共查询到20条相似文献,搜索用时 15 毫秒
1.
The free-field accelerograms along Feitsui Canyon are analyzed and modeled by a numerical scheme to study the effect of canyon topography. Since six strong-motion accelerometers (SC1–SC6) were deployed along the Feitsui Canyon in 1991; there are 14 earthquakes (4.9≤ML≤6.6) recorded by these stations until June 1996, but only five triggered all six stations. The maximum PGA value is 68.6 cm s−2 recorded at station SC1. According to the present data, the effect of the dam on the ground motions at canyon stations can be negligible. The amplitude of ground motion on the slopes of the canyon is bigger than that at its trough. The integral equation method is applied to a two dimensional model of Feitsui Canyon to study the effects of the canyon topography. We choose the ground motion of SC3 or SC4 station at the trough of the canyon as the input motion for the model, which is then used to predict the ground motion at the other five stations. Apart from the earthquake close to the damsite, the simple model can reproduce the observed accelerations at all frequencies below 4 Hz. Overall, the numerical method can well predict the ground motion along the canyon, although the high-frequency simulation is underestimated. 相似文献
2.
Transport of suspended sediment under the dam‐break flow on an inclined plane bed of arbitrary slope
The problem of transport of suspended sediment after the break of a dam on an inclined bed is considered. To that end we use the shallow‐water approximation for arbitrary, constant slopes of the bottom, taking into consideration the effect of friction. The numerical technique and the frictional model are validated by comparison with available experimental data and asymptotic analytical solutions, with special attention to the numerical solution near the wetting front. The transport of suspended sediment down the inclined bed is obtained and discussed as a function of the slope of the bed for different values of the parameters characterizing the sediment and its transport properties. For sufficiently large times we always find the formation of roll waves near the water front, which affects the transport of sediments significantly. These strong oscillations are accurately computed with the numerical method used. The relative importance of the bed load (to the suspended load) sediment transport is also discussed as a function of the size of the sediment particles and the slope of the bed for different models on the initiation of sediment suspension from bed load. We also check the dilute sediment approach and characterize the conditions for its failure. Finally, the results of the present simplified model are intended to be used as tests of more complex numerical models. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
3.
Morphological responses and sediment processes following a typhoon‐induced dam failure,Dahan River,Taiwan 下载免费PDF全文
The rates and styles of channel adjustments following an abrupt and voluminous sediment pulse are investigated in the context of site and valley characteristics and time‐varying sediment transport regimes. Approximately 10.5 x 106 m3 of stored gravel and sand was exposed when Barlin Dam failed during Typhoon WeiPa in 2007. The dam was located on the Dahan River, Taiwan, a system characterized by steep river gradients, typhoon‐ and monsoon‐driven hydrology, high, episodic sediment supply, and highly variable hydraulic conditions. Topography, bulk sediment samples, aerial photos, and simulated hydraulic conditions are analyzed to investigate temporal and spatial patterns in morphology and likely sediment transport regimes. Results document the rapid response of the reservoir and downstream channel, which occurred primarily through incision and adjustment of channel gradient. Hydraulic simulations illustrate how the dominant sediment transport regime likely varies between study periods with sediment yield and caliber and with the frequency and duration of high flows. Collectively, results indicate that information on variability in sediment transport regime, valley configuration, and distance from the dam is needed to explain the rate and pattern of morphological changes across study periods. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
4.
Shao Cuiru You Huichuan Cao Zhongquan Wang Chunyong Tang Fangtou Zhang Decheng Lou Hai Xu Guangyin Yang Qiyan Mei Tuo Xie Ping Yu Gang 《中国地震研究》2009,23(2):144-160
The Yarlung Tsangpo Grand Canyon region is located in the frontal zone of the eastern Himalayan syntaxis, where neo-tectonics and seismicity are intensive and closely related to each other. In the region, two sets of fault structures have developed, striking NNE-NE and NWW-NW, respectively. Investigation shows that they differ markedly in terms of scope, property, active times and intensity. The NWW-NW trending faults are large in size, and most are thrust and thrust strike-slip faults, formed in earlier times. The NEE-NE-strike faults are relatively small in size individually, with concentrated distribution, constituting the NNE-trending shear extensional fault zone, which is relatively younger with evident late Quaternary activities. Strong earthquakes occur mainly in the areas or zones of intensive differential movement of the Himalayas, e.g. along the deep and large fault zones around the crustal blocks. Most earthquakes of M≥7.0 are closely related to tectonics, where large-scale Holocene active faults are distributed with complicated fault geometry, or the faults of multiple directions intersect. Among them, earthquakes of M≥7.5 have occurred on the NW and NE-trending faults with a greater strike-slip component in the fault tectonic zones. 相似文献
5.
