首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 3D S-velocity structure beneath Africa is shown by means of a 2D S-velocity mapping for depths raging from zero to 500 km, determined by the regionalization and inversion of Rayleigh-wave dispersion. The traces of 94 earthquakes, occurred from 1990 to 2009 in the study area, have been used to obtain the Rayleigh-wave dispersion. These earthquakes were registered by 61 seismic stations located on Africa and the surrounding area. The dispersion curves were obtained for periods between 5 and 300 s, by digital filtering with a combination of MFT and TVF filtering techniques. After that, all seismic events (and some stations) were grouped to obtain a dispersion curve for each source-station path. These dispersion curves were regionalized and after inverted according to generalized inversion theory, to obtain shear-wave velocity models for rectangular blocks with a size of 5° × 5°. The 3D S-velocity structure obtained through this procedure is shown in the 2D S-velocity maps plotted for several depths. These results agree well with the geology and other geophysical results previously obtained. The obtained S-velocity models suggest the existence of lateral and vertical heterogeneity. The zones with consolidated and old structures (as cratons) present greater S-velocity values than the other younger zones. Nevertheless, in the depth range from 20 to 40 km, the different Moho depths present in the study area generate the principal variation of S-velocity. A similar behaviour is found for the depth range from 60 to 230 km, in which the lithosphere–asthenosphere boundary generates the principal variations of S-velocity. Finally, it should be highlighted a new and interesting feature obtained in this study: the definition of the base of the asthenosphere, for depths ranging from 160 to 280 km, in the whole African continent.  相似文献   

2.
In this study, we present the lithospheric structure of the south-eastern part of the Iberian Peninsula by means of a set of 2D images of shear velocity, for depths ranging from 0 to 50 km. This goal will be attained by means of the inversion of the Rayleigh wave dispersion. For it, the traces of 25 earthquakes occurred on the neighbouring of the study area, from 2001 to 2003, will be considered. These earthquakes have been registered by 11 broadband stations located on Iberia. All seismic events have been grouped in source zones to get an average dispersion curve for each source-station path. The dispersion curves have been measured for periods between 2 and 45 s, by combination of two digital filtering techniques: Multiple Filter Technique and Time Variable Filtering. The resulting set of source-station averaged dispersion curves has been inverted according to the generalized inversion theory, to get S-wave velocity models for each source-station path. Later, these models have been interpolated using the method of kriging, to obtain a 2D mapping of the S-wave velocity structure for the south-eastern part of Iberia. The results presented in this paper show that the techniques used here are a powerful tool to investigate the crust and upper mantle structure, through the dispersion analysis and its inversion to obtain shear velocity distributions with depth. By means of this analysis, principal structural features of the south-eastern part of Iberia, such as the existence of lateral and vertical heterogeneity in the whole study area, or the location of the Moho discontinuity at 30 km of depth (with an average S-velocity of uppermost mantle of 4.7 km/s), have been revealed. Other important structural features revealed by this analysis have been that the uppermost of Iberian massif shows higher velocity values than the uppermost of the Alpine domain, indicating that the massif is old and tectonically stable. The average velocity of the crust in Betic cordillera is of 3.5 km/s, while in the Iberian massif is 3.7 km/s. All these features are in agreement with the geology and other previous geophysical studies.  相似文献   

3.
We explore the variations of Rayleigh-wave phase-velocity beneath the East China Sea in a broad period range (5–200 s). Rayleigh-wave dispersion curves are measured by the two-station technique for a total of 373 interstation paths using vertical-component broad-band waveforms at 32 seismic stations around the East China Sea from 6891 global earthquakes.The resulting maps of Rayleigh-wave phase velocity and azimuthal anisotropy provide a high resolution model of the lithospheric mantle beneath the East China Sea. The model exhibits four regions with different isotropic and anisotropic patterns: the Bohai Sea, belonging to the North China Craton, displays a continental signature with fast velocities at short periods; the Yellow Sea, very stable unit associated with low deformation, exhibits fast velocities and limited anisotropy; the southern part of the East China Sea, with high deformation and many fractures and faults, is related to slow velocities and high anisotropic signature; and the Ryukyu Trench shows high-velocity perturbations and slab parallel anisotropy.  相似文献   

4.
A. R. Ritsema 《Tectonophysics》1970,10(5-6):609-623
This is a report of a symposium organized by the Netherlands Commission for the Upper Mantle Project. The data relative to the generation of the western Mediterranean Sea basins, presented during this symposium, are summarized in the Appendix.

