首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
三角形网格下求解二维浅水方程的和谐Godunov格式   总被引:13,自引:3,他引:13       下载免费PDF全文
潘存鸿 《水科学进展》2007,18(2):204-209
为保证计算格式的和谐性,通过特殊的底坡源项处理技术,在三角形网格上建立了求解二维浅水流动方程的具有空间二阶精度的Godunov格式。应用准确Riemann解求解法向数值通量,用改正的干底Riemann解处理动边界问题。经典型算例和钱塘江河口涌潮计算验证,表明模型健全,分辨率高,具有较大的推广应用价值。  相似文献   

2.
Soil water balance model for precipitation-induced shallow landslides   总被引:1,自引:2,他引:1  
Precipitation infiltration is one of the most significant triggering factors for slope failure occurrence in many places around the world. Knowledge of the mechanisms leading to precipitation-induced slope failures is of great importance to the management of landslide hazard. In this study, a soil water balance model is developed to estimate soil water flux during the process of infiltration from rainfall data, with consideration of storm periods and non-storm periods. Two important assumptions in this study are given: (1) instantaneous uniform distribution of the degree of saturation and (2) a linear relationship between evapotranspiration and the related degree of saturation. For storm periods, the Brooks and Corey model estimates both the soil water retention curve and soil water parameters. The infiltration partition is employed by an infinite-series solution of Philip in conjunction with the time compression approximation. For none-storm periods, evapotranspiration can be derived for the moisture depletion of soil water. This study presents a procedure for calculating the safety factor for an unsaturated slope suffering from precipitation infiltration. The process of infiltration into a slope due to rainfall and its effect on soil slope behavior are examined using modified Mohr–Coulomb failure criterion in conjunction with a soil water balance model. The results indicate that the matric suction, which is closely related to slope stability, is affected by the degree of saturation controlled by rainfall events.  相似文献   

3.
黄河下游非恒定输沙数学模型——Ⅱ模型验证   总被引:9,自引:1,他引:9       下载免费PDF全文
利用所构建的非恒定输沙数学模型,对黄河下游铁谢至孙口河段内的1977年高含沙洪水、1982年大水少沙型洪水以及1996年典型洪水进行了数值模拟.模拟结果证明了数学模型的可靠性,表明该模型不仅能模拟黄河下游河道一般洪水和高含沙洪水的水沙传播、水位变化及河床变形等,而且对模拟现行严重萎缩河道内的洪水演进及河床冲淤特性也有较好的适应性.  相似文献   

4.
非结构网格上的三维浅水流动数值模型   总被引:7,自引:3,他引:7       下载免费PDF全文
针对当前复杂环境水流模拟的需求,建立了新型的基于特征型高分辨率数值算法的三维非结构网格浅水动力模型。模型采用有限体积法离散sigma坐标下的三维浅水方程,运用Roe黎曼近似解评估水平界面通量。模型网格拟合边界能力强,可根据需要局部加密;格式数值性能优良,具有守恒性、单调迎风性、高数值分辨率等特性。同时,应用干湿判别法处理动边界,以适应浅滩地形漫/露过程模拟的需要。封闭水池内部风生环流、干河床上溃坝过程和长江口实际潮流场的模拟从不同侧面展示了模型的特点,结果表明它能够准确地预测水流的三维流动结构,而且计算简单高效,具有良好的数值稳定性。  相似文献   

5.
刘诚  沈永明 《水科学进展》2008,19(6):851-856
水生植物的存在改变了明渠内水流的流动结构,也影响着泥沙的输运。建立三维湍流模型,在水流控制方程中加入植被阻力项和植被密度项来考虑刚性植物对水动力特性和泥沙输运特性的影响。应用该三维数值模型计算了矩形水槽内淹没植被对水流水平时均流速垂向分布的影响、复式明渠边滩栽种挺水植被对水流深度、平均流速分布以及植被岛周围泥沙床面的冲淤变形的影响。数值计算结果与实测结果吻合良好,表明本模型可以有效地描述刚性水生植物对水流泥沙运动的影响。  相似文献   

