示岩石圈结构、分辨变形样式的有效技术.重新处理的松潘地块一西秦岭造山带深地震反射剖面揭示出岩石圈变形的细节,以地壳上部的双重逆冲构造、地壳中部...  相似文献   

4.
熊嘉育 《地球学报》1995,16(3):338-338
中外合作项目“喜马拉雅和青藏高原深剖面试验综合研究”取得重要进展MainProgressesinInternationalDeepProfilingOfTibetandtheHimalaya关键词喜马拉雅,青藏高原,深地震反射剖面“喜马拉雅和青藏高原...  相似文献   

5.
深地震反射剖面数据子库   总被引:3,自引:0,他引:3  
黄立言  高锐 《地球学报》2001,22(6):491-496
深地震反射剖面数据子库(简称SB1),系国土资源部深部地球物理探测数据库下属子库之一。经过需求分析,数据标准格式设计,采用Microsoft Access97作为开发平台的深地震反射剖面数据子库,具备关系型数据库固有的一切功能。SB1由用户查询,维护管理和报表打印等3个子系统组成。SB1收录了1996年以前,即原地质矿产部和国土资源部地球物理工作者执行深部地质计划和前沿科技计划等专项计划获得的大量深地震反射剖面调查原始记录,处理成果与解释成果。经调研数据分布和保存状况,依照“深地震反射剖面数据入库技术规定”完成了深地震反射剖面数据收集,整理及登录。迄今为止,SB1共收录国土资源部深地震反射资料累计测线19条,剖面长度859km与入库原始记录数据量35.8GB;原始记录,数据处理等入库数据记录格式皆统一采用地震勘探专业通用的SEG-Y格式;并采用通用的刻录格式ISO9660共刻录数据光盘30张。SB1管理系统的库文件及其用户指南,管理员手册,系统盘说明等文档也已刻录成系统光盘,为数据共享以及其它应用提供了方便条件。  相似文献   

6.
深地震反射剖面技术以其探测精度高的优势被作为岩石圈精细结构研究的先锋技术,并在全球典型矿集区结构探测中发挥了重要作用.为深入研究青藏高原碰撞造山成矿系统深部结构与成矿过程,本文系统总结了深地震反射技术发展现状,梳理了该技术在加拿大、澳大利亚、中国、俄罗斯、瑞典等全球多个国家的典型矿集区的应用实例,归纳总结了地壳深部结构对矿集区控矿因素的影响,阐述了地壳、上地幔深部结构与深部成矿过程的关系.从全球实例看,深地震反射剖面探测成果为大型矿集区的形成提供了深部线索,反射透明区可能是地幔流体向上运移通道,形成矿集区的成矿物质与能量来源,表明地幔物质参与了成矿作用;具有很强反射特征的断裂系统,包括大型断层、滑脱面和剪切带,是成矿流体从下地壳向上迁移的通道;矿集区深地震反射剖面中“亮点”反射可能是火山活动的深部岩浆上涌至中地壳后而形成的残余岩浆囊的反映.揭露精细的矿集区深部结构不但对矿集区构造历史演化的重建具有重要作用,还对未来成矿潜力和前景靶区的确定具有重要指导意义.  相似文献   

7.
地震相分析在深反射地震勘探资料解释中的应用   总被引:2,自引:0,他引:2  
作者对INDEPTH项目深所射地震剖面的细致研究发现,在深反射地震剖面上不仅仅强反射同相轴可以反映地壳深部的结构、构造特征,而且其上的地震相特征在上、中、下地壳也有一定的差异.通过将地震相分析引入深反射地震勘探的研究中,可以利用地震相特征的差异对深反射地震剖面进行充分解释,为深部工作中的地壳结构、构造特征研究提供更丰富、可靠的资料基础.   相似文献   

8.
彭灌杂岩位于龙门山断裂带中段,是龙门山区域地质构造重要组成部分.通过对一条穿过彭灌杂岩中部的深地震反射剖面进行分析解释,描述该区域彭灌杂岩深部结构特征及形成机制.地震反射剖面分析表明彭灌杂岩在纵深上存在分层结构,且彭灌杂岩存在底界面,在该区域表现出无根特征,参考岩体层倾向推断原岩应来自现位置西北方向更深部;同时剖面能量...  相似文献   

9.
安好收 《江苏地质》2022,46(2):152-157
时深转换是浅层地震勘探多道反射法进行定量解释的关键一步,其转换结果直接影响各有效反射物性界面埋深解释误差的大小。为尽可能减小此类误差,提高各有效反射物性界面埋深解释的可靠性,根据多年浅层地震勘探数据处理经验,结合地质解释工作,从速度参数的提取、时深剖面的转换到地质解释剖面图编制3个方面阐述了浅层地震勘探多道反射时深转换方法,并结合实例进一步分析,为浅层地震勘探工作提供借鉴。  相似文献   