Several modes of origin have been discussed:

1. (1) the basins are remnants of a former larger ocean;

2. (2) they are formed in the wake of drifting continental blocks;

3. (3) by an erosion and denudation of a continental crust;

4. (4) by an upheaval and later subsidence of an ocean floor; or

5. (5) by sub crustal erosion of a continental crust.

It is concluded that, although many data are in agreement with the drift model, this process cannot have been the sole agent in the generation of the basins.  相似文献   


5.
The paper presents new data on seismotectonic studies along the Adygei profile in the western part of the Central Caucasus and provides an overview of deep geophysical studies of the Greater Caucasus. For the first time, comprehensive geophysical characteristics of a crustal section of the Greater Caucasus across an orogenic structure (along the Adygei profile) have been obtained with a uniform step of observations. Based on factual data obtained by such methods as converted waves from distant earthquakes, magnetotelluric sounding, and gravimagnetic surveys, sinking of the marginal part of the southern microplate into the mantle is verified. It is noted that the contemporary Alpine structure of the Greater Caucasus formed during gentle thrusting of the Earth’s crust (Scythian Plate) from the north on the consolidated crust of the southern microplate.  相似文献   

6.
范兴利  陈棋福  郭震 《岩石学报》2020,36(7):2081-2091

近年来,有关长白山火山是否存在潜在喷发危险的讨论引起了国内外地学研究者的广泛关注,但人们目前对其壳幔岩浆系统的了解却十分不足,已有的研究对长白山火山壳内岩浆房存在的深度位置、形态规模及其部分熔融程度的认识仍存在较大分歧。本研究通过汇集长白山火山及邻区(包括朝鲜境内)多个密集流动地震台阵和区域固定地震台网的观测资料,采用背景噪声成像方法获得了长白山火山区高精度的Rayleigh面波相速度模型。成像结果表明:长白山火山中-下地壳深度位置存在显著低波速异常,可能指示了岩浆房的存在。上地壳局部低速区可能反映了壳内深部岩浆向上运移的通道或者是区域小尺度的岩浆聚集体。长白山火山上地幔顶部的低速可能揭示了软流圈热物质上涌,其减压熔融为壳内岩浆房提供了幔源岩浆补给。

  相似文献   

7.
Refraction data taken from ocean bottom seismograph recordings in the western Arafura Sea indicate a continental‐type structure for the region. This structure is characterised by a thin column (2 km) of sediments, with velocities ranging from about to 2 to 4 km s‐1, overlying an essentially two layer crust. The compressional wave velocities in the upper and lower crust are 5.97 and 6.52 km s‐1, respectively, with the boundary between the layers at a depth of 11 km. Very weak mantle‐refracted arrivals with a velocity of about 8.0 km s‐1 were recorded. Large‐amplitude, later arrivals, beginning at distances near 100 and 150 km, have been interpreted to be part of the retrograde branches from the 8.0 and 7.33 km s‐1 layers, respectively. Model studies indicate that a small positive velocity gradient is required between 17 and 30 km, and that the Moho is at a depth of 34 km. A third set of large amplitude, later arrivals starting at a distance near 250 km has been interpreted as most probably multiple refraction‐reflection arrivals from the 5.97 and 6.52 km s‐1 layers. Correlation of this structure with the stratigraphic logs from exploratory oil wells in the Arafura Sea using layer velocities indicates that rocks younger than Jurassic appear to thin towards the east.  相似文献   

8.
In recent years the northwestern Black Sea has been investigated by a great number of geophysical methods. Charts of the M discontinuity and (isopachous) charts of the “granitic”, the “basaltic”, the Paleozoic, the Jurassic-Triassic, the Upper and Lower Cretaceous and the Eocene layers were plotted based on the results of the combined data of these investigations together with associated drilling data. The data for different velocity levels confirms the concept of layered-block structure of the crust, where large blocks are divided by deep faults penetrating to the upper mantle. Sedimentation within each block is continuous while reverse fault zones, dividing the East European Platform with a crustal thickness of more than 40 km and the Scythian Platform with a crust of about 30 km thick, and the latter from the Black Sea depression with crust of about 20 km, are discontinuous. Therefore, one can speak of a continuous-discontinuous nature of the sedimentation.

An inverse relationship in thicknesses of the “granitic” and sedimentary layers has been established. In places of intensive sedimentation the thickness of the “granitic” layer is less than that within the stable unsagging blocks. On the whole the greater the thickness of “basaltic” layer, the greater is the crustal thickness.