Monitoring sediment yields from catchments is important for assessing overall denudation rates and the impact of environmental change. One of the methods used to assess sediment yield is by quantifying sedimentation rates in reservoirs, lakes or small ponds. Before reliable sediment yield values (t ha?1 a?1) can be computed from such sedimentation records, the measured sediment volumes need to be converted to sediment masses using representative values of the dry sediment bulk density. In textbooks, simple relations predicting dry sediment bulk density from sediment texture, time since deposition and hydrologic condition are presented. In this study, 13 small flood retention ponds in central Belgium were sampled to reveal the variability in dry sediment bulk density and to test the commonly used relations to predict dry sediment bulk density. Dry sediment bulk density varies not only between the selected ponds (0·78–1·35 t m?3) but also within individual ponds (coefficient of variation at 95 per cent ranges from 7 to 80 per cent). The observed variability can be attributed primarily to the hydrologic condition of the retention pond and, also, to sediment texture. The existing relations are not a reliable predictor for the observed dry bulk densities, because they are primarily based on sediment texture. Thus, when using volumetric sedimentation data from small ponds with varying hydrologic condition to predict sediment yield, existing relations predicting dry sediment bulk density cannot be applied. Instead, frequent and dense sampling of sediments is necessary to calculate a representative value of the dry sediment bulk density. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
6.
Ben D. Plumb Carmelo Juez William K. Annable Chris W. McKie Mario J. Franca 《地球表面变化过程与地形》2020,45(4):816-830
A laboratory study was undertaken to investigate how changes in flow regime and hydrograph shape (number of cycled hydrographs and duration of each hydrograph) together impact bedload transport and resulting bed morphology. Three hydrologic conditions (experiments) representing different levels of urbanization, or analogously different flow regimes, were derived from measured hydrometric field data. Each experiment consisted of a series of hydrographs with equal peak discharge and varying frequency, duration and flashiness. Bedload transport was measured throughout each hydrograph and measurements of bed topography and surface texture were recorded after each hydrograph. The results revealed hysteresis loops in both the total and fractional transport, with more pronounced loops for longer duration hydrographs, corresponding to lower rate of unsteadiness until reaching the peak discharge (pre-urbanization conditions). Shorter duration hydrographs (urban conditions) displayed more time above critical shear stress thresholds leading to higher bedload transport rates and ultimately to more variable hysteresis patterns. Surface textures from photographic methods revealed surface armoring in all experiments, with larger armor ratios for longer duration hydrographs, speculated to be due to vertical sorting and more time for bed rearrangements to occur. The direction of bed surface adjustment was linked to bedload hysteresis, more precisely with clockwise hysteresis (longer hydrographs) typically resulting in bed coarsening. More frequent and shorter duration hydrographs result in greater relative channel adjustments in slope, topographic variability and surface texture. © 2019 John Wiley & Sons, Ltd. 相似文献
7.
Sediment waves in river systems have been widely reported, although few studies have examined the interaction between these waves and the morphology of the reaches through which they pass. This interaction determines how waves are modified as they propagate downstream. This study documents the origin and downstream passage of an avulsion-generated sediment wave through a 374 m study reach of the Allt Dubhaig, Scotland. A nested survey framework was adopted, with volumes calculated from cross-sections spaced between 10 and 40 m apart documenting the origin and downstream passage of the wave. The wave moved through an intensively (c. 1 m cross-section spacing) monitored 120 m stretch (Reach A) within the study reach, allowing assessment of sediment exchanges between the incoming wave and the local morphology. Successive surveys show the movement of the wave through and out of the reach, and also that areas where wave sediment was deposited did not always correspond with areas of subsequent erosion. Reach A was divided into three morphologically distinct sub-reaches (1A, 2A and 3A) within which sediment fluxes and the three-dimensional distribution of erosion/deposition were estimated. Sediment wave input into 1A and 2A (relatively stable sub-reaches) caused forced bar aggradation and erosion of sediment from elsewhere within the reach, which then became part of the wave. The downstream transfer of this sediment into unstable 3A caused aggradation and, in response, widespread erosion which increased the magnitude of the sediment wave as it exited reach A. Sediment exchange between the recipient reach and the wave depends upon local morphological stability and is a crucial process affecting wave magnitude and attenuation. The macroscale sediment wave interacted with, rather than overwhelmed, the recipient morphology. © 1998 John Wiley & Sons, Ltd. 相似文献
8.
