首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
从地质环境、成矿特征、控矿因素等对比北美国基韦诺铜矿和滇黔玄武岩铜矿,发现有相似的一面,但差异性极大。首先,玄武岩产出背景的差异,包括溢流时限、间歇期、厚度等;其次,含矿岩系,表现为间歇期沉积砾岩、溢顶(flow-top)角砾状、杏仁状玄武岩等有利容矿岩石的缺失,不利于规模成矿;第三,根本性差异可能在于成矿作用的不同,北美矿床所处为裂谷盆地,经历了埋藏变质作用,有利于玄武岩最大化的释放铜;滇黔玄武岩没有经受变质作用,限制了铜的释放,因此,成矿条件先天不足。  相似文献   

2.
威宁铜厂河玄武岩铜矿成矿地质特征及成因探讨   总被引:3,自引:0,他引:3  
研究威宁铜厂河铜矿区玄武岩的岩石类型、常量元素、微量元素及稀土元素地球化学特征,探讨玄武岩铜矿的成矿地质背景、控矿因素、产出特征和成矿规律,系统总结了找矿标志.研究认为,本区玄武岩具大陆拉斑玄武岩特征,铜矿属火山同生热液成矿叠加埋藏变质作用改造形成的玄武岩铜矿.  相似文献   

3.
王砚耕  王尚彦 《贵州地质》2003,20(1):5-10,4
贵州晚二叠世玄武岩是峨眉山大火成岩省的组成部分,并位于其东区。全属高钛玄武岩。它是地幔柱边部或消亡期局部熔融产物。产物我省玄武岩中的铜矿床(点),与北美大陆同类铜矿有相似之处,可统称为玄武岩铜矿,属于“与陆相镁铁质喷发岩有关的铜矿床成矿系列”。  相似文献   

4.
中非(赞比亚―刚果(金))沉积型铜矿以其拥有高品位的大型超大型铜、钴矿床和众多的世界级铜矿山而闻名于世。铜矿类型可分为沉积型铜矿、热液脉型铜矿、变质热液型铜矿三类。沉积型铜矿床形成后,受到深部含矿岩浆热液的侵入形成脉状铜矿,可能还有斑岩型铜钼矿的成矿作用,叠加富集原有的沉积型铜矿床。硫同位素结果显示,硫源主要为成岩硫化物和海水硫酸盐的混合硫,受到深源岩浆或岩浆热液叠加改造。沉积型铜矿成矿年龄880~735Ma,后期岩浆热液型铜钼矿成矿年龄为514~502Ma。这些发现对进一步认识总结中非铜矿带上的矿床成因及成矿规律具有重要意义。  相似文献   

5.
青海铜峪沟铜矿床地质特征及形成机理   总被引:1,自引:0,他引:1  
本文简要介绍了铜峪沟铜矿床地质概况,重点论述了“矿源层”的存在及其特征,认为区域变质作用促使了“矿源层”中成矿元素的活化转移,在变质水、变质热液的携带过程中以及有利的地层岩性和构造条件下富集成矿。本文运用地球化学成果、稳定同位素、包体成分和测温等资料论证了本区成矿物质和成矿溶液的来源,变质改造成矿期各阶段物理化学环境,讨论了变质热液的发生、发展、演化特征和改造成矿的机理,提出该矿床为沉积—变质热液改造层控型铜矿床。并在此基础上提出了新的矿床成因观点,建立了新的成矿模式。  相似文献   

