共查询到20条相似文献,搜索用时 15 毫秒
1.
Variability of gas composition and flux intensity in natural marine hydrocarbon seeps 总被引:1,自引:3,他引:1
The relationship between surface bubble composition and gas flux to the atmosphere was examined at five large seeps from the Coal Oil Point seep field (Santa Barbara Channel, CA, USA). The field research was conducted using a flux buoy designed to simultaneously measure the surface bubbling gas flux and the buoy’s position with differential GPS, and to collect gas samples. Results show that the flux from the five seeps surveyed a total of 11 times ranged from 800–5,500 m3 day?1. The spatial distribution of flux from the five seeps was well described by two lognormal distributions fitted to two flux ranges. The seafloor and sea surface composition of bubbles differed, with the seafloor bubbles containing significantly more CO2 (3–25%) and less air (N2 and O2). At the sea surface, the mole fraction of N2 correlated directly with O2 (R 2 = 0.95) and inversely with CH4 (R 2 = 0.97); the CO2 content was reduced to the detection limit (<0.1%). These data demonstrate that the bubble composition is modified by gas exchange during ascent: dissolved air enters, and CO2 and hydrocarbon gases leave the bubbles. The mean surface composition at the five seeps varied with water depth and gas flux, with more CH4 and higher CH4/N2 ratios found in shallower seeps with higher flux. It is suggested that the CH4/N2 ratio is a good proxy for total or integrated gas loss from the rising bubbles, although additional study is needed before this ratio can be used quantitatively. 相似文献
2.
Shallow depressions (pockmarks) in recent sediments of the western Baltic Sea were investigated as the possible surface expression
of a deeper-seated hydrocarbon reservoir or a submarine freshwater discharge. Hydrocarbon gases extracted from the recent
sediments associated with pockmarks had molecular and isotopic compositions different from those in the deeper Schwedeneck
field. Salinities in the vicinity of the pockmarks decreased from brackish Baltic seawater to freshwater conditions with depth.
Freshwater outflow from underlying glacial sediment aquifers is the likely cause of these pockmarks. 相似文献
3.
To date there is one proven hydrocarbon accumulation on the Ashmore Platform, Bonaparte Basin, Australia, with hydrocarbon charge remaining a key exploration risk. To the south, the neighbouring Browse Basin has proven lateral migration of generated hydrocarbons to the basin bounding highs, as evidenced by seeps located on the Yampi Shelf. This paper describes the findings of a natural seeps study carried out to establish if migrating subsurface hydrocarbons reach the southern flanks of the Ashmore Platform basement high. The integrated study combined remote sensing, geophysical, acoustic, photographic and geochemical techniques and has identified three areas of seepage; one area characteristic of persistent seepage and two areas of interpreted episodic leakage. Geochemical data collected from samples at one of these sites demonstrates the presence of thermogenic liquid hydrocarbons, with isotopic compositions falling within the range of values exhibited by oils sourced by the Lower Cretaceous Echuca Shoals Formation. The identification of active natural seepage along the southern flank of the Ashmore Platform provides evidence that hydrocarbons generated within the Caswell Sub-basin are able to laterally migrate onto the flanks of the Ashmore Platform structural high. As such, these findings reduce charge risk for the Ashmore Platform and regional exploration risks in the northern Browse Basin. 相似文献
4.
5.
Compositional changes in natural gas bubble plumes: observations from the Coal Oil Point marine hydrocarbon seep field 总被引:1,自引:0,他引:1
Detailed measurements of bubble composition, dissolved gas concentrations, and plume dynamics were conducted during a 9-month period at a very intense, shallow (22-m water depth) marine hydrocarbon seep in the Santa Barbara Channel, California. Methane, carbon dioxide, and heavier hydrocarbons were lost from rising seep bubbles, while nitrogen and oxygen were gained. Within the rising seawater bubble plume, dissolved methane concentrations were more than 4 orders of magnitude greater than atmospheric equilibrium concentrations. Strong upwelling flows were observed and bubble-rise times were ~40 s, demonstrating the rapid exchange of gases within the bubble plume. 相似文献
6.