6.
黄河下游输沙水量研究综述   总被引:11,自引:2,他引:11       下载免费PDF全文
石伟  王光谦 《水科学进展》2003,14(1):118-123
对输沙水量的计算方法,黄河下游汛期、非汛期输沙水量的研究现状,水库对输沙水量的影响,输沙用水总量的研究现状等方面分别作了回顾。分析指出,输沙水量与来水含沙量、来水流量、河道冲淤、河床前期条件等有关。黄河下游各时期输沙水量不同,汛期最小,其余依次为非汛期、冬三月、凌汛期。水库调水调沙的同时也改变着黄河下游的输沙水量。利用水库群调水调沙,使小浪底水库以造床流量、高含沙水流输沙,是目前推荐的黄河下游节水减淤高效输沙入海的主要方式。提出了一些有待进一步研究的问题。  相似文献   

7.
吕亚霓 《地下水》2011,(6):165-167
黄河是我国水利的重要工作对象,针对复杂的数学模型需要一个表现平台对其进行可视化的需求,重点研究如何使各种水沙运动模型信息快速、直观、丰富地表现在GIS平台上.研究的主要模块包括流速场符号化、水文信息分类渲染、流速场动画.  相似文献   

8.
A numerical model of fine-grained sediment dispersion in the New York Bight of the North American continental shelf is presented. Large amounts of waste material have been dumped in this region and the dispersal patterns of this material are of great interest to environmental managers. The model assumes that fine sediment resuspension is determined by surface wave activity and that transport is determined by tidal currents. Considering surface wave activity to be a random process reduces sediment motion to a random walk which is governed by a diffusion equation. The diffusion equation is solved numerically by an implicit time difference, finite element algorithm for a number of initial conditions. Initial conditions corresponding to ocean dumping sites show patterns of dispersal controlled by the geometry of the study region and the anisotropy of the tides. Material dumped at currently used dump sites reaches sensitive coastal areas before it leaves the continental shelf. Examination of the diffusion coefficients suggests an alternative dump site for fine-grained material. This dump site is relatively near sources of dumped material but produces minimal impact on coastal areas. This site should be considered as a possible alternative to expensive direct disposal at deep ocean sites.  相似文献   

9.
Turbidite muds in cores from the outer Scotian continental margin, off eastern Canada, contain abundant thin silt laminae. Graded laminated units are recognized in parts of this sequence. These represent single depositional events, and show a regular decrease in modal grain size and thickness of the silt laminae through the unit. A similar fining trend is shown by both silt and mud layers over hundreds of kilometres downslope. Textural analysis of individual laminae allows the construction of a dynamically consistent physical model for transport and sorting in muddy turbidity currents. Hydraulic sorting aggregates finer material to the top and tail regions of a large turbidity flow which then overspills its channel banks. Downslope lateral sorting occurs with preferential deposition of coarser silt grains and larger mud flocs. Depositional sorting by increased shear in the boundary layer separates clay flocs from silt grains and results in a regular mud/silt lamination. Estimates can be made of the physical parameters of the turbidity flows involved. They are a minimum of several hundreds of metres thick, have low concentrations (of the order of 10?3 or 2500 mg 1?1), and move downslope at velocities of 10-20 cm s?1. A 5 mm thick, coarse silt lamina takes about 10 h to deposit, and the subsequent mud layer ‘blankets’ very rapidly over this. A complete unit is deposited in 2-6 days which is the time it takes for the turbidity flow to pass a particular point. These thick, dilute, low-velocity flows are significantly different from the ‘classical’ turbidity current. However, there is mounting evidence in support of the new concept from laboratory observations and direct field measurements.  相似文献   