10.
深地震反射剖面揭露大陆岩石圈精细结构   总被引:16,自引:0,他引:16  
深地震反射技术已被国际地学界公认为是探测岩石圈精细结构、解决深部地质问题的有效技术手段。自上世纪70年代中期以来,以美国为首的等西方国家和中国相继开展了深地震反射探测技术实验,使用该技术揭露盆地、造山带岩石圈的形成和演化、地球动力学过程,并应用于油气资源远景评价、矿产资源勘察等领域,取得了丰硕的成果。本文扼要介绍深地震反射剖面技术的发展及其部分应用实例。  相似文献   

11.
通过深地震反射剖面,宽频天然深地震探测,广角折射、反射剖面,结合地表地质观察、岩石矿物和地球化学研究,以及弹性模拟计算等,对当前国际上流行的所谓高原北缘向南呈A型俯冲,南缘向北俯冲构成的青藏高原地壳加厚、隆升的“双俯冲”(two-sidedsubduction)模式提出质疑,认为高原北缘至少在西昆仑与塔里木(欧亚板块)之间不存在长距离的俯冲,在新生代以来的强劲挤压中,塔里木起到了一定的阻挡作用,在这里呈现南北向挤压应力场,因而青藏高原西北缘陆-陆碰撞造山、盆山的形成受到“南北双向挤压模式”所控制,也是造成青藏高原西北缘新生代期地壳加厚、隆升的重要动力因素  相似文献   

12.
东昆仑造山带中地壳存在古洋壳俯冲的深反射地震证据   总被引:1,自引:0,他引:1  
INDEPTH Ⅳ深反射地震测线横跨可可西里-巴颜喀拉地块和东昆仑-柴达木地块,为揭示青藏高原东昆仑造山带深部构造提供了直接地球物理证据。针对地表和地下"双复杂"地质构造条件,地震数据处理中通过剩余折射波静校正技术、异常振幅噪声衰减技术和CRS优化叠加技术,获得了较高信噪比的地震反射叠加剖面。INDEPTH Ⅳ深反射地震剖面揭示,在东昆仑造山带岩石圈上、下地壳之间存在不连续的古洋壳反射同相轴,该反射界面应属古特提斯域松潘-甘孜洋壳向北俯冲遗迹,不连续特征反映中生代东昆仑-柴达木地块南缘属于被动大陆边缘碰撞带。利用INDEPTH Ⅳ深反射地震单炮、速度和叠加剖面等成果,综合解译数据,提出东昆仑造山带隆升过程的另一种模式,以助于深化东昆仑造山模式认识。  相似文献   

13.
通过深地震反射剖面,宽频天然深地震探测,广角折射、反射剖面,结合地表地质观察、岩石矿物和地球化学研究,以及弹性模拟计算等,对当前国际上流行的所谓高原北缘向南呈A型俯冲,南缘向北俯冲构成的青藏高原地壳加厚、隆升的“双俯冲”(two-sided subduction)模式提出质疑,认为高原北缘至少在西昆仑与塔里木(欧亚板块)之间不存在长距离的俯冲,在新生代以来的强劲挤压下,塔里木起到了一定的阻挡作用,在这里呈现南北向挤压应力场,因而青藏高原西北缘陆-陆碰撞造山、盆山的形成受到“南北双向挤压模式”所控制,也是造成青藏高原西北缘新生代后期地壳加厚、隆升的重要动力因素。  相似文献   

14.
西昆仑—塔里木—天山岩石圈深地震探测综述   总被引:40,自引:6,他引:40  
高锐  高弘 《地质通报》2002,21(1):11-18,T001,T002
沿新疆地学断面走廊域实施了3种深地震探测方法:近垂直深地震反射剖面、宽角反射与折射深地震测深剖面和移动式宽频地震观测,揭露出西屁仑-塔里木-天山岩石圈的结构与横向变化,发现了塔里木大陆地块与青藏高原西北部西昆仑造山带碰撞的地震学证据,揭示出天山与塔里木、天山与准噶尔,以及昆仑山与塔里木之间的岩石圈尺度盆山耦合关系。阶段成果发表后引起国内外学者广泛注意,本文结合相关资料对这些新成果进行了系统综述,旨在对比研究青藏高原南北两缘不同的碰撞变形之深部过程。  相似文献   