This research quantifies the rate and volume of oil and gas released from two natural seep sites in the Gulf of Mexico: lease blocks GC600 (1200 m depth) and MC118 (850 m depth). Our objectives were to determine variability in release rates and bubble size at five individual vents and to investigate the effects of tidal fluctuations on bubble release. Observations with autonomous video cameras captured the formation of individual bubbles as they were released through partially exposed deposits of gas hydrate. Image processing techniques determined bubble type (oily, gaseous, and mixed: oily and gaseous), size distribution, release rate, and temporal variations (observation intervals ranged from 3 h to 26 d). A semi-automatic bubble counting algorithm was developed to analyze bubble count and release rates from video data. This method is suitable for discrete vents with small bubble streams commonly seen at seeps and is adaptable to multiple in situ set-ups. Two vents at GC600 (Birthday Candles 1 and Birthday Candles 2) were analyzed. They released oily bubbles with an average diameter of 5.0 mm at a rate of 4.7 bubbles s−1, and 1.3 bubbles s−1, respectively. Approximately 1 km away, within the GC600 seep site, two more vents (Mega Plume 1 and Mega Plume 2) were analyzed. These vents released a mixture of oily and gaseous bubbles with an average diameter of 3.9 mm at a rate of 49 bubbles s−1, and 81 bubbles s−1, respectively. The fifth vent at MC118 (Rudyville) released gaseous bubbles with an average diameter of 3.0 mm at a rate of 127 bubbles s−1. Pressure records at Mega Plume and Rudyville showed a diurnal tidal cycle (24.5 h). Rudyville was the only vent that demonstrated any positive correlation (ρ = 0.60) to the 24.5 h diurnal tidal cycle. However, these observations were not conclusive regarding tidal effects on bubble release. 相似文献
7.
Seepage of hydrocarbon-rich fluids out of the marine sedimentary column is characterized by temporal changes of flow intensity and resultant spatially variable redox conditions. Authigenic carbonates at marine hydrocarbon seeps provide excellent geological and geochemical archives that serve to explore seepage dynamics over time. In this study, we investigated the potential of Mössbuaer spectroscopy and Fe contents of seep-related authigenic carbonates from the Congo Fan, the Gulf of Mexico, and the Black Sea for reconstructing past redox conditions and fluid seepage activity at cold seeps. The Fe speciation observed by Mössbauer spectroscopy and Fe contents suggest that (1) the Congo Fan carbonates precipitated in a sulfidic environment, (2) the formation conditions of seep carbonates were variable at the Gulf of Mexico seep site, ranging from oxic to suboxic and anoxic and even spanning into the methanogenic zone, and (3) the stratified water column of the Black Sea or suboxic condition resulted in low Fe contents of Black Sea carbonates. The study reveals that Fe speciation can provide constraints on the wide range of redox conditions that imprinted seep carbonates during the life span of seepage. Similarly, Mössbauer spectroscopy – particularly when used in combination with the analysis of redox-sensitive elements – is a promising tool to trace variable redox conditions in marine paleoenvironments other than seeps. 相似文献
8.
Geology and biology of modern and ancient submarine hydrocarbon seeps and vents: An introduction 总被引:5,自引:3,他引:5
Paul Aharon 《Geo-Marine Letters》1994,14(2-3):69-73
9.
In July 1999, we conducted a side-scan sonar survey in the southeastern Mediterranean Sea, between 300- and 800-m water depths approximately 30 nautical miles from the Sinai Peninsula and Gaza Strip. Examination of the sonar imagery revealed numerous acoustic targets, each on the order of a few meters and surrounded by small depressions. Subsequent visual inspection of two of these targets by a remotely operated vehicle (ROV) revealed they were cold hydrocarbon seeps through which small bubbles of gas and shimmering fluids were emitted. Surrounding each cold seep were benthic communities of organisms. The ROV was used to gather video and still-camera imagery, map the surrounding microbathymetry, and collect samples of the seep structure and associated organisms. A sub-bottom profiler, which was attached to the ROV, was used to image the submerged structure of the second seep site. Further examination and analysis revealed that the seeps comprise hard deposits of calcium carbonate, and that the organisms are clams and polychaetes which are probably chemosymbiotic. The origin of the seep gas is hypothesized to be the natural decay of organic matter in the sapropel sediment, leading to the production of methane. Circulating fluids, which carry the dissolved gas through preferential pathways along small faults or bedding planes, percolate through the seafloor, precipitate calcium carbonate, release gas, and support the benthic organisms. 相似文献
10.