10.
基于有限体积方法和结构化网格,建立了海底滑坡引起的波浪传播数值模型。模型控制方程为考虑了海床随时间变化的二维浅水方程。采用中心迎风格式计算控制体界面数值通量,采用线性重构技术、局部海床高程处理技术和全隐式离散底摩阻项,保证了格式的和谐性、守恒性和水深非负性,有效处理了海岸动边界问题。时间积分采用具有强稳定性质的二阶龙格-库塔方法(ssp RK)。针对滑坡体兴波经典算例开展数值模拟,将计算结果与解析解、实验结果及其他模型计算结果进行比较和分析。结果表明,对于所考虑的计算工况,模型能较合理地模拟滑坡兴波的产生、传播和爬高过程。  相似文献   

11.
构建起具有通用性的黄河下游一维非恒定输沙数学模型.该模型建立了新的泥沙连续性方程与河床变形方程,克服了以往数学模型计算中取饱和恢复系数小于1等缺陷,引入了符合黄河下游河道水沙特点的水流挟沙力和河床糙率计算等公式,给出了悬移质含沙量以及悬移质泥沙平均粒径沿横向分布的计算方法,以及阐明了河槽在冲淤过程中河宽变化规律的模拟技术.运用Preissmann四点差分格式离散水流方程,并与泥沙连续性方程进行非耦合求解.  相似文献   

12.
构建起具有通用性的黄河下游一维非恒定输沙数学模型.该模型建立了新的泥沙连续性方程与河床变形方程,克服了以往数学模型计算中取饱和恢复系数小于1等缺陷,引入了符合黄河下游河道水沙特点的水流挟沙力和河床糙率计算等公式,给出了悬移质含沙量以及悬移质泥沙平均粒径沿横向分布的计算方法,以及阐明了河槽在冲淤过程中河宽变化规律的模拟技术.运用Preissmann四点差分格式离散水流方程,并与泥沙连续性方程进行非耦合求解.  相似文献   

13.
黄河下游河道输沙水量及计算方法研究   总被引:15,自引:0,他引:15       下载免费PDF全文
根据黄河下游1950年以来的水沙、河道冲淤及洪水观测资料,系统分析了黄河下游主要控制站输沙水量与来沙量、洪水量级、水沙搭配、区间引水引沙及河道允许淤积度等因子间的相互关系。在探讨泥沙输移规律和机理的基础上,引入水沙搭配参数,建立了适用于黄河下游主要控制站汛期及洪水期计算输沙水量的数学表达式,量化了水沙条件及河道允许淤积度变化对河道输沙水量的影响程度。该研究对维持黄河健康生命及黄河水资源的规划利用具有重要的理论和实际意义。  相似文献   

14.
陈界仁  曹淼 《水科学进展》2003,14(6):696-699
在坡面土壤侵蚀输沙计算中,可选用的输沙能力模式较多,但这些模式多运用于恒定输沙,在非恒定输沙中运用不多。建立了坡面土壤侵蚀非恒定输沙数学模型,模型中的输沙能力运用水流切应力、水流功率、单位水流功率3种模式,对模型过程采用有限差分格式离散求解。根据实测水沙资料进行模型参数率定,运用3种输沙能力模式于不同降雨强度、不同坡度的非恒定坡面输沙过程中。结果表明:在坡面非恒定输沙计算中,不同输沙能力模式对计算结果有明显影响,在降雨强度较小时,单位水流功率模式结果较其他两个模式为好,而在雨强较大时,切应力模式计算结果较好。  相似文献   

15.
浅水波浪数值模型SWAN的原理及应用综述   总被引:14,自引:0,他引:14       下载免费PDF全文
概述了模拟海岸、河口的浅水波浪数值模型研究现状、存在的问题以及用能量平衡方程预报海浪的发展历史。介绍了基于当代最新波浪理论研究成果的第三代浅水波浪数值模型SWAN模型,对模型的适用性、数值特性、功能及局限性进行了阐述。介绍动谱平衡方程数学模型、方程离散要求、边界条件的处理和源项(包括能量输入、损耗及波与波之间非线性相互作用)的处理方法,重点介绍三相波非线性相互作用。模拟海安湾有效波高、波周期场,并分析波与波之间非线性相互作用对波浪要素预报的影响,最后对SWAN模型的应用前景和研究趋势进行了展望。  相似文献   

