首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Concepts of several experimental configurations for the investigation of magnetized jets and their interaction with magnetized environments are presented. In the planned experiments, the plasma jets will be created by laser ablation of shaped targets, while magnetic and electric fields with the required configurations will be produced independently by a pulsed power generator. In particular, the recently coupled Terawatt laser Tomcat and Terawatt pulsed power generator Zebra will be used for experiments.  相似文献   

2.
In recent years, with the development of megajoule-class laser, to create the physical conditions similar to those of extreme celestial environments in the laboratory has become possible. This makes scientists able to study some important astrophysical processes and physical phenomena in the laboratory. This paper briefly introduces several advances in the high energy density laboratory astrophysics driven by the National Ignition Facility (NIF), including the Rayleigh-Taylor instability in supernova remnants, the collisionless shock wave, the laser inertially-confined fusion detection of the thermonuclear reaction under the stellar core condition, the study of planetary interior state, the study of star formation, etc., which will provide a reference for the scientific experiments in the field of laboratory astrophysics performed by using the Shenguang IV laser facility under construction in China. Finally, the possible scientific issues relevant to the direction of laboratory astrophysics by using the Shenguang IV laser facility in the future are briefly discussed.  相似文献   

3.
It has recently been realized that the Weibel instability plays a major role in the formation and dynamics of astrophysical shocks of gamma-ray bursts and supernovae. Thanks to technological advances in the recent years, experimental studies of the Weibel instability are now possible in laser-plasma interaction devices. We, thus, have a unique opportunity to model and study astrophysical conditions in laboratory experiments – a key goal of the Laboratory Astrophysics program. Here we briefly review the theory of strong non-magnetized collisionless GRB and SN shocks, emphasizing the crucial role of the Weibel instability and discuss the properties of radiation emitted by (isotropic) electrons moving through the Weibel-generated magnetic fields, which is referred to as the jitter radiation. We demonstrate that the jitter radiation field is anisotropic with respect to the direction of the Weibel current filaments and that its spectral and polarization characteristics are determined by microphysical plasma parameters. We stress that the spectral analysis can be used for accurate diagnostics of the plasma conditions in laboratory experiments and in astrophysical GRB and SN shocks.  相似文献   

4.
Scaling laws for interaction of ultra-intense laser beams with a collisionless plasmas are discussed. Special attention is paid to the problem of the collective ion acceleration. Symmetry arguments in application to the generation of the poloidal magnetic field are presented. A heuristic model for evaluating the magnetic field strength is proposed. PACS Numbers: 52.38Kd, 52.38.Fz, 41.75.Jv  相似文献   

5.
Strong magnetic fields were generated using a fast pulsed power generator, to investigate the interaction of plasma flows with magnetic fields and magnetized background plasmas. The inductive loads used in these experiments were designed using a filament and a finite element modeling approaches. Magnetic fields up to 2 MG (200 T) were measured by using the Faraday rotation technique.  相似文献   

6.
With the data from WIND satellite in 1995—2005, the small-scale magnetic ?ux tubes determined with two methods, i.e., the arti?cial recognition and program selection respectively, are compared. It is found that there are magnetic reconnections in the boundary layers of 41% small-scale magnetic ?ux tubes determined with the program selection method, which is similar to the re- sult of small-scale magnetic ?ux tubes determined with the method of arti?cial recognition. The features of magnetic reconnections, such as the magnetic shear angle, magnetic ?eld strength, and duration of the dissipation region of recon- nection at the small-scale ?ux tubes’ boundaries determined from both methods have the same statistical tendency. This shows that there is no essential differ- ence in the properties of reconnections in the boundary layers of the small-scale magnetic ?ux tubes determined with the two methods. Hence the data yielded by both methods can be used as the samples for statistically studying the events of reconnection in the front and back boundary layers of small-scale ?ux ropes. There are totally 71 magnetic reconnection events selected in this paper. Our statistical result shows that in 50 events (70%) the decrease of magnetic ?eld strength in the dissipation region of reconnection is larger than 20%, and in 47 events (66%) the magnetic shear angle is larger than 90 degrees. These indicate that the magnetic reconnections in boundaries of the small-scale magnetic ?ux tubes are more likely to be anti-parallel. The statistics has been performed sep- arately in the reconnections of the front and back boundary layers of small-scale magnetic ?ux tubes. The results show that the features of reconnections in the front and back boundaries are similar to each other, which is different from the various properties in the front and back boundaries of the magnetic clouds, and this means that the expansion in the large-scale magnetic ?ux tubes, such as magnetic clouds, does not happen in the small-scale magnetic ?ux tubes.  相似文献   

7.
随着啁啾脉冲放大技术(Chirped Pulse Amplification,CPA)的飞速发展,激光功率密度实现了飞跃式的提升,利用短脉冲激光开展实验室天体物理研究的条件日趋成熟.短脉冲激光与靶相互作用可以产生相对论粒子(正负电子、质子、中子等)和高能电磁辐射(X射线、γ射线),这些粒子和辐射的产生过程与天体中的某些...  相似文献   

