首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
钢筋混凝土结构倒塌分析的前沿研究   总被引:13,自引:1,他引:13  
结构倒塌分析主要涉及三个难点,即不连续位移场的描述、接触碰撞分析以及结构倒塌过程中大位移、大转动的描述。本文就国内外研究现状针对结构倒竭的评定标准以及上述三个难点做出评述,同时介绍了作者近期工作,并对今后研究工作做了展望,以供参考。  相似文献   

2.
为了提高钢筋混凝土建筑结构的抗震性能,分析多维地震作用下钢筋混凝土建筑结构的抗连续倒塌能力,结合钢筋混凝土建筑结构特性、节点构造特点以及其在多维地震作用下的破坏机理,采用离散单元法建立结构连续倒塌的理论模型,对建筑结构连续倒塌过程进行数值模拟。基于数值模拟化结果,通过备用荷载路径法,实现建筑结构的抗连续倒塌分析。仿真实验结果得出,所提方法能实现对建筑结构抗连续倒塌的准确分析,且在多维地震作用下建筑结构扭转的幅度明显变大,结构顶层位移发散状态显著,不同楼层会产生不同的层间位移以及薄弱部位,建筑结构的抗连续倒塌性能随着失效构件位置的提升而增强。  相似文献   

3.
在地震作用下钢筋混凝土建筑结构出现破坏倒塌为地震灾害中的关键,有效评估建筑结构抗地震破坏倒塌能力是建筑结构设计的前提,也是当前建筑结构提高抗震性能与加固的依据。提出变形指标极值、失效判断标准以及钢筋混凝土建筑结构倒塌极限状态判断标准,据此获取倒塌储备系数、倒塌易损性、结构整体超强系数、结构整体延性系数等评估标准。采用Pushover分析法选择相应地震波。依据梁柱线刚比对建筑结构抗倒塌能力的影响,以及柱端弯矩增加系数对建筑结构抗地震破坏倒塌能力的影响,对建筑结构易损性进行分析。结果表明:等跨建筑结构抗地震破坏倒塌能力更强;建筑结构底层是薄弱层,COF值越高,结构越容易倒塌。  相似文献   

4.
钢筋混凝土框架结构的地震倒塌反应   总被引:5,自引:1,他引:5  
  相似文献   

5.
袁景  刘海卿  刘东 《地震学刊》2010,(Z1):115-119
近年来强烈地震造成的钢筋混凝土框架结构倒塌破坏日益受到关注。本文利用ANSYS/LS-DYNA有限元软件对强震作用下钢筋混凝土框架结构,从弹性工作阶段到构件开裂直至倒塌破坏的全过程进行了三维非线性仿真分析,仿真结果与真实倒塌过程吻合较好。证明了框架结构底层抗震能力薄弱,由梁柱连接部位的剪切破坏引起的节点区混凝土碎裂是导致结构倒塌的主要原因。同时也说明通过合理选取计算参数和计算模型,可以成功地再现钢筋混凝土框架结构倒塌破坏的全过程,从而发现其在强震作用下的薄弱环节,为揭示框架结构倒塌破坏机理以及提高结构的抗震性能提供理论分析依据。  相似文献   

6.
目前,地震及爆炸荷载下的结构连续倒塌问题已成为土木工程领域研究的热点。本文首先简要介绍了国内外有关连续倒塌问题的研究现状和规范制定情况,然后基于OpenSees模拟平台,对一钢筋混凝土框架结构进行了拆除柱构件的动力分析。计算结果表明:拆除边柱比拆除内柱对结构的倒塌危险性要大,楼板对拆除构件后结构的动力反应有一定的减小作用。依据美国公共事务管理局(GSA)的倒塌规范,采用静力非线性分析和竖向增量动力分析对结构抗连续倒塌能力进行了研究。分析结果表明:楼板在一定程度上可提高结构抗连续倒塌能力;动力放大系数(DAF)随结构进入塑性而逐渐增大;由静力非线性分析曲线得到的结构抗连续倒塌能力曲线与竖向增量动力分析曲线吻合较好。  相似文献   

7.
抗倒塌柱顶部分滑移钢筋混凝土框架结构的初步研究   总被引:2,自引:0,他引:2  
从抗倒塌角度出发,提出了柱顶部分滑移钢筋混凝土框架结构的设想。通过对比该框架结构和常规框架结构的设计过程,并分别进行pushover分析,初步比较了二者的经济性以及弹塑性地震响应。研究结果表明:(1)通过滑移释放部分框架柱的柱顶内力,可以在造价略微增加的情况下,使结构具有更好的抗倒塌能力。(2)结构总层数较少时,柱顶部分滑移框架结构的造价增加比例相对更小。  相似文献   

8.
裴强  郭航  丁彧 《地震研究》2022,45(1):26-35
结构的连续性倒塌一直是土木工程领域关注的焦点,现阶段各个国家关于连续倒塌的规范在设计方法以及具体规定上均有所差异。回顾了抗连续倒塌研究的发展历史,梳理了国内外抗连续倒塌设计规范中的不同规定,对国内外抗连续倒塌规范的设计方法进行了归纳总结,比较了各国规范安全等级划分方式以及验算时荷载组合的异同,并对破坏发生范围的界定做了详细对比,为将来形成统一的规范提供一定参考。  相似文献   

