首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R-band photometric light curves of the eruptive eclipsing binary SDSS J090350.73+330036.1 obtained during a superoutburst in May 2010 (JD 2455341-2455347) are analyzed. Observations covering an interval near the outburst maximum and the post-maximum decrease by 0.7 m are presented. Oscillations (superhumps) whose period differs from the orbital period by several percent are observed in the light curve together with eclipses, suggesting that the studied system is a SU UMa dwarf nova. A ??spiral arm?? model is used to fit the light curves and determine the parameters of the accretion disk and other components of the binary system. Together with a hot line, this model takes into account, geometrical inhomogeneities on the surface of the accretion disk, namely, two thickenings at its outer edge that decrease exponentially in the vertical direction with approach toward the white dwarf. The increase in the R-band flux from the system during the superoutburst mainly results from the enhanced luminosity of the accretion disk due to the increase in its radius by up to ??0.44a 0 at the outburst maximum (a 0 is the component separation), as well as a shallower radial temperature decrease law than in the canonical case. As the superoutburst faded, the disk radius decreased smoothly at the end of our observation (to ??0.33a 0), the thickness of its outer edge and temperature of its boundary layer decreased, and the parameter ?? g approached its canonical value. Deviations from the mean brightness of the system as a function of the superhump period P sh are analyzed for each out-of-eclipse set of observations. Various factors affecting the appearance and amplitudes of superhumps in the orbital light curves are considered.  相似文献   

2.
We present the results of WBVR observations of the low-mass X-ray binary V1341 Cyg = Cyg X-2. Our observations include a total of 2375 individual measurements in four bands on 478 nights in 1986–1992. We tied the comparison and check stars used for the binary to the WBVR catalog using their JHK magnitudes. The uncertainty of this procedure was 3% in the B and V bands and 8%–10% for the W and R bands. In quiescence, the amplitude of the periodic component in the binary’s B brightness variations is within 0.265 m –0.278 m (0.290 m –0.320 m in W); this is due to the ellipsoidal shape of the optical component, which is distorted with gravitational forces from the X-ray component. Some of the system’s active states (long flares) may be due to instabilities in the accretion disk, and possibly to instabilities of gas flows and other accretion structures. The binary possesses a low-luminosity accretion disk. The light curves reveal no indications of an eclipse near the phases of the upper and lower conjunctions in quiescence or in active states during the observed intervals. We conclude that the optical star in the close binary V1341 Cyg = Cyg X-2 is a red giant rather than a blue straggler. We studied the longterm variability of the binary during the seven years covered by our observations. The optical observations presented in this study are compared to X-ray data from the Ginga observatory for the same time intervals.  相似文献   

3.
Results of JHKLM photometry for the protoplanetary nebula candidate V1027 Cyg obtained in 1991–2008 are reported. In all bands, the brightness variations did not exceed 0.2 m . Estimated linear trends demonstrate no significant changes in the mean brightness and color indices of the object, with the possible exception of the L-M color index, which showed a small decrease. A search for possible periodicities in the brightness variations yielded the most probable period of 237d. A model for a spherically-symmetric dust shell has been calculated based on the photometric results supplemented with data on the mid- and far-infrared fluxes. The estimated mass-loss rate of the star is 1.3 × 10−5 M /year.  相似文献   

4.
Nitrogen addition to soil can play a vital role in influencing the losses of soil carbon by respiration in N-deficient terrestrial ecosystems. The aim of this study was to clarify the effects of different levels of nitrogen fertilization (HN, 200 kg N ha−1 year−1; MN, 100 kg N ha−1 year−1; LN, 50 kg N ha−1 year−1) on soil respiration compared with non-fertilization (CK, 0 kg N ha−1 year−1), from July 2007 to September 2008, in temperate grassland in Inner Mongolia, China. Results showed that N fertilization did not change the seasonal patterns of soil respiration, which were mainly controlled by soil heat-water conditions. However, N fertilization could change the relationships between soil respiration and soil temperature, and water regimes. Soil respiration dependence on soil moisture was increased by N fertilization, and the soil temperature sensitivity was similar in the treatments of HN, LN, and CK treatments (Q 10 varied within 1.70–1.74) but was slightly reduced in MN treatment (Q 10 = 1.63). N fertilization increased soil CO2 emission in the order MN > HN > LN compared with the CK treatment. The positive effects reached a significant level for HN and MN (P < 0.05) and reached a marginally significant level for LN (P = 0.059 < 0.1) based on the cumulative soil respiration during the 2007 growing season after fertilization (July–September 2007). Furthermore, the differences between the three fertilization treatments and CK reached the very significant level of 0.01 on the basis of the data during the first entire year after fertilization (July 2007–June 2008). The annual total soil respiration was 53, 57, and 24% higher than in the CK plots (465 g m−2 year−1). However, the positive effects did not reach the significant level for any treatment in the 2008 growing season after the second year fertilization (July–September 2008, P > 0.05). The pairwise differences between the three N-level treatments were not significant in either year (P > 0.05).  相似文献   