The relationship between the main geological structures of the area should be sought in the nature of structure of these “granitic” and “basaltic” layers.  相似文献   


9.
Using the analysis of dinoflagellate cysts in three deep-sea sediments cores situated in the Sicilian-Tunisian Strait, in the Gulf of Lions and in the Alboran Sea, we reconstruct the paleoenvironmental changes that took place during the last glacial-interglacial transition in the western Mediterranean Sea. The development of the warm microflora Impagidinium aculeatum and especially Spiniferites mirabilis appears to be an important proxy for recognizing warm periods as the Bölling/Alleröd and the Early Holocene. Bitectatodinium tepikiense, Spiniferites elongatus and Nematosphaeropsis labyrinthus mark the end of the Heinrich event 1 and the Younger Dryas. This cold microfloral association confirms the drastic climate changes in the western Mediterranean Sea synchronous to the dry and cold climate which occurred in the South European margin. The dinocyst N. labyrinthus shows high percentages in all studied regions during the Younger Dryas. Its distribution reveals a significant increase from the South to the North of this basin during this cold brief event. Thus, we note that this species can be considered as a new eco-stratigraphical tracer of the Younger Dryas in the western Mediterranean Sea.  相似文献   

10.
Four slides, the Ana, Joan, Nuna and Jersi slides, have been imaged on the seafloor along the Balearic margin of the Eivissa Channel in the western Mediterranean. They have areas of up to 16 km2 and occur in water depths ranging between 600 and 900 m. Volumes range from 0·14 to 0·4 km3. Their headwall scarps, internal architecture and associated deposits are characterized using a combination of swath bathymetry data and very high‐resolution seismic reflection profiles. In general, they show horseshoe‐shaped headwall scarps and distinct depositional lobes with positive relief. Internally, the slide bodies are mostly composed of transparent seismic facies. Chaotic facies are observed at the toe of some of the slides, and blocks of coherent stratified facies embedded in the slide deposit have also been identified. The reflection profiles demonstrate that the four slides share the same slip horizon, which corresponds to a distinctive continuous, high‐amplitude reflector. Furthermore, the geometry of the headwall scars of the Nuna and Ana slides reveals evidence of pockmarks, and fluid escape features are also present further upslope. This indicates a possible link between fluid escape features and destabilization of the upper sediment layers. In addition, these well‐characterized slides demonstrate the pitfalls associated with calculating the volume of the slide masses using headwall scarp heights and the assumed preslide seafloor topography in the absence of seismic data. The internal structure also demonstrates that transport distances within the slides are generally low and poorly characterized by headwall scarp to slide toe lengths.  相似文献   

11.
The Pyreneo-Languedocian submarine sediment body, located in the western sector of the Gulf of Lions, is an example of a fan-like depositional system essentially controlled by salt tectonics. The area was subjected to a combined effect of overburden subsidence into the evacuated salt layer and a significant distal salt thickening, due to preferential basinward salt migration. This mode of salt migration impacted the Quaternary sea-bottom morphology by creating a large midslope topographic low, providing space accommodation for the Pyreneo-Languedocian fan. At gulf scale, the fan is a unique feature because unchannelized sedimentary environment in the area occurs at slope level, thus in minor water depth in relation to all other deep-water sedimentary systems offshore Gulf of Lions. To cite this article: A.T. dos Reis et al., C. R. Geoscience 336 (2004).  相似文献   

12.
13.
Analysis of teleseismic records obtained in two broadband seismic stations of three components located on the Andean region of Colombia is presented in this work. The two stations are located at the Western Cordillera (WC), station BOL, and at the Central Cordillera (CC), station PBLA. The analysis of seismograms was performed by inversion of the receiver functions (RF) in order to obtain the crustal velocity structure beneath the receivers. The receiver function is a spectral ratio obtained from teleseismic earthquakes recorded by broadband seismic stations, which allows the calculation of the velocity structure beneath the receiver by removing source effects in the horizontal components of the seismic traces. Data stacking was performed in order to improve signal to noise ratio and then the data was inverted by using two optimization algorithms: a genetic algorithm (GA), and a simulated annealing algorithm (SA). The present work calculates the receiver functions using teleseismic earthquakes at epicentral distances (Δ) ranging between 30° and 90° and recorded at the two stations within the years 2007 and 2009.Delay times between P and PS waves converted at the Moho boundary were used to constrain the velocity structure. The receiver functions at the stations were generated from seismic events within a broad range of back azimuth. Data from gravity and magnetism were also used during the geophysical survey. The depth of the Moho boundary was found to be at 40 km in the WC beneath station BOL and at 43 km in the CC beneath station PBLA. The upper crust, with a thickness of 5 km, is characterized by a shear wave velocity of about 3.0 km s−1; the shallower layers, at approximately 1.0 km, have shear wave velocities between 2.2 and 2.6 km s−1, which corresponds to sediments overlying the upper crust. These observations support the hypothesis of a thickness of the crust at the root of the mountain range to be between 32 and 50 km. The calculated receiver functions were compared with artificial ones generated from the inversion of 48000 models of horizontal layers for each station using a GA and an SA that allowed a satisfactory coverage of all the sample space in order to avoid non-unique solutions. Beneath station BOL a moderate low-velocity zone (LVZ) was found, which was caused by accretionary processes of the ophiolite complex in the WC.  相似文献   