9.
翟红刚 《地震工程学报》2020,42(5):1303-1309
以某高层装配式钢结构建筑为研究对象,研究设计参数对其抗倒塌能力的影响,通过ABAQUS有限元软件,对装配式混凝土平面框架的低周反复加载试验进行模拟。结果表明,增大框架柱轴压比可提高结构承载力,在荷载峰值达到后会有较快的降低,显著降低了延性。在荷载低周反复作用下,结构延性、承载力、耗能等随着梁柱线刚度比的降低,抗震指标全部呈现增加趋势。随着梁柱线刚度比的增大,层间位移角沿楼层分布均匀性变得越来越差;由于受到荷载作用低周反复后,会大大增加混凝土的强度,并降低耗能和延性指标,同时结构承载力则略微增大。增大轴压比后,如果保持相同的地震动强度,则将会大大提高结构性能极限状态的可能性,而如果结构的轴压比较大,很可能会出现对地震响应性能水平产生破坏等问题。  相似文献   

10.
首先介绍了CFRP加固受损钢筋混凝土柱的数值模拟方法,通过OpenSees软件进行了建模分析,数值模拟结果与试验结果的对比验证了该数值模型的有效性;其次,对一6层钢筋混凝土框架以受极罕遇地震影响进行预损,采用损伤指数和折减系数的方法建立震损钢筋混凝土框架的分析模型,并选择5种不同的CFRP加固方案对其进行加固;最后,对CFRP加固的震损RC框架进行增量动力分析。定量的评价了CFRP加固震损RC框架的抗整体性倒塌能力和抗倒塌安全储备。结果表明:CFRP加固能有效提高震损钢筋混凝土框架结构的抗震性能。加固部位的选择对加固效果的影响很大,在所选用的5种CFRP加固方案中,对底层及第2层的梁柱进行加固的方案对提高震损钢筋混凝土框架的抗整体性倒塌能力效果最佳。  相似文献   

11.
In a seismically active region, structures may be subjected to multiple earthquakes, due to mainshock–aftershock phenomena or other sequences, leaving no time for repair or retrofit between the events. This study quantifies the aftershock vulnerability of four modern ductile reinforced concrete (RC) framed buildings in California by conducting incremental dynamic analysis of nonlinear MDOF analytical models. Based on the nonlinear dynamic analysis results, collapse and damage fragility curves are generated for intact and damaged buildings. If the building is not severely damaged in the mainshock, its collapse capacity is unaffected in the aftershock. However, if the building is extensively damaged in the mainshock, there is a significant reduction in its collapse capacity in the aftershock. For example, if an RC frame experiences 4% or more interstory drift in the mainshock, the median capacity to resist aftershock shaking is reduced by about 40%. The study also evaluates the effectiveness of different measures of physical damage observed in the mainshock‐damaged buildings for predicting the reduction in collapse capacity of the damaged building in subsequent aftershocks. These physical damage indicators for the building are chosen such that they quantify the qualitative red tagging (unsafe for occupation) criteria employed in post‐earthquake evaluation of RC frames. The results indicated that damage indicators related to the drift experienced by the damaged building best predicted the reduced aftershock collapse capacities for these ductile structures. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
A new finite element code using the Adaptively Shifted Integration (ASI) technique with a linear Timoshenko beam element is applied to the seismic collapse analysis of reinforced concrete (RC) framed structures. This technique can express member fracture as a plastic hinge located at either end of an element with simultaneous release of the resultant forces in the element. Contact between members is also considered in order to obtain results that agree more closely with actual behavior, such as intermediate‐layer failure. By using the proposed code, sufficiently reliable solutions have been obtained, and the results reveal that this code can be used in the numerical estimation of the seismic design of RC framed structures. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
Non‐ductile reinforced concrete buildings represent a prevalent construction type found in many parts of the world. Due to the seismic vulnerability of such buildings, in areas of high seismic activity non‐ductile reinforced concrete buildings pose a significant threat to the safety of the occupants and damage to such structures can result in large financial losses. This paper introduces advanced analytical models that can be used to simulate the nonlinear dynamic response of these structural systems, including collapse. The state‐of‐the‐art loss simulation procedure developed for new buildings is extended to estimate the expected losses of existing non‐ductile concrete buildings considering their vulnerability to collapse. Three criteria for collapse, namely first component failure, side‐sway collapse, and gravity‐load collapse, are considered in determining the probability of collapse and the assessment of financial losses. A detailed example is presented using a seven‐story non‐ductile reinforced concrete frame building located in the Los Angeles, California. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Shaking table test results from a one‐story, two‐bay reinforced concrete frame sustaining shear and axial failures are compared with nonlinear dynamic analyses using models developed for the collapse assessment of older reinforced concrete buildings. The models provided reasonable estimates of the overall frame response and lateral strength degradation; however, the measured drifts were underestimated by the models. Selected model parameters were varied to investigate the sensitivity of the calculated response to changes in the drift at shear failure, rate of shear strength degradation, and drift at axial failure. For the selected ground motion, the drift at shear failure and rate of shear strength degradation did not have a significant impact on the calculated peak drift. By incorporating shear and axial‐load failure models, the analytical model is shown to be capable of predicting the axial‐load failure for a hypothetical frame with three nonductile columns. Improvements are needed in drift demand estimates from nonlinear dynamic analysis if such analyses are to be used in displacement‐based performance assessments. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Seismic isolation technique is increasingly used both for the design of new buildings and for the seismic retrofit of existing buildings. Nevertheless, so far, little attention has been paid on the collapse capacity of these structures, mainly because it requires refined nonlinear models and careful consideration of different sources of uncertainties. To fill this gap, a set of collapse fragility functions for existing reinforced concrete-frame buildings, designed for gravity loads only and then retrofitted with different isolation systems (including rubber-based and friction-based isolation systems), are derived in this study. For completeness, buildings with low and high seismic resistance are also considered. Collapse fragility functions are derived through incremental dynamic analysis, considering different collapse conditions both for isolation system and superstructure. For each case study building, mean and dispersion values are obtained considering both aleatory and epistemic uncertainties, due to record-to record and model variability, respectively. Finally, some comments on the possible use of the results of this study for practical applications are made.  相似文献   