5.
SeaWiFS ocean color measurements were used to investigate interannual, monthly, and weekly variations in chlorophylla (chla) on the Louisiana shelf and to assess relationships with river discharge, nitrate load, and hypoxia. During the study period (2000–2003), interannual changes in shelf-wide chla concentrations averaged over January–July ranged from +57% to −33% of the 4-yr average, in accord with freshwater discharge changes of +20% to −29% and nitrate load changes of +20% to −35% from the Mississippi and Atchafalaya Rivers. Chla variations were largest on the shelf between the Mississippi and Atchafalaya Deltas. Within this region, which corresponds spatially to the area of most frequent hypoxia, lowest January–July mean chla concentrations (5.5 mg m−3 over 7,000 km2) occurred during 2000, the year of lowest freshwater discharge (16,136 m3 s−1) and nitrate load (55,738 MT N d−1) onto the shelf. Highest January–July mean chla concentrations (13 mg m−3 over 7,000 km2) were measured in 2002, when freshwater discharge (27,440 m3s−1) and nitrate load (101,761 MT N d−1) were highest and second highest, respectively. Positive correlations (R2=0.4–0.5) were found between chla and both fresh water and nitrate loads with 0 to 1 month lags, with the strongest relationships just west of the Mississippi Delta. In 2001, unusually clear skies allowed the identification of distinct spring and summer chla blooms west of the Mississippi Delta 4–5 wk after peaks in river discharge. East of the delta, the chla concentrations peaked in June and July, following the seasonal reversal in the coastal current. A clear linkage was not detected between satellite-measured chla and hypoxia during the 4-yr period, based on a time series of bottom oxygen concentrations at one station within the area of most frequent hypoxia. Clear relationships are confounded by the interaction of physical processes (wind stress effects) with the seasonal cycle of nutrient-enhanced productivity and are influenced by the prior year's nitrate load and carbon accumulation at the seabed.  相似文献   

6.
Active regions on the surfaces of the chromospherically active stars GSC 08923-01147 and GSC 08933-01802 are found by reconstructing the surface-temperature inhomogeneities using the V light curves, obtained from observations performed during the ASAS-3 project. Up to one-third of the total observed area of the stellar surfaces was covered by spots. In GSC 08923-01147, the spotted fraction decreased from 0.31 to 0.05 during the observation period, while it varied within 0.2–0.3 during four years in GSC 08933-01802. The detected phases of active longitudes tend to concentrate near two positions separated by about half a period. The active regions in GSC 08933-01147 became closer or further apart on a time scale of 4.8 years. The maximum separations of the longitudes Δφ long were maximum when the amplitude of the brightness variability reached a minimum. During the transition of the star from a minimum-brightness to an enhanced-brightness state, the longitude of the more active region switched. The brightness variability of GSC 08933-01802 was more substantial (ΔV }~ 0.55 m −0.06 m ). For some time, only one extended active region was present on the stellar surface, while two regions were usually present. No switch of the active longitudes was detected. The more active region monotonically moved over the surface of the star, causing the longitudes of the active regions to drift together. This monotonic change in the position of the more active longitude ceased at the minimum of the brightness-variation amplitude.  相似文献   