6.
MVT型铅锌矿床中矿物组成一般较简单,铜矿物非常少见。云南富乐铅锌矿床是川滇黔MVT型铅锌成矿域中代表性 大型铅锌矿床,其赋矿层位为该区最新地层-中二叠统阳新组白云岩,矿体距上覆峨眉山玄武岩不到160 m。通过矿相、 扫描电镜及能谱等分析测试,本研究在该矿床中发现了大量铜矿物,主要包括以下四类,即黄铜矿、锌砷黝铜矿、黝铜矿 和孔雀石,这些铜的独立矿物常交代闪锌矿和黄铁矿等矿物,形状多为环带状、脉状及不规则状等,部分黄铜矿呈乳滴状 分布于闪锌矿颗粒内部或呈他形交代闪锌矿,可能与闪锌矿同时形成,锌砷黝铜矿和黝铜矿呈他形细脉状穿插于闪锌矿或 分布于闪锌矿边缘及孔洞中,暗示这些铜矿物形成略晚于铅锌成矿。上述铜矿物常见于中低温热液铅锌矿床,其中锌砷黝 铜矿是硫盐矿物中较罕见的矿物,黝铜矿和锌砷黝铜矿的出现指示相对氧化的成矿环境,而孔雀石是在铜矿物的氧化过程 中形成的次生矿物。研究表明,本矿床矿石矿物的生成顺序为:黄铁矿→闪锌矿(乳滴状黄铜矿) →方铅矿→黄铜矿→锌 砷黝铜矿→黝铜矿→孔雀石,结合矿床产出的地质地球化学特征,云南富乐铅锌矿床中铜可能有两个来源:早期的乳滴状 黄铜矿与铅锌矿同期且均来自基底地层--昆阳群;后生铜矿物(黄铜矿、黝铜矿和锌砷黝铜) 主要来源于上覆峨眉山玄 武岩,这与铅锌主要来源于昆阳群等基底地层有所差异,研究成果为认识川滇黔地区铅锌成矿作用与峨眉山玄武岩关系提 供了新的地球化学依据。  相似文献   

7.
峨眉山玄武岩组铜矿化与层位关系研究   总被引:16,自引:0,他引:16  
根据地球化学急变带控矿的分带性规律,在滇黔边界发现了新类型的铜矿化及工业矿体找矿线索。铜矿化一般赋存在二叠系峨眉山玄武岩组,二者之间难于识别,铜矿物以自然铜和黑铜矿为主,赋存于特定的熔结凝灰岩、火山凝灰角砾岩层位,形成作用与有机质有关,很可能形成一种新的铜矿工业类型。基于野外调研和室内岩矿鉴定,按铜矿化的矿物组合及赋存特点,初步划分为:硅质沥青铜矿化;次生氧化、硫化物铜矿化;团块浸染状自然铜矿化;热液蚀变沸石化型黑铜矿化;凝灰角砾岩型黄铜矿化和碳质、硅化木铜矿化等6种铜矿化类型。这些矿化类型分别与相应的玄武岩组韵律层相对应,其中,沥青质铜矿化类型在区域上分布广泛,沥青广泛充填于熔结凝灰岩的气孔和含矿凝灰岩、碳泥质岩石破碎带中,自然铜、黑铜矿等矿物赋存于硅质沥青岩中,矿化层稳定,找矿标志明显,具有重要的创新性研究意义和找矿价值。  相似文献   

8.
火山红层型铜矿表现为火山岩序列中断裂控制的整合或大致整合分布、纵横交错的脉状铜硫化物和/或自然铜矿床。本文详细介绍美洲火山红层型铜矿地质特征,剖析其成矿规律以及找矿方法、思路。系统研究滇东北地区玄武岩铜矿,并与北美火山红层型铜矿进行对比。在此基础上,提出滇东北地区火山红层型铜矿新的找矿思路与找矿方法。  相似文献   

9.
中条山铜矿峪斑岩型铜矿床位于秦岭造山带北端,矿体主要赋存于变质花岗闪长斑岩、黑云母片岩和变质基性火山岩中。矿区内含铜岩系的全岩地球化学分析显示,主量元素表明矿区的含铜岩系均表现出富钾、富铝的特征;微量元素表明所有样品均显示出相对富集大离子亲石元素(K、Rb、Ba等),亏损高场强元素(P、Y、Ti、Nb、Ta等),反映岩浆源区可能遭受过俯冲带流体的交代作用,具有岛弧玄武岩的地球化学特征;稀土元素特征显示出明显的轻重稀土分馏,轻稀土富集,所有样品都表现出弱的铕负异常。研究认为,变质花岗斑岩、黑云母片岩和绢英岩的原岩初步定为钙碱性玄武岩或拉斑玄武岩,铜矿峪铜矿床形成于挤压与拉张构造环境的转换阶段,其成因类型应属于斑岩型铜矿床。  相似文献   