8.
陈道汉 《天文学进展》1999,17(2):178-184
综述了国际上进行太阳系空间探测的现状,着重介绍探测月球、火星、小行星和外行星的意义、目的、手段和成就。择要介绍美国宇航局(NASA)、欧洲空间局(ESA)、俄罗斯和日本近年来和下世纪初的空间计划。  相似文献   

9.
本文对非线性科学的两个重要分支-分形和混沌-在太阳物理学中的应用情况作了综述,主要内容包括:太阳活动混沌性的揭示;对太阳活动混沌性的可能解释-太阳非线性发电机理论;一些太阳现象的分形描述;耀斑的自组织临界行为研究。最后给出了作者对这一领域工作前景的展望。  相似文献   

10.
11.
该文讨论了太阳大气等离子体中电流的成因和对各种爆发活动的作用和影响,对目前的研究现状和存在的问题进行了分析讨论,指出虽然磁场是太阳物理观测和研究的关键要素,但是电流也是理解能量的传输与耗散、不稳定性的驱动和激发、等离子体的加热和粒子加速等太阳物理过程的重要概念.该文还提出了一个定性的改进电路模型,认为电流主要产生于太阳内部的发电机过程,同时电路在日冕部分的环形磁场位型也将产生部分新经典电流,通过磁通量管流入太阳大气,并在日冕区域通过磁场重联等过程释放能量.对该模型尚待解决的问题也进行了简单讨论.  相似文献   

12.
太阳磁场、较差自转和内部对流使得日面磁场与磁活动在很大的时间尺度和空间尺度范围均表现得相当复杂.其中最有名的是太阳活动的11年周期,或22年磁周期.在较小时间尺度上,从几秒到几小时,有时太阳大气中会发生一些壮观的爆发事件,如耀斑、日珥爆发、日冕物质抛射等.所有这些形式的事件都与太阳磁场紧密关联.简单评述了太阳磁场起源与观测方法,重点论述了不同尺度太阳磁场的空间分布与演化,介绍了从太阳磁活动现象统计得到的有关太阳磁场的几个典型特征,同时讨论了进一步研究的方向.  相似文献   

13.
We consider a stationary two-dimensional model of magnetic reconnection in plasma. The model includes a current sheet and four MHD shock waves attached to its endpoints. The solution to the problem has been found in an analytical form that admits of efficient numerical implementation. We analyze in detail the structure of the magnetic field in the reconnection region and its variation with model parameters.  相似文献   

14.
In a previous publication (Dominik and Nübold, 2002, Icarus 157, 173-186), we presented analytical expressions and theoretical considerations concerning preplanetary dust aggregation with magnetized grains in the solar nebula. The present work is dedicated to the experimental study of magnetic aggregation in a ground-based laboratory as well as under microgravity conditions on parabolic flights. We conducted aggregation experiments with dust analogues in order to study the temporal evolution and the structural outcome of grain growth processes dominated by or comprising exclusively magnetic grains. Within aggregation times ranging from a couple of seconds to a few minutes only, formation of huge chain-like and/or web-like dust aggregates was observed. After aggregate retrieval we were able to study the sizes and structures of the aggregates in great detail. We established the fractal dimension of the aggregates as Dfs=1.20±0.05 for single chains and Dfc=1.50±0.21 for inter-connected web-like structures. This is considerably lower than for non-magnetic grain growth. The dynamic exponent z for the mass increase with time according to tz was found to be z=2.7 from in-situ video images of the microgravity aggregation runs. The results are compared with the theoretical considerations presented earlier as well as with previous experimental work on the same and on related topics, respectively.  相似文献   

15.
Using RHESSI and some auxiliary observations we examine possible connections between the spatial and temporal structure of nonthermal hard X-ray (HXR) emission sources from the two-ribbon flares of 29 May 2003 and 19 January 2005. In each of these events quasi-periodic pulsations (QPP) with time period of 1 – 3 minutes are evident in both hard X rays and microwaves. The sources of nonthermal HXR emission are situated mainly at the footpoints of the flare arcade loops observed by TRACE and the SOHO/EIT instrument in the EUV range. At least one of the sources moves systematically during and after the QPP phase in each flare. The sources move predominantly parallel to the magnetic inversion line during the 29 May flare and along flare ribbons during the QPP phase of both flares. By contrast, the sources start to show movement perpendicular to the flare ribbons with velocity comparable to that along the ribbons’ movement after the QPP phase. The sources of each pulse are localized in distinct parts of the ribbon during the QPP phase. The measured velocity of the sources and the estimated energy release rate do not correlate well with the flux of the HXR emission calculated from these sources. The sources of microwaves and thermal HXRs are situated near the apex of the flare loop arcade and are not stationary either. Almost all of the QPP as well as some pulses of nonthermal HXR emission during the post-QPP phase reveal soft – hard – soft spectral behavior, indicating separate acts of electron acceleration and injection. In our opinion at least two different flare scenarios based on the Nakariakov et al. (2006, Astron. Astrophys. 452, 343) model and on the idea of current-carrying loop coalescence are suitable for interpreting the observations. However, it is currently not possible to choose between them owing to observational limitations.  相似文献   