7.
From September 1994 through October 1995 aboveground and belowground production ofSarcocornia fruticosa andPhragmites australis was studied at two sites in the Po Delta. In 1995, aboveground production forS. fruticosa in an intertidal site was 678 g dw m−2 yr−1 with a peak live biomass of 1,008 g m−2; belowground production was 1,260 g m−2 with a peak live biomass of 3,735 g m−2. A litter bag decomposition study showed that after 69 wk there were 3.7%, 64.3%, and 66.6% of the original mass of leafy stems, woody stems, and roots, respectively. In a reed bed, which experiences brackish conditions,P. australis aboveground production was 876 g m−2 with a peak live biomass of 780 g m−2; belowground production was 2,263 g m−2 with a peak live biomass of 4,087 g m−2. After 65 wk, there was 45.4%, 50.4%, and 29.3%, respectively, of leaves, stems, and rhizomes remaining of the initial biomass. At both sites, regular submersion by salt water probably leads to lower aboveground biomass and higher belowground biomass than reported for other Mediterranean coastal sites. The high belowground biomass can contribute to accretion to offset rising sea level.  相似文献   

8.
We used enclosures to quantify wetland-water column nutrient exchanges in a dwarf red mangrove, (Rhizophora mangle L.) system near Taylor River, an important hydraulic linkage between the southern Everglades and eastern Florida Bay, Florida, USA. Circular enclosures were constructed around small (2.5–4 m diam) mangrove islands (n=3) and sampled quarterly from August 1996 to May 1998 to quantify net exchanges of carbon, nitrogen, and phosphorus. The dwarf mangrove wetland was a net nitrifying environment with consistent uptake of ammonium (6.6–31.4 μmol m−2 h−1) and release of nitrite +nitrate (7.1–139.5 μmol m−2 h−1) to the water column. Significant flux of soluble reactive phosphorus was rarely detected in this nutrient-poor, P-limited environment. We did observe recurrent uptake of total phosphorus and nitrogen (2.1–8.3 and 98–502 μmol m−2 h−1, respectively), as well as dissolved organic carbon (1.8–6.9 μmol m−2 h−1) from the water column. Total organic carbon flux shifted unexplainably from uptake, during Year 1, to export, during Year 2. The use of unvegetated (control) enclosures during the second year allowed us to distinguish the influence of mangrove vegetation from soil-water column processes on these fluxes. Nutrient fluxes in control chambers typically paralleled the direction (uptake or release) of mangrove enclosure fluxes, but not the magnitude. In several instances, nutrient fluxes were more than twofold greater in the absence of mangroves, suggesting an influence of the vegetation on wetland-water column processes. Our findings characterize wetland nutrient exchanges, in a mangrove forest type that has received such little attention in the past, and serve as baseline data for a system undergoing hydrologic restoration.  相似文献   

9.
We present results of four-color (WBVR) photoelectric observations of the close binary HZ Her = Her X-1 in 1986–1988. As a rule, the duration of the observations exceeded two 35-day X-ray orbital periods in the 1986–1988 observing seasons. The accuracy and length of the photoelectric observations facilitated multi-faceted studies, which enabled us to define several fine photometric effects in the light curves of the binary more precisely and attempt to interpret them in a model for the matter flow from the optical component to the accretion disk around the neutron star. This model provides a satisfactory explanation for the inhomogeneity of the gas flow and “hot spot,” as well as the existence of distinct “splashes” moving in their own Keplerian orbits around the outer parts of the Keplerian disk. We present series of light curves for all the observing seasons, as well as color-color diagrams that reflect the physics of various photometric effects. The transformation coefficients for each of the instrumental systems for the three observatories at which the observations were carried out are given. Atmospheric extinction was taken into account duringmulti-color observations of the object, with subsequent correction for atmospheric effects with accuracies ranging from 0.003 m to 0.005 m for air masses up to M(z) = 2.  相似文献   