14.
Syngnathus abaster andSyngnathus typhle (Pisces: Syngnathidae) from a dense Cymodocea nodesa meadow in the western Mediterranean Stagnone di Marsala (Italy) were studied using δ13N and δ15N analysis. Because of the presence of these two species in the same habitat and the specialized parental care by the male, the effect of species and sex on the isotopic composition was also studied to investigate the different feeding strategies between and within species.S. abaster andS. typhle exhibited enriched13C and15N values throughout the sampling period (mean ±SE, δ13C =−10.5±1.8‰ and−10.8±2.0‰, δ15N=11.9±0.7‰ and 10.6±1.0%., respectively), suggesting that these species receive their energy mainly from mixed sources, particularly from sedimentary and particulate organic matter and the seagrassC. nodosa as ultimate organic matter sources. ANOVA results demonstrated that the interaction between season, species, and sex significantly affected the isotopic composition of the pipefish (p<0.001 for both δ13C and δ15N). Differences between species and sex, although significant, were smaller than the values generally reported for trophic level differences (≈1‰ and ≈3.5‰ for δ15N, respectively) and change in foraging habitat, Slight isotopic differences may mirror small differences in resource exploitation and resource partitioning. Evidence from stomach content analysis from the literature coupled with stable isotope measurements, while disagreeing somewhat, provide additional knowledge of pipefish feeding strategies.  相似文献   

15.
16.
Radioactive isotopes were used to estimate the rate of seawater intrusion into the coastal aquifer of Israel, the connection between the different sub-aquifers, and the connection between the sub-aquifers and the sea. This was done by dating both fresh and saline groundwaters from the vicinity of the shoreline, which were analyzed for their 14C and tritium content together with their chemical and stable isotope composition. The results indicate that the distinct sub-aquifers differ in their water chemistry and age. The saline groundwater in the lower sub-aquifers is older than ca. 10,000 years, as evidenced by the absence of tritium and low 14C activity (<12 PMC). On the other hand, saline groundwaters in the upper sub-aquifers contain tritium and are thus younger than 50 years, indicating recent intrusion of seawater. The ages of the saline groundwaters become younger upward from the lower sub-aquifers to the upper ones, reflecting the sea-level rise since the last glacial period. The older ages also imply slow groundwater flow in the lower sub-aquifers. The fresh groundwaters in most cases in the lower sub-aquifers were found to be older than ca. 10,000 years and this implies that the flow to the sea is blocked or restricted.  相似文献   

17.
本文以现代构造地质与地球动力学理论为指导,利用平衡剖面技术对南海中部西区进行了构造演化特征及演变史的恢复,制作了其上下构造层的构造纲要图,划分了南海中部西区新生代以来经历的三大构造演化阶段:(1)裂陷阶段;(2)坳陷阶段;(3)区域沉降。并指出了其动力学机制:始新世末,印度板块与欧亚板块发生碰撞产生的远距离效应以及渐新世西太平洋板块向东亚大陆边缘产生的俯冲效应是南海中部西区新生代构造演化的主要动力学机制。  相似文献   