台湾及其邻近地区的海啸 总被引:6,自引:0,他引:6
台湾位于环太平洋地震带,不仅陆上地震频繁,发生在海外的地震也不少,但其中仅有极少数的海底地震曾引起海啸。然而,由于台湾北部及西部水深极浅,近距离海底地震所引起的海啸有可能会造成重大灾害,对1867年发生在台湾基隆附近的海啸曾造成数百人死伤。 相似文献
9.
William Blumen 《地球物理与天体物理流体动力学》2013,107(1-3):89-104
Abstract Adiabatic, two-dimensional, steady-state finite-amplitude, hydrostatic gravity waves produced by flow over a ridge are considered. Nonlinear self advection steepens the wave until the streamlines attain a vertical slope at a critical height zc. The height zc , where this occurs, depends on the ridge crest height and adiabatic expansion of the atmosphere. Dissipation is introduced in order to balance nonlinear self advection, and to maintain a marginal state above zc. The approach is to assume that the wave is inviscid except in a thin layer, small compared to a vertical wavelength, where dissipation cannot be neglected. The solutions in each region are matched to obtain a continuous solution for the streamline displacement δ. Solutions are presented for different values of the nondimensional dissipation parameter β. Eddy viscosity coefficients and the thickness of the dissipative layer are expressed as functions of β, and their magnitudes are compared to other theoretical evaluations and to values inferred from radar measurements of the stratosphere. The Fourier spectrum of the solution for z ≫ zc is shown to decay exponentially at large vertical wave numbers n. In comparison, a spectral decay law n ?-8/3 characterizes the marginal state of the wave at z = zc . 相似文献
10.
ABSTRACTThe generation processes and potential energy sources of internal solitary waves (ISWs) in the southern Taiwan Strait are investigated by driving a high resolution non-hydrostatic numerical model with realistic background conditions. Two main types of ISWs are clarified according to their different energy sources. One is generated by the nonlinear disintegration of remote internal tides emanating from Luzon Strait, and the other type is generated by local tide-topography interaction at the continental slope. The basic properties and evolution processes differ between these two kinds of ISWs. The waves originated from the remote internal tides at Luzon Strait have amplitudes comparable to previous field observations. In contrast, the ISWs generated locally are much weaker than observed waves, even in the presence of a steady offshore background current, which intensifies the generation of onshore ISWs. The ISWs induced by remotely generated M2 internal tides are stronger than those induced by K1 internal tides, and the fraction of internal wave energy transmitted onto the shelf is not significantly influenced by the intensity of remotely generated internal tides. 相似文献
11.
Cheryl Burden Ross Wilford D. Gardner Mary Jo Richardson Vernon L. Asper 《Continental Shelf Research》2009,29(11-12):1384-1396
The temporal variability in currents, temperature, and particulate matter concentration were measured in the Mississippi Canyon axis where the thalweg was 300 m deep from May–July and August–November 1998 using current meters, thermographs, a light-scattering sensor, and sediment traps. Canyon sediments were sampled by coring and observed using an ROV video camera. Currents in the upper Mississippi Canyon generally oscillated up/down canyon with diurnal periodicity and were bottom-intensified. Mean current speed at 3.5 mab was approximately 8 cm s?1 during both deployments, reaching maximum speeds of over 50 cm s?1 under normal conditions. Based on current velocities, critical bed shear stress for resuspension of canyon-floor sediments was exceeded about 30% of the time during both deployments. In late September, Hurricane Georges passed 150 km NE of the study site, significantly intensifying current velocities, bed shear stress, resuspension, trap fluxes and temperature fluctuations. As the hurricane passed, maximum current speed reached 68 cm?s and temperature decreased ~7 °C in less than two hours. Critical bed shear stress for sediment resuspension was exceeded approximately 50% of the time during the five days of hurricane influence. Further evidence for sediment resuspension was the five-fold (and perhaps 70–130 fold) increase in trap fluxes and compositional similarities between canyon surface sediment and material collected by traps. 相似文献
12.