10.
Sulfate reduction rates were measured over the course of a year in the sediments of aJuncus roemerianus marsh located in coastal Alabama. Sulfate reduction rates were typically highest in the surface 0–2 cm and at depths corresponding to peak belowground biomass of the plants. The highest volume-based sulfate reduction rate measured was 1,350 μmol liter-sediment−1 d−1 in September 1995. Areal sulfate reduction rates (integrated to 20 cm depth) were strongly correlated to sediment temperature and varied seasonally from 15.2 mmol SO 4 2− m−2 d−1 in January 1995 to 117 mmol SO 4 2− m−2 d−1 in late August 1995. Despite high sulfate reduction rates porewater dissolved sulfide concentrations were low (<73 μM), indicating rapid sulfide oxidation or precipitation. Sulfate depletion data indicated that net oxidation of sediment sulfides occurred in March through May, following a period of infrequent tidal flooding and during a period of high plant production. Porewater Fe(II) reached very high levels (maximum of 969 μM; mean for all dates was 160 μM), particularly during periods of high sulfate reduction. The annual sulfate reduction rate integrated over the upper 20 cm of sediment was 22.0 mol SO 4 2− m−2 yr−1, which is among the highest rates measured in a wetland ecosystem. Based on literature values of net primary production inJ. roemerianus marshes, we estimate that an amount equivalent to 16% to 90% of the annual belowground production may be remineralized through sulfate reduction.  相似文献   

11.
This study represents the first report on sediment accretion rates using137Cs dating for a southern California salt marsh. Vertical accretion rates ranged from 0.7 to 1.2 cm yr−1, which is at the high end of sediment accretion values for coastal wetlands. This has lead to increases in elevation within the estuary from 18 to 35 cm over the last 35 years. Depth profiles of metal concentrations were converted to time-based profiles using vertical accretion rates. Chronologies for most cores indicate a consistent peak in sediment lead (Pb) concentrations in the early to mid 1980s, corresponding to the historic decline in Pb use, which was completed in the U.S. by the early 1980s, but not begun in Mexico until 1991. Sediment Pb levels ranged from about 6–56 μg g−1. Other metals did not show any consistent trends in sediment chronology, except for a single core from a mid-marsh site (east-mid 2), which showed a 2–3-fold increase in levels of Cu, Ni, and Zn during the past two decades. Sediment levels of copper (Cu), nickel (Ni), and zinc (Zn) ranged from 6–34 μg g−1, 11–27 μg g−1, and 42–122 μg g−1, respectively. Despite rapid industrial development of the watershed, a comparison of the sediment metal concentrations in the Tijuana Estuary to other anthropogenically-impacted estuaries in the United States and Europe, shows that metal levels in sediments of the north arm of the estuary are relatively low.  相似文献   

12.
We present an analysis of spectrophotometric observations of the latest cycle of activity of the symbiotic binary Z And from 2006 to 2010. We estimate the temperature of the hot component of Z And to be ≈150 000−170 000 K at minimum brightness, decreasing to ≈90 000 K at the brightness maximum. Our estimate of the electron density in the gaseous nebula is N e = 1010−1012 cm−3 in the region of formation of lines of neutral helium and N e = 106−107 cm−3 in the region of formation of the [OIII] and [NeIII] nebular lines. A trend for the gas density derived from helium lines to increase and the gas density derived from [OIII] and [NeIII] lines to simultaneously decrease with increasing brightness of the system was observed. Our estimates show that the ratios of the theoretical and observed fluxes in the [OIII] and [NeIII] lines agree best when the O/Ne ratio is similar to its value for planetary nebulae. The model spectral energy distribution showed that, in addition to a cool component and gaseous nebula, a relatively cool pseudophotosphere (5250–11 500 K) is present in the system. The simultaneous presence of a relatively cool pseudophotosphere and high-ionization spectral lines is probably related to a disk-like structure of the pseudophotosphere. The pseudophotosphere formed very rapidly—over several weeks—during a period of increasing brightness of Z And. We infer that in 2009, as in 2006, the activity of the system was accompanied by a collimated bipolar ejection of matter (jets). In contrast to the situation in 2006, the jets were detected even before the system reached its maximum brightness. Moreover, components with velocities close to 1200 km/s disappeared at the maximum, while those with velocities close to 1800 km/s appeared.  相似文献   