16.
The solar wind conditions at one astronomical unit (AU) can be strongly disturbed by interplanetary coronal mass ejections (ICMEs). A subset, called magnetic clouds (MCs), is formed by twisted flux ropes that transport an important amount of magnetic flux and helicity, which is released in CMEs. At 1 AU from the Sun, the magnetic structure of MCs is generally modeled by neglecting their expansion during the spacecraft crossing. However, in some cases, MCs present a significant expansion. We present here an analysis of the huge and significantly expanding MC observed by the Wind spacecraft during 9 – 10 November 2004. This MC was embedded in an ICME. After determining an approximate orientation for the flux rope using the minimum variance method, we obtain a precise orientation of the cloud axis by relating its front and rear magnetic discontinuities using a direct method. This method takes into account the conservation of the azimuthal magnetic flux between the inbound and outbound branches and is valid for a finite impact parameter (i.e., not necessarily a small distance between the spacecraft trajectory and the cloud axis). The MC is also studied using dynamic models with isotropic expansion. We have found (6.2±1.5)×1020 Mx for the axial flux and (78±18)×1020 Mx for the azimuthal flux. Moreover, using the direct method, we find that the ICME is formed by a flux rope (MC) followed by an extended coherent magnetic region. These observations are interpreted by considering the existence of a previously larger flux rope, which partially reconnected with its environment in the front. We estimate that the reconnection process started close to the Sun. These findings imply that the ejected flux rope is progressively peeled by reconnection and transformed to the observed ICME (with a remnant flux rope in the front part).  相似文献   

17.
叙述和介绍了太阳爆发的磁通量绳灾变理论和模型的发展过程,强调了建立这样的模型所需要的观测基础。讨论了由模型所预言的爆发磁结构的几个重要特征以及观测结果对这种预言的证实。在此模型的基础上,讨论了一个典型的爆发过程中所出现的不同现象及它们之间的相互关系。最后,介绍了作者的一项最新尝试:将太阳爆发的灾变理论和模型应用到对黑洞吸积盘间歇性喷流的理论研究当中,以及研究所取得的初步结果。  相似文献   

18.
To propel a spacecraft in the direction leaving the Sun, a magnetic sail (MagSail) blocks the hypersonic solar wind plasma flow by an artificial magnetic field. In order to simulate the interaction between the solar wind and the artificially deployed magnetic field produced around a magnetic sail spacecraft, a laboratory simulator was designed and constructed inside a space chamber. As a solar wind simulator, a high-power magnetoplasmadynamic arcjet is operated in a quasisteady mode of 0.8 ms duration. It can generate a simulated solar wind that is a high-speed (above 20 km/s), high-density (1018 m−3) hydrogen plasma plume of ∼0.7 m in diameter. A small coil (2 cm in diameter), which is to simulate a magnetic sail spacecraft and can obtain 1.9-T magnetic field strength at its center, was immersed inside the simulated solar wind. Using these devices, the formation of a magnetic cavity (∼8 cm in radius) was observed around the coil, which indicates successful simulation of the plasma flow of a MagSail in the laboratory.  相似文献   

19.
Spectroheliograms and disk-integrated flux monitoring in the strong resonance line of Ca ii (K line) provide the longest record of chromospheric magnetic plages. We compare recent reductions of the Ca ii K spectroheliograms obtained since 1907 at the Kodaikanal, Mt. Wilson, and US National Solar Observatories. Certain differences between the individual plage indices appear to be caused mainly by differences in the spectral passbands used. Our main finding is that the indices show remarkably consistent behavior on the multidecadal time scales of greatest interest to global warming studies. The reconstruction of solar ultraviolet flux variation from these indices differs significantly from the 20th-century global temperature record. This difference is consistent with other findings that, although solar UV irradiance variation may affect climate through influence on precipitation and storm tracks, its significance in global temperature remains elusive.  相似文献   

20.
Using magnetograms, EUV and Hα images, Owens Valley Solar Array microwave observations, and 212-GHz flux density derived from the Solar Submillimeter Telescope data, we determine the spatial characteristics of the 1B/M6.9 flare that occurred on November 28, 2001, starting at 16:26 UT in active region (AR) NOAA 9715. This flare is associated with a chromospheric mass ejection or surge observed at 16:42 UT in the Hα images. We compute the coronal magnetic field under the linear force-free field assumption, constrained by the photospheric data of the Michelson Doppler Imager and loops observed by the Extreme Ultraviolet Imaging Telescope. The analysis of the magnetic field connectivity allows us to conclude that magnetic field reconnection between two different coronal/chromospheric sets of arches was at the origin of the flare and surge, respectively. The optically thick microwave spectrum at peak time shows a shape compatible with the emission from two different sites. Fitting gyrosynchrotron emission to the observed spectrum, we derive parameters for each source. Electronic Supplementary Material The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号