A global database of gas composition and methane stable isotopes of 143 terrestrial mud volcanoes from 12 countries and 60 seeps independent from mud volcanism from eight countries, was compiled and examined in order to provide the first worldwide statistics on the origin of methane seeping at the earth's surface. Sixteen seep data were coupled with their associated subsurface reservoirs. 相似文献
11.
Methane sources in gas hydrate-bearing cold seeps: Evidence from radiocarbon and stable isotopes 总被引:1,自引:0,他引:1
J.W. Pohlman J.E. Bauer E.A. Canuel K.S. Grabowski D.L. Knies C.S. Mitchell M.J. Whiticar R.B. Coffin 《Marine Chemistry》2009,115(1-2):102-109
Fossil methane from the large and dynamic marine gas hydrate reservoir has the potential to influence oceanic and atmospheric carbon pools. However, natural radiocarbon (14C) measurements of gas hydrate methane have been extremely limited, and their use as a source and process indicator has not yet been systematically established. In this study, gas hydrate-bound and dissolved methane recovered from six geologically and geographically distinct high-gas-flux cold seeps was found to be 98 to 100% fossil based on its 14C content. Given this prevalence of fossil methane and the small contribution of gas hydrate (≤ 1%) to the present-day atmospheric methane flux, non-fossil contributions of gas hydrate methane to the atmosphere are not likely to be quantitatively significant. This conclusion is consistent with contemporary atmospheric methane budget calculations.In combination with δ13C- and δD-methane measurements, we also determine the extent to which the low, but detectable, amounts of 14C (~ 1–2% modern carbon, pMC) in methane from two cold seeps might reflect in situ production from near-seafloor sediment organic carbon (SOC). A 14C mass balance approach using fossil methane and 14C-enriched SOC suggests that as much as 8 to 29% of hydrate-associated methane carbon may originate from SOC contained within the upper 6 m of sediment. These findings validate the assumption of a predominantly fossil carbon source for marine gas hydrate, but also indicate that structural gas hydrate from at least certain cold seeps contains a component of methane produced during decomposition of non-fossil organic matter in near-surface sediment. 相似文献
12.
Franklin S. Kinnaman Justine B. Kimball Luis Busso Daniel Birgel Haibing Ding Kai-Uwe Hinrichs David L. Valentine 《Geo-Marine Letters》2010,30(3-4):355-365
The Coal Oil Point seep field located offshore Santa Barbara, CA, consists of dozens of named seeps, including a peripheral ~200 m2 area known as Brian Seep, located in 10 m water depth. A single comprehensive survey of gas flux at Brian Seep yielded a methane release rate of ~450 moles of CH4 per day, originating from 68 persistent gas vents and 23 intermittent vents, with gas flux among persistent vents displaying a log normal frequency distribution. A subsequent series of 33 repeat surveys conducted over a period of 6 months tracked eight persistent vents, and revealed substantial temporal variability in gas venting, with flux from each individual vent varying by more than a factor of 4. During wintertime surveys sediment was largely absent from the site, and carbonate concretions were exposed at the seafloor. The presence of the carbonates was unexpected, as the thermogenic seep gas contains 6.7% CO2, which should act to dissolve carbonates. The average δ13C of the carbonates was ?29.2?±?2.8‰ VPDB, compared to a range of ?1.0 to +7.8‰ for CO2 in the seep gas, indicating that CO2 from the seep gas is quantitatively not as important as 13C-depleted bicarbonate derived from methane oxidation. Methane, with a δ13C of approximately ?43‰, is oxidized and the resulting inorganic carbon precipitates as high-magnesium calcite and other carbonate minerals. This finding is supported by 13C-depleted biomarkers typically associated with anaerobic methanotrophic archaea and their bacterial syntrophic partners in the carbonates (lipid biomarker δ13C ranged from ?84 to ?25‰). The inconsistency in δ13C between the carbonates and the seeping CO2 was resolved by discovering pockets of gas trapped near the base of the sediment column with δ13C-CO2 values ranging from ?26.9 to ?11.6‰. A mechanism of carbonate formation is proposed in which carbonates form near the sediment–bedrock interface during times of sufficient sediment coverage, in which anaerobic oxidation of methane is favored. Precipitation occurs at a sufficient distance from active venting for the molecular and isotopic composition of seep gas to be masked by the generation of carbonate alkalinity from anaerobic methane oxidation. Figure
Processes modulating carbonate formation at Brian Seep (California) during times of high and low sediment burden 相似文献
13.