13.
An unusual phytoplankton bloom dominated by unidentified green coloured spherical algal cells (∼5μm diameter) and dinoflagellates (Heterocapsa, Scripsiella and Gymnodinium) was encountered along the coast of Goa, India during 27 and 29 January, 2005. Pigment analysis was carried out using both fluorometric and HPLC methods. Seawater samples collected from various depths within the intense bloom area showed high concentrations of Chl a (up to 106 mg m − 3) associated with low bacterial production (0.31 to 0.52 mg C m − 3 h − 1) and mesozooplankton biomass (0.03 ml m − 3). Pigment analyses of the seawater samples were done using HPLC detected marker pigments corresponding to prasinophytes, dinoflagellates and diatoms. Chlorophyll b (36–56%) followed by peridinin (15–30%), prasinoxanthin (11–17%) and fucoxanthin (7–15%) were the major diagnostic pigments while pigments of cryptophytes and cyanobacteria including alloxanthin and zeaxanthin formed <10%. Although microscopic analysis indicated a decline in the bloom, pheaophytin concentrations in the water column measured by both techniques were very low, presumably due to fast recycling and/or settling rate. The unique composition of the bloom and its probable causes are discussed in this paper.  相似文献   

14.
We use UBVRI CCD photometry to study star-forming regions (SFRs) in the galaxies NGC 5585 and IC 1525. The observations were acquired with the 1.5-m telescope of the Mt. Maidanak Observatory of the Astronomical Institute of the Uzbek Academy of Sciences (Uzbekistan), with seeing of 0.8″–1.8″. We identified 47 SFRs in NGC 5585 and 16 SFRs in IC 1525. We estimated the ages and internal extinctions of the SFRs using the PEGASE2 evolution models. The sizes of the SFRs were also determined. We discuss in detail the techniques applied to evaluate the SFR parameters from photometric analysis. The age range for the studied SFRs is (2–40) × 106 yrs, and the internal extinctions are A(V ) ≤ 1.5m. The age distributions of the SFRs in both galaxies are typical of stellar systems with intense, extended star formation. The internal extinction in the SFRs decreases with distance from the galactic centers: A(V ) ∝ −r. For both galaxies, the scale length for the decrease of the dust surface density, estimated from the A(V )−r relation for SFRs, is close to the scale length for the disk brightness decrease in the V and R bands. Relatively larger and older SFRs are observed in the galaxies’ rings, while such SFRs are not found in the spiral arms. We detected different SFR parameters for different spiral arms of NGC 5585.  相似文献   

15.
Seasonal variation patterns of aboveground and belowground biomass, net primary production, and nutrient accumulation were assessed inAtriplex portulacoides L. andLimoniastrum monopetalum (L.) Boiss. in Castro Marim salt marsh, Portugal. Sampling was conducted for five periods during 2001–2002 (autumn, winter, spring, summer, and autumn). This study indicates that both species have a clear seasonal variation pattern for both aboveground and belowground biomass. Mean live biomass was 2516 g m−2 yr−1 forL. monopetalum and 598 g m−2 yr−1 forA. portulacoides. Peak living biomass, in spring for both species, was three times greater in the former, 3502 g m−2 yr−1, than in the latter, 1077 g m−2 yr−1. For both the Smalley (Groenendijk 1984) and Weigert and Evans (1964) methods, productivity ofL. monopetalum (2917 and 3635 g m−2 yr−1, respectively) was greater than that ofA. portulacoides (1002 and 1615 g m−2 yr−1, respectively). Belowground biomass ofL. monopetalum was 1.7 times greater than that ofA. portulacoides. In spite of this, the root:shoot ratio forA. monopetalum to aerial components. Leaf area index was similar for both species, but specific leaf area ofA. portulacoides was twice that ofL. monopetalum. The greatest nutrient contents were found in leaves. Leaf nitrogen content was maximum in summer for both species (14.6 mg g−1 forA. portulacoides and 15.5 mg g−1 forL. monopetalum). Leaf phosphorus concentration was minimum in summer (1.1 mg g−1 inA. portulacoides and 1.2 mg g−1 inL. monopetalum). Leaf potassium contents inA. portulacoides were around three times greater than inL. monopetalum. Leaf calcium contents inL. monopetalum were three times greater than inA. portulacoides. There was a pronounced seasonal variation of calcium content in the former, while in the latter no clear variation was registered. Both species exhibited a decrease in magnesium leaf contents in the summer period. Mangamese content inL. monopetalum leaves was tenfold that inA. portulacoides. Seasonal patterns of nutrient contents inA. portulacoides andL. monopetalum suggest that availability of these elements was not a limiting factor to biomass production.  相似文献   