10.
云南兰坪金满中生代沉积岩中的铜矿成矿作用   总被引:6,自引:0,他引:6  
肖荣阁  陈卉泉 《现代地质》1994,8(4):490-496
兰坪-思茅中新生代盆地沉积岩中产出一系列热液型铜矿床(矿点),以石英、铁白云石与含铜硫化物(包括黄铜矿、斑铜矿、黝铜矿和辉铜矿)为主,呈脉状产于砂岩、页岩中,而单独的黝铜矿、方解石和重晶石脉则产于底部碳酸盐岩中.红色碎屑岩中的浅色还原层内的细脉和裂隙中也具有铜矿化。矿石构造以角砾状、脉状最为发育,矿脉多位于褶皱与走向断裂破碎带的叠加部位。金满铜矿的Sr、S、Ph同位素证据、稀土元素地球化学及液体包裹体资料表明,成矿元素主要来自沉积岩层,合矿卤水属于盆地卤水,流来自于硫酸盐的还原作用及沉积硫化物的淋滤溶解作用。含矿流体是H。O-NaCI~CO。体系卤水,成矿温度为150~300C,流体盐度为5%~20%NaCI。据含CO2包裹体的测温资料估算成矿压力大于6X10'Pa,相当于3km深的静岩压力。根据铜矿床成因研究,笔者提出了含矿热卤水储备与突发成矿作用的成矿模式。成矿前,矿化卤水象石油天然气一样,首先集中到一定的构造部位,在构造活动期突然爆炸成矿。成矿期由3个阶段组成,即爆炸充填、渗透充填与改造阶段,热液活动主要在前两个阶段。  相似文献   

11.
西藏驱龙斑岩铜矿铜同位素研究   总被引:9,自引:1,他引:8  
本文通过Cu的同位素组成示踪斑岩型铜矿床Cu的来源,探讨岩浆-热液过程中Cu同位素的分馏.选择驱龙矿区从早到晚的三期热液脉以及早期钾硅酸盐化蚀变同期的样品,挑选新鲜的黄铜矿,测定其Cu同位素组成.早期A脉:为不规则石英-钾长石脉、石英-硬石膏脉及黑云母脉,δ~(65)Cu的范围为-0.44‰~-0.09‰,集中在-0.44‰~-0.31‰,平均值-0.29‰;B脉,为石英+硬石膏+黄铜矿±辉钼矿±黄铁矿脉和绿帘石-石英脉,δ~(65)Cu的范围为-0.42‰~+0.14‰,集中在-0.25‰~-0.18‰,平均值-0.18‰;晚期D脉,为板状黄铜矿-黄铁矿及黄铁矿脉,δ~(65)Cu的范围为-0.27‰~+0.47‰,集中在-0.27‰~-0.05‰,平均值-0.02‰;早期钾硅酸盐蚀变带,δ~(65)Cu的范围为-0.47‰~-0. 1‰,平均值-0.29‰.矿区铜同位素组成基本同岩浆岩一致(Zhu et al.,2000,2002;Maréchal et al.,1999,2002),表明Cu主要来自斑岩岩浆.不同期次热液的Cu同位素具有明显的分馏,早期相对富集~(63)Cu,晚期相对亏损~(63)Cu,A脉与B脉的同位素组成的差异可能与岩浆-热液演化过程有关,D脉的同位素组成差异可能是大气降水大量混入的结果.  相似文献   

12.
13.
In Flanders, recycling of bottom ash is mainly inhibited by the high leaching of Cu. Although it has been proved that dissolved organic C plays a major role in the Cu leaching, the possible role of inorganic Cu mineral speciation has never been experimentally examined. In this study the speciation of Cu is investigated using a combination of optical microscopy and electron microprobe –WDX/EDX. Several Cu species were determined. Metallic Cu (with or without an oxide shell), CuO and Cu2O were the most abundant. These particles were most likely present in wire-like structures. Copper also occurred as alloy (brass, bronze, zamak), and was found frequently together with typical elements such as Ca, Cl and S. Finally, small metallic Cu particles seemed to be trapped in or precipitated on oxides and silicates. Based on this Cu speciation study, pure Cu minerals were selected and leached as a function of time. The solubility after equilibrium of all studied Cu minerals never exceeded 20 μg/L (which equals 10% of the total Cu leaching).The effect of heating (2 h at 400 °C) on the speciation of Cu was investigated using the same combination of techniques. Results show that metallic Cu seemed to be converted to Cu oxide (mostly CuO) and that the particles were more porous after heating. These conclusions were verified by XRD analysis of the heated pure Cu minerals. After heating, the Cu minerals were also leached as a function of time, to study the impact on Cu leaching. Results indicate that their leaching had slightly increased in comparison with the non-heated Cu minerals. However, the major decrease in Cu leaching in heated bottom ash, more than neutralizes this effect and thus can be attributed to the destruction of organic matter and not to the (small) change in Cu speciation.  相似文献   