16.
More than 30 buildings around Taiwan have been selected to monitor the floor responses under seismic excitation. The structural array monitoring system in each building controls at most 27 channels of accelerometers distributed in several floors. Those buildings were triggered by many events during the past five years of operation. In each building, the records at the basement can be considered as the ground excitation, and the others at the upper floors are the structural responses. The frequency transfer functions of those buildings can be identified by ARX models, and then the fundamental vibration periods are estimated. The identified fundamental vibration periods using different events are compared in order to ensure the reliability of system identification. An empirical formula in predicting the fundamental vibration period is presented through the regression analysis to the identified fundamental vibration periods of 21 reinforced concrete (RC) moment‐resisting frame (MRF) buildings. It is found that the height of a building plays an important role in predicting the fundamental vibration period, compared with the length, width, and time after completion of the building. It is also found that the RC MRF buildings in Taiwan tend to be stiffer than those in the U.S. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
This work presents a new seismic evaluation methodology for corroded reinforced concrete bridges on the basis of nonlinear static pushover analysis. Corrosion of steel reinforcement by chloride attack is considered. At the material level, the effects of corrosion are considered by modeling the degradation of the mechanical properties of steel reinforcement, softening of cover concrete under compression, degradation of core concrete due to confinement steel corrosion, and reduction of bond strength between concrete and steel reinforcement. At the structural level, the effects of corrosion on both flexural behavior and shear behavior, and their interaction are considered. Eleven bridges of various structural types in Taiwan that are located within 6.5 km of their nearest coastline are analyzed to identify their long‐term seismic performance. Relationships between the yield and collapse peak ground accelerations (PGAs), and service time and corrosion level are established for each bridge. Analysis results show that chloride corrosion starts in 2–32 years. The transverse steel reinforcement typically starts corroding before the longitudinal steel reinforcement, as the former has a thicker cover. Research results show that collapse PGA reduces by 0.94% or 1.23% per 10 years when the mean value plus 1 or 2 standard deviation of the collapse PGA values are considered, respectively. Therefore, we suggest increasing the design PGA from 4.70% to 6.15% for a bridge adjacent to a coastline to ensure adequate long‐term seismic performance for 50 years, the typical design life span of a regular bridge. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
基于经典塑性模型与连续损伤模型,根据广义应力空间塑性力学确定了塑性变形的演化法则,文中发展了一种地震塑性损伤分析方法。用来进行混凝土框架结构的抗震分析,将塑性损伤的本构关系运用于两端具有塑性铰的梁模型,模拟框架结构的梁柱。同时该方法的损伤指数可以确定结构各单元和整体的地震时性能,确定结构极限荷载,算例表明该方法具有可靠的精度。  相似文献   

19.
型钢混凝土框架pushover分析   总被引:3,自引:0,他引:3  
Pushover分析方法是逐渐得到广泛应用的一种评估结构抗震性能的简化方法。由于型钢混凝土(SRC)构件塑性铰属性确定方面的原因,SRC构件难以直接应用于pushover分析方法,而常采用按“等刚度”原则转化为钢筋混凝土构件(RC)进行计算。本文从理论上给出了SRC压弯构件N-M相关曲线、Mx-My相关曲线的形成方法,提出了SRC构件M-φ曲线的确定及转化为塑性铰曲线的原则,并研究了SRC构件塑性铰区等效长度的计算方法,可为SRC结构进行pushover分析提供参考数据。按照本文方法,采用pushover方法对两跨三层SRC框架进行分析,结果与该结构模型振动台实验吻合较好。在此基础上,对10层SRC框架和采用刚度等效的3层、10层的钢筋混凝土(RC)框架进行了对比分析,结果表明,随着层数的增加,SRC结构相对于RC结构表现出更优越的抗震耗能能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号