准确快速地检测航天器上发生的尘埃碰撞事件能帮助我们更好地了解空间环境的尘埃分布以及减少航天器因尘埃碰撞受到的破坏.现有人工识别或基于尘埃碰撞引起的电势差信号波形特征的机器识别尘埃碰撞事件的方法虽然有较高精度,但效率低下,迫切需要高精度且自动化方法识别航天器收集的海量电势差信号.深度学习模型在信号分类和识别具有较强能力,本文把空间尘埃碰撞引起的电势差信号检测问题建模成信号分类问题,构建了一个卷积神经网络模型,该模型可以自动提取信号特征并根据特征对信号分类,同时为了训练模型和测试模型预测准确率,构建了一个由尘埃碰撞引起的电势差信号和非尘埃碰撞引起的电势差信号组成的数据集,模型在训练集上准确率为99.46%,在测试集上准确率达到98.68%,查全率为99.44%,查准率为97.95%,threat score为97.41%.实现了高精度且自动化的尘埃碰撞事件检测.
相似文献多分量地震记录P/S波分离是多波地震数据处理的关键技术环节.常规方法大多依据两种波模式视速度或偏振特征的差异,基于信号分析或偏振投影实现模式解耦.在许多实际的地震-地质条件下,这些基于信号特征假设或表层参数模型的P/S波分离方法往往不太有效.为此,本文将各向同性介质条件下的地面多分量地震数据P/S波分离视为非线性的逐点预测问题,借助深度神经网络强大的特征提取能力进行求解.以国际标准模型为基础,提出了创建弹性参数样本库和P/S波分离标签数据集的有效方法.实验表明,丰富的训练样本保证了深度神经网络的泛化性能,在测试数据体上取得了明显优于经典的偏振投影分离方法的处理效果,而且摆脱了对表层介质参数的依赖性,为多分量地震数据反射PP波和PS波成像提供了有效的技术支撑.
相似文献通过对单层模型反射和透射系数的推导,提出了利用接收函数一次转换波和多次波确定Moho面速度和密度跃变的速度-密度跃变(δβ-δρ)扫描叠加方法.利用反射率法计算了不同模型的远震理论地震图,按照与处理实际观测波形一致的方法和流程计算了理论接收函数;根据不同模型数值试验结果,深入分析了界面速度和密度跃变对接收函数震相幅度的影响.利用(δβ-δρ)扫描叠加方法,对理论接收函数进行了数值试验,结果证明了该方法的可行性.最后将该方法应用于位于青藏高原东北缘的高台(GTA)台和兰州(LZH)台,确定了两个台站下方Moho面的速度跃变分别约为(19±1)%和(20±1)%,密度跃变最小值为(4±2)%和(6±2)%.
相似文献有机并有效利用纵波与转换横波在油气储层敏感度上存在的差异,有助于突出地震油气储层特征,有助于提高地震油气储层分布边界刻画的精度.基于此,本文设计了一种卷积神经网络与支持向量机方法相结合的多波地震油气储层分布预测的深度学习法(Deep Learning Method).首先,利用莱特准则剔除所生成的多波地震属性中可能存在的异常值降低网络变体数量.然后,通过能突出多波地震油气储层特征的聚类算法和无监督学习算法构建隐藏层,用于增加网络共享,提取油气特征.最后,将增加网络罚值后的井点样本作为支持向量机预测的输入样本,以降采样后的C3卷积层属性作为学习集,进行从已知到未知的地震油气储层的预测.本方案应用于HG地区晚三叠统HGR组的碳酸盐岩油气储层预测,所预测的地震油气储层边界更加清晰,预测结果与实际情况基本吻合.应用结果表明:本论文方案不仅具有可行性,且具有有效性.