14.
《Applied Geochemistry》2005,20(1):101-107
The Skouriotissa Cu mine in the northern part of Cyprus has produced large amounts of mine waste. Phytoremediation could stabilise the erosion or extract the metals of this waste. The aim of this study was to find out if Pistacia terebinthus, Cistus creticus, Pinus brutia and/or Bosea cypria could grow and tolerate or maybe accumulate Cu from the mine waste containing up to 787 mg Cu (kg DW)−1. Another aim was to see if the liquid wine waste product Vinassa, containing organic acids and having a low pH, or chicken fertilizer could improve plant growth and/or Cu accumulation. The four species were planted at the mine waste site untreated or with the addition of Vinassa or chicken fertilizer as mine waste modifiers. After 3 months, shoot length growth was measured and the plants were analysed for Cu concentration. The pH and Cu concentration of the mine waste mixture in the different treatments was also measured. To find out if plants accumulated Cu to the highest extent in roots or shoot, a greenhouse study was undertaken where the plant species were cultivated for 3 weeks in Cu spiked soil. The results showed that all of the tested species survived and grew on the mine waste site, which indicates that they tolerate the high level of Cu at the mine waste site. The leaves of C. creticus had the highest Cu accumulation of all tested species. Copper accumulation varied with plant species. They seemed to have different distribution strategies for Cu: in Pistacia terebinthus and C. creticus most of the Cu was found in the roots, while B. cypria accumulated most of the Cu in the leaves. Addition of Vinassa and chicken fertilizer did not increase plant growth or Cu accumulation, but did affect the Cu distribution in B. cypria.  相似文献   

15.
We report new experimental data of Cu diffusivity in granite porphyry melts with 0.01 and 3.9 wt% H2O at 0.15–1.0 GPa and 973–1523 K. A diffusion couple method was used for the nominally anhydrous granitic melt, whereas a Cu diffusion-in method using Pt95Cu5 as the source of Cu was applied to the hydrous granitic melt. The diffusion couple experiments also generate Cu diffusion-out profiles due to Cu loss to Pt capsule walls. Cu diffusivities were extracted from error function fits of the Cu concentration profiles measured by LA-ICP-MS. At 1 GPa, we obtain \({D_{{\text{Cu, dry, 1 GPa}}}}=\exp \left[ {( - {\text{13.89}} \pm {\text{0.42}}) - \frac{{{\text{12878}} \pm {\text{540}}}}{T}} \right],\) and \({D_{{\text{Cu, 3}}{\text{.9 wt\% }}{{\text{H}}_{\text{2}}}{\text{O}},{\text{ 1 GPa}}}}=\exp \left[ {( - 16.31 \pm 1.30) - \frac{{{\text{8148}} \pm {\text{1670}}}}{T}} \right],\) where D is Cu diffusivity in m2/s and T is temperature in K. The above expressions are in good agreement with a recent study on Cu diffusion in rhyolitic melt using the approach of Cu2S dissolution. The observed pressure effect over 0.15–1.0 GPa can be described by an activation volume of 5.9 cm3/mol for Cu diffusion. Comparison of Cu diffusivity to alkali diffusivity and its variation with melt composition implies fourfold-coordinated Cu+ in silicate melts. Our experimental results indicate that in the formation of porphyry Cu deposits, the diffusive transport of magmatic Cu to sulfide liquids or fluid bubbles is highly efficient. The obtained Cu diffusivity data can also be used to assess whether equilibrium Cu partitioning can be reached within certain experimental durations.  相似文献   