根据已有和近年来补充调查的资料,阐明了台湾及台湾海峡地震对大陆东南沿海地区影响的差异,并通过对以下问题的分析,探讨了其结果在震害防御与历史地震考证方面的意义:①台湾地区的强震频度较高,间隔时间从几年到数十年,但对大陆沿海地带的最大影响烈度仅为Ⅵ度,最大有感半径达1100km,有感地带的宽度大于500km.这些地震在大陆地区可产生数毫米位移的长周期地面运动;②台湾海峡西侧滨海断裂带发生的强震,其频度不如台湾地区高,却因距离大陆较近,最大影响烈度达Ⅷ——Ⅸ度,最大有感半径大于1000km,有感地带的宽度大于400km;③我国东南沿海地带的震害防御策略,宜在着重考虑滨海断裂带强震影响的同时,还要注意台湾地震对工程结构造成的损伤,以及恐震心理引发的哄动社会效应影响;④大陆地区记载到的1517年5月19日地震事件,宜视为台湾地区的强震影响更为妥切. 相似文献
13.
Complex flow processes at river bifurcations and the influence of the layout of a bifurcation make it difficult to predict sediment distribution over the downstream branches in case bedload transport dominates. In one‐dimensional models we need a nodal point relationship that prescribes the distribution of sediment over the downstream branches. We have identified which factors need to be included in such a relationship for the division of bedload transport at bifurcations. Next, irrotational flow theory for idealized geometries has been used to derive a simple physics‐based nodal point relationship that accounts for the effects of helical flow in the situation that a channel takes off under an angle from a straight main channel. This first step towards a complete nodal point relationship is applicable to bedload transport situations if the flow is clearly curved and if there is no pronounced bed topography. The relationship has been tested against data from a unique set of laboratory measurements, numerical data and data from a scale model of the Rhine bifurcation at Pannerden in the Netherlands. We find that the derived model yields a reasonable prediction of the sediment division over the downstream branches, and yields better predictions than the Wang et al. model for the situation considered. Considering the relative complexity and limited accuracy of the nodal point relationship for the effect of helical flow alone, however, we conclude thatderiving a practical physics‐based 1‐D relationship including all relevant processes is not feasible. We therefore recommend 2‐D or 3‐D modelling for all cases in general where morphological evolution depends on the division of bedload transport at bifurcations. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
14.
Numerical modelling of alternate bar formation,development and sediment sorting in straight channels 下载免费PDF全文
A two‐dimensional shallow water hydro‐sediment‐morphodynamic model is applied to investigate alternate bar formation, development and sediment sorting in straight channels. The model is coupled, explicitly incorporating the flow–sediment–bed interactions by using the full mass and momentum conservation equations, which are numerically solved by a well‐balanced version of the finite volume Slope Limiter Centred (SLIC) scheme. The model is first tested against a flume experiment on alternate bars formed over a uniform sediment bed, which clearly exhibits processes of bar formation, migrating and finally approaching an equilibrium state. Then it is applied to another flume experiment on alternate bars due to non‐uniform sediment transport. The computational results are evaluated, with a focus on the longitudinal and vertical sediment sorting. It is argued for the first time that the inconsistent sediment sorting patterns observed in previous studies are determined by different sediment transport conditions, i.e. full versus partial transport. When a condition of full transport is achieved, under which all size fractions are fully mobilized and transported, the longitudinal surface sediment shows a sorting pattern of coarse‐on‐head and fine‐in‐pool, and the vertical substrate sediment exhibits an immobile‐fine‐coarse structure upwards. In contrast, for a partial transport condition, under which only finer fraction participates in the transport process, an opposite longitudinal pattern (i.e. fine‐on‐head and coarse‐in‐pool) and a different vertical structure (i.e. immobile‐coarse‐fine) are observed. Concurrently, numerical experiments with specified conditions show that the critical aspect ratio for the formation of migrating alternate bars is approximately equal to 12. With the increase of the aspect ratio, the bar length grows gradually, while the bar height increases rapidly for moderate values of the aspect ratio and then keeps nearly stable. The bar celerity, however, is weakly sensitive to the variation of this ratio. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
15.