Regime shifts occur when a system transitions from one stable configuration to another. Such abrupt changes in biological communities may reflect small changes in environmental conditions such as temperature, oxygen concentration, or irradiance. Although it seems clear that biological communities are not randomly organized with respect to their functional components, there is disagreement concerning the factors that control that organization. In this paper, I examine the implications of assuming that the composition of pelagic marine biological communities evolves to a condition of maximum stability or resilience. At temperatures of 25 °C or less, a model based on this hypothesis predicts abrupt and discontinuous transitions from configurations associated with low export ratios to configurations associated with high export ratios as the rate of primary production increases. Comparison between field data and model predictions shows very good agreement at low and high production rates, but the field data do not support a step-function transition from low to high export ratios at intermediate rates of production. Instead, the field data are consistent with the assumption that food webs effect the transition between high and low ef ratio modes by reconfiguring themselves in a more-or-less continuous manner. The configurations associated with these transitions are at least locally more resilient than any similar food web structure. 相似文献
14.
Garrett A. Mitchell Daniel L. Orange Jamshid J. Gharib Paul Kennedy 《Marine Geophysical Researches》2018,39(1-2):323-347
Marine seep hunting surveys are a current focus of hydrocarbon exploration surveys due to recent advances in offshore geophysical surveying, geochemical sampling, and analytical technologies. Hydrocarbon seeps are ephemeral, small, discrete, and therefore difficult to sample on the deep seafloor. Multibeam echosounders are an efficient seafloor exploration tool to remotely locate and map seep features. Geophysical signatures from hydrocarbon seeps are acoustically-evident in bathymetric, seafloor backscatter, midwater backscatter datasets. Interpretation of these signatures in backscatter datasets is a fundamental component of commercial seep hunting campaigns. Degradation of backscatter datasets resulting from environmental, geometric, and system noise can interfere with the detection and delineation of seeps. We present a relative backscatter intensity normalization method and an oversampling acquisition technique that can improve the geological resolvability of hydrocarbon seeps. We use Green Canyon (GC) Block 600 in the Northern Gulf of Mexico as a seep calibration site for a Kongsberg EM302 30 kHz MBES prior to the start of the Gigante seep hunting program to analyze these techniques. At GC600, we evaluate the results of a backscatter intensity normalization, assess the effectiveness of 2X seafloor coverage in resolving seep-related features in backscatter data, and determine the off-nadir detection limits of bubble plumes using the EM302. Incorporating these techniques into seep hunting surveys can improve the detectability and sampling of seafloor seeps. 相似文献
15.
16.
R. León L. Somoza T. Medialdea F. J. González V. Díaz-del-Río M. C. Fernández-Puga A. Maestro M. P. Mata 《Geo-Marine Letters》2007,27(2-4):237-247
Underwater images taken from deepwater carbonate-mud mounds located along the continental margin of the Gulf of Cádiz (eastern
Central Atlantic) have identified a great variety of hydrocarbon seep-related geomorphic features that exist on the sea floor.