16.
17.
Isotopic fractionation of Cu in tektites   总被引:1,自引:0,他引:1  
Tektites are terrestrial natural glasses of up to a few centimeters in size that were produced during hypervelocity impacts on the Earth’s surface. It is well established that the chemical and isotopic composition of tektites is generally identical to that of the upper terrestrial continental crust. Tektites typically have very low water content, which has generally been explained by volatilization at high temperature; however, the exact mechanism is still debated. Because volatilization can fractionate isotopes, comparing the isotopic composition of volatile elements in tektites with those of their source rocks may help to understand the physical conditions during tektite formation.Interestingly, volatile chalcophile elements (e.g., Cd and Zn) seem to be the only elements for which isotopic fractionation is known so far in tektites. Here, we extend this study to Cu, another volatile chalcophile element. We have measured the Cu isotopic composition for 20 tektite samples from the four known different strewn fields. All of the tektites (except the Muong Nong-types) are enriched in the heavy isotopes of Cu (1.98 < δ65Cu < 6.99) in comparison to the terrestrial crust (δ65Cu ≈ 0) with no clear distinction between the different groups. The Muong Nong-type tektites and a Libyan Desert Glass sample are not fractionated (δ65Cu ≈ 0) in comparison to the terrestrial crust. To refine the Cu isotopic composition of the terrestrial crust, we also present data for three geological reference materials (δ65Cu ≈ 0).An increase of δ65Cu with decreasing Cu abundance probably reflects that the isotopic fractionation occurred by evaporation during heating. A simple Rayleigh distillation cannot explain the Cu isotopic data and we suggest that the isotopic fractionation is governed by a diffusion-limited regime. Copper is isotopically more fractionated than the more volatile element Zn (δ66/64Zn up to 2.49‰). This difference of behavior between Cu and Zn is predicted in a diffusion-limited regime, where the magnitude of the isotopic fractionation is regulated by the competition between the evaporative flux and the diffusive flux at the diffusion boundary layer. Due to the difference of ionic charge in silicates (Zn2+ vs. Cu+), Cu has a diffusion coefficient that is larger than that of Zn by at least two orders of magnitude. Therefore, the larger isotopic fractionation in Cu than in Zn in tektites is due to the significant difference in their respective chemical diffusivity.  相似文献   

18.
以通化南部地区1:5万水系沉积物测量成果为例,根据铜地球化学图反映出的地球化学场变化规律,推断出11条构造带,多数与地质图上构造一致,在深入开发地球化学信息方面做出了有益的尝试。  相似文献   

19.
秘鲁胡斯塔铜矿的发现   总被引:1,自引:0,他引:1  
秘鲁胡斯塔铜矿位于秘鲁西南部,属于环太平洋多金属成矿带的组成部分,是刚发现的一个大型铜矿床,正在进行勘探.文章介绍了该矿的发现历史,并对主要找矿方法和效果进行了述评,总结了找矿的经验和教训.  相似文献   

20.
Recent developments in multiple-collector magnetic-sector ICP-MS (inductively coupled plasma-mass spectrometry) have permitted the relative abundances of the two isotopes 63 and 65 of copper to be measured with unprecedented precision (40 ppm). Here, we report Cu isotopic variations among eight carbonaceous chondrites (CCs) from the CI, CM, CO, and CV groups and the presently ungrouped Tagish Lake, and 10 ordinary chondrites (OCs) from the H, L, and LL groups. The widest isotopic range of ∼0.8‰ per a.m.u. is observed for the carbonaceous chondrites. Copper in carbonaceous chondrites becomes isotopically lighter with petrologic type in the order 1 to 3 but seems extremely homogeneous for each type. The Cu isotopic composition of Tagish Lake confirms its other characteristics that are intermediate between CI and CM. In three of the groups (CI-CM-CO), as well as for Tagish Lake, 63Cu excess over terrestrial mantle abundances correlates well with 16O excess. For all four groups, 63Cu excess also correlates remarkably well with elemental refractory/volatile ratios (e.g., Ca/Mn). For ordinary chondrites, small differences exist between the H, L, and LL groups, with Cu becoming isotopically heavier in that order. Equilibrated and unequilibrated samples, however, exhibit the same Cu isotopic signature within each group. Although the range of Cu isotopic compositions in ordinary chondrites is smaller than in carbonaceous chondrites, 63Cu excesses still correlate with 16O excesses. The observed trends of isotopic variation seem incompatible with a single-stage fractionation process by either volatilization or low-temperature metamorphism. The correlations between 63Cu excesses and 16O excesses suggest the presence of at least two and perhaps three isotopically distinct Cu reservoirs in the early Solar System: (1) an Earth-like reservoir common to the CI and LL probably representing the main Cu stock of the inner Solar System, (2) a reservoir present in all carbonaceous chondrites, but most abundant in CV, with large 63Cu and 16O excesses (this reservoir is probably hosted in refractory material), and (3) possibly a third reservoir present in ordinary chondrites. The OC trend may also be explained as a mixture of the first two Cu reservoirs if its oxygen was first equilibrated with nebular gas. The coexistence of 63Cu and 16O excesses in the same component raises the issue of how volatile Cu was preserved in refractory material. A strong correlation between 63Cu/65Cu and Ni/Cu ratios suggests that 63Cu excess may have originated as more refractory 63Ni (T1/2 = 100 yr) upon irradiation of refractory grains by electromagnetic flares and particle bursts during the T-Tauri phase of the Sun.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号