16.
The objective of this experimental study was to account for the role of sediment availability and specific gravity on cluster formation and cluster geometric characteristics (spacing and size). To isolate the effects of sediment availability and specific gravity on cluster evolution, mono‐sized spheres were used to simulate the cluster evolutionary cycle. Overall, twelve experimental runs were carried out in the laboratory flume. Six of these tests were performed by using glass spheres (specific gravity, SG = 2·58) and the other six by employing an equal combination of glass and Teflon spheres (SG = 2·12) of the same diameter to evaluate the role of specific gravity on cluster evolution. The three sediment availability conditions that were investigated here simulated isolated gravel elements, pool–riffle sequences and densely packed gravel‐bed. An advanced image analysis technique was employed to track the evolution of cluster microforms and provide quantitative information about the size and shape of clusters and the number of clusters per unit area. The results of this study showed that: (1) sediment availability affects the architecture and size of cluster microforms; and (2) clusters consisting of mono‐sized sediments start disintegrating at twice the incipient conditions. By performing complementary tests for the isolated gravel elements case, it was found that the evolutionary cycle of individual clusters could be described as follows, in order of increasing stress: no cluster→two particle cluster→comet→triangle→rhomboid→break up. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
17.
Modelling soil erosion requires an equation for predicting the sediment transport capacity by interrill overland flow on rough surfaces. The conventional practice of partitioning total shear stress into grain and form shear stress and predicting transport capacity using grain shear stress lacks rigour and is prone to underestimation. This study therefore explores the possibility that inasmuch as surface roughness affects flow hydraulic variables which, in turn, determine transport capacity, there may be one or more hydraulic variables which capture the effect of surface roughness on transport capacity suffciently well for good predictions of transport capacity to be achieved from data on these variables alone. To investigate this possibility, regression analyses were performed on data from 1506 flume experiments in which discharge, slope, water temperature, rainfall intensity, and roughness size, shape and concentration were varied. The analyses reveal that 89·8 per cent of the variance in transport capacity can be accounted for by excess flow power and flow depth. Including roughness size and concentration in the regression improves that explained variance by only 3·5 per cent. Evidently, flow depth, when used in combination with excess flow power, largely captures the effect of surface roughness on transport capacity. This finding promises to simplify greatly the task of developing a general sediment equation for interrill overland flow on rough surfaces. Copyright © 1998 John Wiley & Sons, Ltd. 相似文献
18.
Precollisional tectonics and terrain amalgamation offshore southern Taiwan:Characterizations from reflection seismic and potential field data 总被引:2,自引:0,他引:2
LI ChunFeng ZHOU ZuYi LI JiaBiao CHEN HuanJiang GENG JianHua & LI Hui State Key Laboratory of Marine Geology Tongji University Shanghai China The Second Institute of Oceanography State Oceanic Administration Hangzhou China 《中国科学D辑(英文版)》2007,50(6):897-908
Sponsored by the Chinese National Fundamental Research and Development Program in 2001,Guang-zhou Marine Geological Survey launched out a long geophysical survey from the northeastern part of the South China Sea (SCS),through the Luzon Arc,to the Huatung Basin and the Gagua Ridge. Based on high-resolution seismic data from this survey,combined with gravimetric and magnetic modeling,a systematic effort is made to the study of the regional geodynamics offshore southern Taiwan. By focusing particularly on precollisional tectonic interactions between adjacent geological units and their tectonic affiliations,this study can help reveal early arc-continent collisional processes that formed the Taiwan orogen. The construction of the Manila accretionary prism and its eastward progressive deformation indicate that the subduction of SCS have experienced multiple phases of increased activity. Active precollisional crustal shortening within the Northern Luzon Trough resulted in tilting of sedimentary layers at angles between 6° and 13°. But the shortening induced by tilting accounts for only a tiny part of regional total crustal compression. The eastern flank of the Luzon Arc appears to be more active than the rest,evidenced by active faulting and folding in the intra-arc basins on the eastern flank. Magnetic modeling/inversion shows that the Luzon Arc may have experienced multiple phases of magmatic activities,causing lateral magnetic inhomogeneity. Bouguer gravity anomalies and gravity modeling indicate that the Huatung Basin has anomalously higher crustal and upper mantle densities than those of SCS and the Luzon Arc. In addition,there is a large bathymetric difference between the Huatung Basin and the northeastern part of SCS basin. These observations argue against early hypothesis that the Huatung Basin and the northeastern part of SCS basin may once have belonged to one single oceanic crust,in part or in whole. The Gagua Ridge,as a sliver of uplifted oceanic crust,may be related to a transient northwestward subduction of the western Philippine plate. All evidences point to the argument that the region offshore southern Taiwan is experiencing multiple terrain amalgamation,which is a classical model for continental growth. 相似文献
19.