18.
The Southern Granulite Terrain (SGT) is composed of high-grade granulite domain occurring to the south of Dharwar Craton (DC). The structural units of SGT show a marked change in the structural trend from the dominant north–south in DC to east–west trend in SGT and primarily consist of different crustal blocks divided by major shear zones. The Bouguer anomaly map prepared based on nearly 3900 gravity observations shows that the anomalies are predominantly negative and vary between −125 mGal and +22 mGal. The trends of the anomalies follow structural grain of the terrain and exhibit considerable variations within the charnockite bodies. Two-dimensional wavelength filtering as well as Zero Free-air based (ZFb) analysis of the Geoid-Corrected Bouguer Anomaly map of the region is found to be very useful in preparing regional gravity anomaly map and inversion of this map gave rise to crustal thicknesses of 37–44 km in the SGT. Crustal density structure along four regional gravity profiles cutting across major shear zones, lineaments, plateaus and other important geological structures bring out the following structural information. The Bavali Shear Zone extending at least up to 10 km depth is manifested as a plane separating two contrasting upper crustal blocks on both sides and the gravity high north of it reveals the presence of a high density mass at the base of the crust below Coorg. The steepness of the Moyar and Bhavani shears on either side of Nilgiri plateau indicates uplift of the plateau due to block faulting with a high density mass at the crustal base. The Bhavani Shear Zone is manifested as a steep southerly dipping plane extending to deeper levels along which alkaline and granite rocks intruded into the top crustal layer. The gravity high over Palghat gap is due to the upwarping of Moho by 1–2 km with the presence of a high density mass at intermediate crustal levels. The gravity low in Periyar plateau is due to the granite emplacement, mid-crustal interface and the thicker crust. The feeble gravity signature across the Achankovil shear characterized by sharp velocity contrast indicates that the shear is not a superficial structure but a crustal scale zone of deformation reaching up to mid-crustal level.  相似文献   

19.
The Chia-Nan (Chiayi-Tainan) area is in the southwestern Taiwan, and is located at the active deformation front of the collision of the Eurasian continental plate and the Philippine Sea plate, which causes complex folds as well as thrust fault systems in the area. The Chukuo fault zone is a boundary between the Western Foothill and the Western Coastal Plain in the Chia-Nan area. The nature of the crustal structure beneath the fault zone, especially the eastern part of the fault zone with mountain topography, has not been well known in detailed due to lack of drilling data as well as its limitation in using other geophysical methods, such as active source survey. In this study, we deployed an array with 11 broadband seismic stations to monitor the seismicity of the Chukuo fault zone. The array has recorded more than 1000 microearthquakes around this area. It provides an opportunity to use P- and S-wave travel time data to investigate the both the crustal P- and S-velocity in the fault zone, however due to the nature of the earthquake distribution, the ray density is relatively low at depth between 0 and 7 km. In addition, the uncertainty of S-wave reading for small earthquake also a limit in building precise S-velocity profile, Thus, we take the advantages of using cross-correlation of seismic ambient noise to investigate crustal S-velocity profile in the Chukuo fault area, especially in the mountain area where crustal faulting is a dominated phenomenon. The results indicate that S-wave velocity in the uppermost crust in the Chukuo fault zone is shown to be slower than previous studies. A low velocity layer exists at depth between 1 and 2 km in the east of the Chukuo Fault. The low S-velocity is related to a highly fractured upper crust due to intensive deformation caused by the orogenic process.  相似文献   

20.
本文基于最新高精度1∶5万航磁资料,详细分析了西秦岭造山带东段航磁特征和地质成因,辅以重力资料,新推断或修正了断裂平面位置,探讨了断裂控矿作用和若干典型断裂的地质意义。研究表明,古生界泥盆系、石炭系、二叠系、中生界三叠系碳酸盐岩-沉积碎屑岩是形成平稳负磁背景的主要原因;广泛发育的各类侵入岩,是形成复杂变化、形态各异的叠加异常的主要原因。NWW—EW向、NNE—NE向以及NW向深、大断裂共同构成了全区"南北分带,东西分块"的基本构造格架。NWW—EW向深、大断裂是最早形成的主干断裂,航磁上以不同面貌磁场分界线或醒目的磁场梯度带为特征,属华北、扬子两大板块在新元古代—三叠纪分别沿商丹、勉略缝合带南北向俯冲碰撞的产物,构成了本区一级构造单元的分界线,尤其对泥盆系多金属成矿起决定性控制作用;NNE—NE向深、大断裂应是秦岭强烈陆内造山阶段(晚三叠世—新生代)垂向加积增生作用的产物,对NWW—EW向、NW向断裂具有明显的切割、牵引或阻挡作用,航磁上以连续性较好的线性梯度带或磁场扭转变异带为特征,是区内次级构造单元的界限,对深部矿源物质的运移亦起到一定的疏导作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号