16.
Internal Wave (IW) characteristics and the impact of IW on acoustic field have been studied utilizing the hourly time series of temperature and salinity data collected at a coastal site off Paradeep (north Bay of Bengal) during 24–25 October 2008. The IW characteristics, viz. period (t per ), velocity (C vel ), wavelength (L), and wave numbers (k), are found to be 2.133–34.72 h, 0.135 km h−1, 0.37–6.2 km and 2.70–0.16 cycles km−1, respectively. The semi-diurnal tidal forces are predominant than diurnal as well as at other frequencies and its contribution is about 64% towards the total potential energy (E 0 = 3.34 J m−2). Sound velocity perturbations with space and time in the presence of IW field are examined from Garrettt-Munk (GM) model. Transmission loss anomaly for optimized source-receiver configuration at the depth of 53 m and range of 9 km has been computed from acoustic modelling. The loss in the acoustic transmission is found to be 38.4 dB in the presence of low-frequency IW field.  相似文献   

17.
The hydroelectric reservoir of Petit Saut, French Guiana, was created in 1994–1995 by flooding 350 km2 of tropical forest. When sampled in 1999, the lake exhibited a permanent stratification separating the 3–5 m thick, oxygenated epilimnion from the anoxic hypolimnion. The rate of anaerobic organic carbon mineralization below the oxycline was on the order of 1 μmol C m−2 s−1 and did not show a pronounced difference between wet and dry seasons. Methanogenesis accounted for 76–83% of anaerobic carbon mineralization, with lesser contributions of sulfate reduction and dissimilatory iron reduction. Upward mixing of reduced inorganic solutes explained 90% of the water column O 2 demand during the dry season, while most O 2 consumption during the wet season was coupled to aerobic respiration of organic matter synthesized in the surface waters. Inorganic mercury species represented 10–40% of total dissolved mercury in the epilimnion, but were of relatively minor importance (≤10%) in the anoxic portion of the water column. Net production of soluble organic mercury compounds in the flooded soils and anoxic water column did not vary significantly between wet and dry seasons. Methylmercury accounted for about 15% of total dissolved mercury below the oxycline. Its estimated net production rate, 0.04 mg m−2 yr−1, is of the same order of magnitude as values reported for contaminated lakes and flooded terrestrial ecosystems.  相似文献   

18.
The morphodynamic behavior of a mesotidal sandy beach was monitored during both calm and energetic conditions. Two years of seasonal surveys were carried out on Charf el Akab, a gently sloped beach in the North Atlantic coast of Morocco. The method of survey consisted of a 3D study of the beach morphological changes and provided 2 cm vertical accuracy. During the surveyed period, Charf el Akab beach underwent very energetic wave conditions, and the breaking wave height was of H b ≥ 1.5 m. The beach is characterized by a nonpermanent swash bar and composed of well-sorted medium sand. The application of environmental parameters revealed a dissipative state with very low beach gradient which did not vary significantly over the studied period. Morphological changes consist of beach erosion and bar decay under high-energy waves, whereas the intertidal bar re-established and the beach recorded an accentuated accretion due to relatively fair weather conditions. The beach volume reveals a seasonal behavior; the sand accumulated during summer is dramatically removed during winter season. The range in beach sand volume from the most accreted to the most eroded conditions observed is about −5,493 m3. The average sand volume flux between surveys reaches −1 and 0.4 m2/day during peak erosion and accretion periods. The relationships between the wave forcing and the sand volume adjustments were examined. The sand volume change was found to be highly correlated (0.91) with the wave energy flux. The highest correspondence (0.95) was found between the sand flux rate and the wave energy flux. The wave forcing is expected to be the main factor governing beach morphodynamics at Charf el Akab site.  相似文献   