An extensive photographic survey was made along the Guadalquivir Diapiric Ridge, after detailed examination of the main mounds
identified on previous swath bathymetry coverage, high-resolution seismic imagery, dredge and gravity core data. Recognised
fluid-induced geomorphic features include seep precipitates, named here generically as hydrocarbon-derived authigenic carbonates
(HDACs), mud-breccia flows and piping/rills, at scales ranging from metres to centimetres. Based on the viscosity, texture,
morphology, and the nature of observed features, we have categorized the geomorphic seeps into the following types: mud-breccia
flows and liquid seepages, which can be grouped as highly viscous and viscous mud-breccia flows, gassy mud-breccia flows,
and small-scale piping/rills; HDACs types, including massive crusts, “honeycombed” carbonate crusts, nodular aggregated crusts,
steeply dipping to vertical slabs, and pipe-like formations (chimneys). These widespread geomorphic features observed along
the carbonate-mud mounds reveal alternate periods of (1) active mud-flow extrusion (mud-volcano formation), (2) reduced seepage
activity, with the formation of extensive carbonate features by chemosynthetic organisms, and (3) formation of hardgrounds
and colonisation by non-chemosynthetic organisms such as deepwater corals (e.g. Lophelia pertusa, Madrepora oculata). The formation of large amounts of HDACs is related to the microbially mediated oxidation of hydrocarbon fluids (biogenic
and thermogenic) during periods of slower fluid venting. This has led to the hypothesis that these carbonate-mud mounds could
be built up by alternating episodes of varying fluid-venting rates, with peaks that may have been triggered by tectonic events
(e.g. high-seismicity periods) and slower rates controlled by climate/oceanographic factors (e.g. glacial to interglacial
climatic transitions, increasing shallow subsurface hydrate formation, and sealing of sea-floor fluid venting). 相似文献
17.
蠕变是指沉积物在特定应力状态下变形与时间的关系,属于沉积物的固有力学属性。厘清海洋天然气水合物开采过程中储层蠕变的主控因素及其控制机理,对量化评价潜在工程地质风险的发生和演变规律具有重要意义。本文将在综述海洋天然气水合物储层破坏特征的基础上,梳理海洋天然气水合物储层蠕变特征及主控因素,厘清关键科学问题;结合最新研究成果,阐述天然气水合物储层蠕变特征多尺度表征与探测技术体系的基本内涵,简要探讨该领域的未来研究方向。初步分析认为,海洋天然气水合物开采过程中储层蠕变行为是水合物本身及其分解产出过程中的应力、温度、渗流等动态因素综合作用的结果,现有蠕变本构模型无法完全反映上述相变-传热-渗流-应力多场多相多组分耦合过程。为建立适合南海北部水合物储层的蠕变本构,进而为后续开采工程安全设计提供理论支撑,建议从天然气水合物储层的力学性能弱化特征及蠕变各阶段的时效参数两方面入手,从分子尺度、纳微尺度、岩心尺度、中试尺度、矿藏尺度5个层面,建立天然气水合物储层蠕变行为的跨尺度研究方法体系;以南海实际储层样品为研究对象,剖析天然气水合物开采过程中储层蠕变行为的主控因素。 相似文献
18.