Effects of vegetation on flow and sediment transport: comparative analyses and validation of predicting models 总被引:1,自引:0,他引:1 下载免费PDF全文
The presence of vegetation modifies flow and sediment transport in alluvial channels and hence the morphological evolution of river systems. Plants increase the local roughness, modify flow patterns and provide additional drag, decreasing the bed‐shear stress and enhancing local sediment deposition. For this, it is important to take into account the presence of vegetation in morphodynamic modelling. Models describing the effects of vegetation on water flow and sediment transport already exist, but comparative analyses and validations on extensive datasets are still lacking. In order to provide practical information for modelling purposes, we analysed the performance of a large number of models on flow resistance, vegetation drag, vertical velocity profiles and bed‐shear stresses in vegetated channels. Their assessments and applicability ranges are derived by comparing their predictions with measured values from a large dataset for different types of submerged and emergent vegetation gathered from the literature. The work includes assessing the performance of the sediment transport capacity formulae of Engelund and Hansen and van Rijn in the case of vegetated beds, as well as the value of the drag coefficient to be used for different types of vegetation and hydraulic conditions. The results provide a unique comparative overview of existing models for the assessment of the effects of vegetation on morphodynamics, highlighting their performances and applicability ranges. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
20.
Growing awareness of the wider environmental significance of fine sediment transport by rivers and associated sediment problems linked to sediment–water quality interactions, nutrient and contaminant transfer, and the degradation of aquatic habitats has resulted in the need for an improved understanding of the mobilization and transfer of sediment in catchments to support the development of effective sediment management strategies. The sediment budget provides a key integrating concept for assembling information on the internal functioning of a catchment in terms of its sediment dynamics by providing information on the mobilization, transfer, storage and output of sediment. One key feature of a catchment sediment budget is the relationship between the sediment yield at the catchment outlet and rates of sediment mobilization and transfer within the catchment, which is commonly represented by the sediment delivery ratio. To date, most attempts to derive estimates of this ratio have been based on a comparison of the measured sediment yield from a catchment with an estimate of the erosion occurring within the catchment, derived from an erosion prediction procedure, such as the Universal Soil Loss Equation (USLE) or its revised version, RUSLE. There is a need to obtain more direct and spatially distributed evidence of the erosion rates occurring within a catchment and to characterize the links between sediment mobilization, transfer, storage and output more explicitly. In this context, fallout radionuclides have proved particularly useful as sediment tracers. This paper reports the results of a study aimed at exploring the use of caesium‐137 (137Cs) measurements to establish sediment budgets for three catchments of different sizes and contrasting land use located in Calabria, southern Italy. Long‐term measurements of sediment output were available for the catchments, and, by using the estimates of gross and net rates of soil loss within the catchments provided by 137Cs measurements, it was possible to establish the key components of the sediment budget for each catchment. By documenting the sediment budgets of three catchments of different sizes, the study provides a basis for exploring the effects of scale on catchment sediment budgets and, in particular, the increasing importance of catchment storage as the size of the catchment increases. The results of this study demonstrate a reduction in the sediment delivery ratio from 98 to 2% as catchment area increases from 1·47 ha to 31·2 km2. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献