19.
The fine structure of the region of formation of a protostar in the dense molecular cloud OMC-1 of the Orion Nebula was studied during a period of enhanced activity in 1998–1999, with an angular resolution of 50 μas and a velocity resolution of Δv = 0.053 km/s. Inclusions of ice granules in the bipolar outflow were detected and identified. The velocity of the outflow reaches ∼50 km/s, while that of the granules is <5 km/s. The outflow sublimates and accelerates H2O molecules, thereby exciting the maser emission. As a result, their relative velocity and, accordingly, pumping level decrease. The maser emission of the outflow is observed at distances out to ρ < 3 mas, or <1.5 AU. However, in the distant part (ρ > 5 mas), bullets corresponding to maser emission excited by the outflow in the surrounding medium are observed. The emission is amplified by the external medium at a velocity of v LSR = 7.65 km/s in the bandwidth Δ v ≈ 0.5 km/s. The sources of pumping are clusters of infrared sources. The bipolar outflow is inclined at a small angle to the plane of the sky. The acceleration of the maser inclusions also increases the longitudinal component of the velocity, reducing amplification of the emission. The brightness temperature of the components decreases: T b ρ −0.8±0.1. The activity terminates with the exponential decline of the maser emission, F ∼ exp(−0.5t 2); in the saturated mode this is determined by a decrease in the optical depth, τt 2. The material of the surrounding space, including the ice granules, is drawn into the disk, moves along spirals toward the nozzle, and is ejected as a highly collimated bipolar flow. The density of material in the outflow exceeds the surrounding density by three to four orders of magnitude. The accretion of the surrounding material and ejection of the bipolar outflow are a unified process accompanying the initial phase of formation of protostars. The counter motion of material at the center stimulates the formation of a central massive object, whose gravitational field accelerates the process and stabilizes the system. The ratio of the durations of periods of high and low activity is determined by the rates of ejection and disk replenishment, and is ∼1:10. The rotating bipolar flow is self-focused.  相似文献   

20.
Within the KUSTOS program (Coastal Mass and Energy Fluxes-the Land-Sea Transition in the Southeastern North Sea) 28 to 36 German Bight stations were seasonally surveyed (summer 1994, spring 1995, winter 1995–1996) for light conditions, dissolved inorganic nutrient concentrations, chlorophylla (chla), and photosynthesis versus light intensity (P:E) parameters. Combining P:E curve characteristics with irradiance, attenuation, and chlorophyll data resulted in seasonal estimates of the spatial distribution of total primary production. These data were used for an annual estimate of the total primary production in the Bight. In winter 1996 the water throughout the German Bight was well mixed. Dissolved inorganic nutrient concentrations were relatively high (nitrogen [DIN], soluble reactive phosphorus [SRP], and silicate [Si]: 23, 1, and 10 μM, respectively). Chla levels generally were low (< 2 μg l−1) with higher concentrations (4–16 μg l−1) in North Frisian coastal waters. Phytoplankton was limited by light. Total primary production averaged 0.2 g C m−2 d−1. Two surveys in April and May 1995 captured the buildup of a strong seasonal thermo-cline accompained by the development of a typical spring diatom bloom. High nutrient levels in the mixed layer during the first survey (DIN, SRP, and Si: 46, 0.45, and 11 μM, respectively) decreased towards the second survey (DIN, SRP, and Si: 30.5, 0.12, and 1.5 μM, respectively) and average nutrient ratios shifted further towards highly imbalanced values (DIN:SRP: 136 in survey 1, 580 in survey 2; DIN:Si: 13.5 in survey 1, 96 in survey 2). Chla ranged from 2 to 16 μg l−1 for the first survey and rose to 12–50 μg l−1 in the second survey. Phytoplankton in nearshore areas continued to be light limited during the second survey, while data from the stratified regions in the open German Bight indicates SRP and Si limitation. Total primary production ranged from 4.0 to 6.3 g C m−2 d−1. During summer 1994 a strong thermal stratification was present in the German Bight proper and shallow coastal areas showed unusually warm (up to 22°C), mixed waters. Chla concentrations ranged from 2 to 18 μg l−1. P:E characteristics were relatively high despite the low nutrient regime (DIN, SRP, and Si: 2, 0.2, and 1.5 μM, respectively), resulting in overall high total primary production values with an average of 7.7 g C m−2 d−1. Based on the seasonal primary production estimates of the described surveys a budget calculation yielded a total annual production of 430 g C m−2 yr−1 for the German Bight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号