相似文献为解决人工拾取地震叠加速度谱时耗时长、效率低等问题, 本文提出了一种基于深度学习的地震速度谱自动拾取算法模型VSAP(Velocity Spectrum Accurate Pickup).该算法运用卷积神经网络Faster R-CNN模型构建的多分类任务拾取目标能量团, 然后将初步拾取后的能量团坐标输入循环神经网络LSTM(Long-Short Term Memory)模型来进行目标能量团拾取时坐标的取舍和微调, 最后输出模型分析和调整过的速度谱自动拾取图像.并通过实际的地震数据集拾取结果验证了该算法模型在叠加速度谱复杂信息的干扰中自动、准确拾取速度谱中能量团的能力, 同时验证了该模型的准确性以及鲁棒性.经过改进, 该算法模型有效地提高了速度谱拾取的效率和拾取精度.
相似文献地震震相拾取是地震数据自动处理的首要环节,包括了信号检测、到时估计和震相识别等过程,震相拾取的准确性直接影响到后续事件关联处理的性能,影响观测报告的质量.为了提高震相拾取的准确性,进而提高观测报告质量,本文采用深度卷积神经网络方法来解决震相拾取问题,构建了多任务卷积神经网络模型,设计了分类和回归的联合损失函数,定义了基于加权的分类损失函数,以三分量地震台站的波形数据作为输入,同时实现对震相的检测识别和到时的精确估计.利用美国南加州地震台网的200万条震相和噪声数据对模型进行训练、验证和测试,对于测试集中直达波P、S震相识别的查全率达到98%以上,到时估计的标准偏差分别为0.067 s,0.082 s.利用迁移学习和数据增强,将模型用于对我国东北地区台网的6个台站13000条数据的训练、验证和测试中,对该数据集P、S震相查全率分别达到91.21%、85.65%.基于迁移训练后的模型,设计了用于连续数据的震相拾取方法,利用连续的地震数据对该算法进行了实际应用测试,并与国家数据中心和中国地震局的观测报告进行比对,该方法的震相检测识别率平均可达84.5%,验证了该方法在实际应用中的有效性.本文所提出的方法展示了深度神经网络在地震震相拾取中的优异性能,为地震震相和事件的检测识别提供了新的思路.
相似文献当前地震预警中的震级估算方法是通过初至几秒地震波的特征参数与震级的经验关系来实现的, 这些特征参数依赖于人的经验和主观判断, 没有充分利用初至地震波中与震级相关的信息, 制约了震级估算效果.对此, 本文利用深层卷积神经网络(Deep Convolutional Neural Networks, CNN)直接从初至地震波中自动提取特征, 实现端到端的震级快速估算.CNN方法以单台站的初至竖向地震波作为主输入, 震中距、震源深度以及Vs30作为辅助输入, 震级作为输出.利用日本和智利的大量地表强震记录对CNN方法进行训练(98257条记录)、验证(31429条记录)和测试(40638条记录), 利用美国和新西兰的强震记录进行泛化性能测试(583条记录), 并与应用最为广泛的峰值位移Pd方法进行对比.结果表明, 当初至地震波时长为3s时, 在4~6.4级范围内, CNN方法估算震级的准确率是Pd方法的1.5倍, 在6.5~9级范围, CNN方法估算震级的准确率是Pd方法的1.2倍; 当初至地震波从3s增加到10s时, CNN方法能够随着地震波时长的增加不断提高估算震级的准确率, 并且始终高于Pd方法, 特别是对于4~6.4级地震, CNN方法在初至3s地震波时估算震级的准确率是Pd方法在初至10s地震波时的1.2倍; 随着地震波时长的增加, CNN方法对于震级饱和问题的改善效果优于Pd方法; CNN方法具有较好的泛化能力, 在训练数据集之外的区域, 比Pd方法估算震级更准确.相比于人为定义的特征参数, CNN方法从初至地震波中自动学习到了与震级更为相关的特征, 这些特征极大地改善了震级估算的准确性和时效性, 可以为地震预警系统提供更快速更准确的震级估算.
相似文献