15.
深反射地震探测技术是研究地球深部地质结构最为有效的手段之一。受大地滤波作用的影响,地震波能量成指数衰减,造成深层有效反射能量弱,受背景噪声干扰严重,难以实现深部地质结构的准确成像。本文通过研究深反射地震数据在Shearlet域中各个尺度角度上有效信号和随机噪声的分布差异,发现在不同的尺度角度上地震信号受随机噪声的影响程度不同。进一步将深反射地震数据尺度角度域中的信噪比、Shearlet系数二范数及随机噪声残差作为阈值的估计参数,实现随尺度角度自适应的随机噪声压制方法,最大限度地去除随机噪声的影响。通过理论模型数据和实际深反射地震数据测试,验证了Shearlet域自适应阈值随机噪声压制方法可以有效地去除随机噪声干扰,提升地震剖面的整体信噪比,实现深层微弱反射信号的精准成像。  相似文献   

16.
盆山结合带地质条件复杂、地形起伏大,深地震反射资料具有信噪比低、各种干扰波严重以及速度横向变化大等特点。针对盆山结合部位深反射资料的特点,主要利用ProMAX处理系统对横跨若尔盖盆地和西秦岭造山带结合部位的二维深地震反射资料(简称SP04-2剖面)进行折射静校正、叠前去噪、地表一致性处理、人机交互速度分析、剩余静校正循环迭代处理、地表基准动校正叠加和叠后去噪处理等方法试验研究,形成一套适应盆山结合部位深地震反射资料的处理方法和流程,最终得到SP04-2叠加剖面。该剖面首次揭示出若尔盖盆地—西秦岭造山带盆山结合部位的岩石圈结构,为研究盆山深部接触关系提供了可靠的地震学依据。  相似文献   

17.
静校正是深地震反射资料处理的关键技术之一,深反射剖面通常跨越多种不同的地质构造单元,地震地质条件复杂且变化较大,单一的静校正方法通常不能很好地解决深反射的静校正问题,针对兴蒙造山带西南段深反射地震数据进行静校正测试,最终选取多种静校正方法组合静校正技术,即针对不同地质条件分别应用折射和层析相结合来解决静校正问题。对于剩余静校正,采用模拟退火法解决,较好地解决了研究区的静校正问题,为资料后续处理提供借鉴。  相似文献   

18.
喜马拉雅山的崛起和青藏高原的隆升被认作是印度板块和亚洲板块中、新生代以来汇聚、碰撞、挤压的结果,是典型的陆-陆碰撞地带。此文介绍了在喜马拉雅山区进行的第一次深反射地震试验的结果。试验剖面布置在北喜马拉雅地区内,从喜马拉雅山山脊南的帕里到康马南的萨马达共中15点(CMP)叠加剖面上表现出如下特点:①显示了在地壳中部有一强反射带,向北缓倾斜下去,延长达100km以上。它可能代表了一个活动的道冲断裂或是一条巨大的拆离带,印度地壳整体或下地壳沿此拆离层俯冲到藏南之下;②上部地壳的反射,显示了上地壳存在着大规模的叠瓦状结构;③下地壳的反射显示了塑性流变特征;④在测线南部莫霍反射明显,深度达72─75km,发现了南部有双莫霍层的存在;⑤试验中还取得莫霍层下面32s、38s、48s等双程走时的多条反射,均向北倾斜,反射同相轴延续较长,信息丰富,反映了上地幔的成层结构。这些结果对印度大陆地壳整体或其下地壳俯冲到藏南特提斯喜马拉雅地壳之下并导致西藏南端地壳增厚的观点给予了实质性的支持。  相似文献   

19.
利用2条衔接并横过青藏高原羌塘盆地中央隆起的反射地震剖面探测数据,进行了初至波层析成像试验,以揭示羌塘中央隆起的表层结构特征。研究结果表明,大量的反射地震单炮记录初至清晰,长排列接收丰富了浅表构造趋势特征的信息,层析走时射线密度随地下构造的复杂程度而变化。层析反演得到的速度结构显示了高速层起伏剧烈的变化特征,其厚度与地表出露地层的年代负相关。深反射地震初至波走时层析成像可以提供丰富的地壳近地表结构信息。  相似文献   

20.
针对庐枞多金属矿集区地震资料特点及浅、深多重探测目标,对深地震反射数据进行了处理技术实验研究。在区域长剖面上,为了获得矿集区地壳与上地幔结构的精细图像,解释成矿深部过程,开展了循序渐进的常规处理技术实验和精细处理技术实验。在矿区剖面,为了获得了浅层精细结构,针对变观测系统接收等特点,进一步开展了特殊处理实验。经过区域剖面与矿区剖面的多重处理实验,集成了一套矿集区深地震反射剖面数据处理方法与处理技术流程,为我国进一步的深部探测积累了技术与经验。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号