Geology and hydrocarbon accumulations in the deepwater of the northwestern South China Sea——with focus on natural gas 总被引:3,自引:0,他引:3
WANG Zhenfeng SUN Zhipeng ZHANG Daojun ZHU Jitian LI Xushen HUANG Baoji GUO Minggang JIANG Rufeng 《海洋学报(英文版)》2015,34(10):57-70
The deepwater of the northwestern South China Sea is located in the central to southern parts of the Qiongdongnan Basin(QDN Basin),which is a key site for hydrocarbon exploration in recent years.In this study,the authors did a comprehensive analysis of gravity-magnetic data,extensive 3D seismic survey,cores and cuttings,paleontology and geochemical indexes,proposed the mechanism of natural gas origin,identified different oil and gas systems,and established the model of hydrocarbon accumulations in the deep-water region.Our basin tectonic simulation indicates that the evolution of QDN Basin was controlled by multiple-phased tectonic movements,such as Indochina-Eurasian Plate collision,Tibetan Uplift,Red River faulting and the expansion of the South China Sea which is characterized by Paleogene rifting,Neogene depression,and Eocene intensive faulting and lacustrine deposits.The drilling results show that this region is dominated by marineterrestrial transitional and neritic-bathyal facies from the early Oligocene.The Yacheng Formation of the early Oligocene is rich in organic matter and a main gas-source rock.According to the geological-geochemical data from the latest drilling wells,Lingshui,Baodao,Changchang Sags have good hydrocarbon-generating potentials,where two plays from the Paleogene and Neogene reservoirs were developed.Those reservoirs occur in central canyon structural-lithologic trap zone,Changchang marginal trap zone and southern fault terrace of Baodao Sag.Among them,the central canyon trap zone has a great potential for exploration because the various reservoirforming elements are well developed,i.e.,good coal-measure source rocks,sufficient reservoirs from the Neogene turbidity sandstone and submarine fan,faults connecting source rock and reservoirs,effective vertical migration,late stage aggregation and favorable structural–lithological composite trapping.These study results provide an important scientific basis for hydrocarbon exploration in this region,evidenced by the recent discovery of the significant commercial LS-A gas field in the central canyon of the Lingshui Sag. 相似文献
19.
天然气水合物具有很高的资源价值,众多国家正在开展相关研究与勘探,试采设备和技术取得了一定的发展,但离商业化开采还有很多关键技术问题需要解决。提出一种新型海域天然气水合物开采装置——吸力筒式开采装置及方法,主要包括开采筒、沉贯水泵和气液举升系统等,其整体由钢结构组合而成,依靠吸力和重力作用进入储层,然后进行降压开采,待作业结束后可回收重复使用。参照我国南海神狐海域地质,从理论上分析了新装置两个不同形态的贯入原理,并通过CMG STARS模拟研究新型开采方法的产能提升情况,由于吸力筒式开采装置能实现更大降压幅度并且扩大水合物分解面积,故产气效率相对于传统方法提高约2.46~11.69倍。吸力筒式开采装置具有结构强度高、开采半径大和施工简便等特点,有望做到“提产降本”,为实现海域天然气水合物商业化开采提供一条新思路。 相似文献
20.
Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field, California 总被引:1,自引:1,他引:1
Ira Leifer Marc J. Kamerling Bruce P. Luyendyk Douglas S. Wilson 《Geo-Marine Letters》2010,30(3-4):331-338
High-resolution sonar surveys, and a detailed subsurface model constructed from 3D seismic and well data allowed investigation of the relationship between the subsurface geology and gas-phase (methane) seepage for the Coal Oil Point (COP) seep field, one of the world’s largest and best-studied marine oil and gas seep fields, located over a producing hydrocarbon reservoir near Santa Barbara, California. In general, the relationship between terrestrial gas seepage, migration pathways, and hydrocarbon reservoirs has been difficult to assess, in part because the detection and mapping of gas seepage is problematic. For marine seepage, sonar surveys are an effective tool for mapping seep gas bubbles, and thus spatial distributions. Seepage in the COP seep field occurs in an east–west-trending zone about 3–4 km offshore, and in another zone about 1–2 km from shore. The farthest offshore seeps are mostly located near the crest of a major fold, and also along the trend of major faults. Significantly, because faults observed to cut the fold do not account for all the observed seepage, seepage must occur through fracture and joint systems that are difficult to detect, including intersecting faults and fault damage zones. Inshore seeps are concentrated within the hanging wall of a major reverse fault. The subsurface model lacks the resolution to identify specific structural sources in that area. Although to first order the spatial distribution of seeps generally is related to the major structures, other factors must also control their distribution. The region is known to be critically stressed, which would enhance hydraulic conductivity of favorably oriented faults, joints, and bedding planes. We propose that this process explains much of the remaining spatial distribution. 相似文献