16.
Lake Houston is a man-made reservoir located northeast of Houston, Texas. The purpose of this investigation was to document suspended sediment transport, sedimentation, and resuspension in the lake with a view towards estimating the influence of sedimentation on water quality. Sediment traps were placed in strategic locations in the lake to collect suspended sediments. Samples were analyzed for bulk density, grain size, organic carbon, and a number of trace elements. These data were analyzed along with meteorological data to examine those factors which regulate suspended sediment input and dispersal, and the role of suspended sediments in controlling water quality within the lake. Sediment input to the lake depends primarily on the intensity of rainfall in the watershed. Sediment movement within the lake is strongly influenced by wave activity, which resuspends sediments from shallow areas, and by wind-driven circulation. The increased residence time of suspended sediments due to resuspension allows greater decomposition of organic matter and the release of several trace elements from sediments to the water column. Virtually all samples from sediment traps suspended between 1 and 5 m above the lake bottom contain medium to coarse silt, and even some very fine sand-sized material. This implies that circulation in Lake Houston is periodically intense enough to transport this size material in suspension. During winter, northerly winds with sustained velocities of greater than 5 m/sec provide the most suitable condition for rapid (<1 d) transport of suspended sediment down the length of the lake. Fluctuations in current velocities and the subsequent suspension/deposition of particles may explain variations in the abundance of coliform bacteria in Lake Houston.  相似文献   

17.
A quantitative vulnerability function for fluvial sediment transport   总被引:5,自引:6,他引:5  
In quantitative risk assessment, risk is expressed as a function of hazard, elements at risk exposed, and vulnerability. Vulnerability is defined as the expected degree of loss for an element at risk as a consequence of a certain event, following a natural-scientific approach combined with economic methods of loss appraisal. The resulting value ranges from 0 (no damage) to 1 (complete destruction). With respect to torrent processes, i.e., fluvial sediment transport, this concept of vulnerability—though widely acknowledged—did not result in sound quantitative relationships between process intensities and associated degrees of loss so far, even if considerable loss occurred during recent years. To close this gap and establish this relationship, data from three well-documented torrent events in the Austrian Alps were used to derive a quantitative vulnerability function applicable to residential buildings located on torrent fans. The method applied followed a spatially explicit empirical approach within a GIS environment and was based on process intensities, the spatial characteristics of elements at risk, and average reconstruction values on a local scale. Additionally, loss data were collected from responsible administrative bodies and analysed on an object level. The results suggest a modified Weibull distribution to fit best to the observed damage pattern if intensity is quantified in absolute values, and a modified Frechet distribution if intensity is quantified relatively in relation to the individual building height. Additionally, uncertainties resulting from such an empirical approach were studied; in relation to the data quality a 90% confidence band was found to represent the data range appropriately. The vulnerability relationship obtained allows for an enhanced quantification of torrent risk, but also for an inclusion in comprehensive vulnerability models including physical, social, economic, and institutional vulnerability. As a result, vulnerability to mountain hazards might decrease in the future.  相似文献   

18.
In response to the impact of climate change, the US Army Corps of Engineers proposed a large-scale implementation plan for an aquifer storage and recovery (ASR) project in the Kissimmee River Basin, Florida, in 2009. It is envisaged that the routine operation of the ASR will deliver recovered water from ASR wells into Lake Okeechobee with inherently different water quality parameters. However, the addition of ASR well water into such a large, shallow lake has raised concerns about sediment phosphorus stability, which could lead to increased eutrophication in Lake Okeechobee. This paper presents a geochemical assessment to explore possible impacts of the addition of ASR well water on lake sediment in terms of phosphorus adsorption, desorption, and diffusion processes via laboratory-scale batch and column tests. Based on five different mixing ratios of ASR well water and lake water, estimated isotherms, and piston velocity calculations, a mechanistic modeling analysis provided a better understanding of the fate of sediment phosphorus and its transport processes. A final multicriteria decision analysis suggests that the mixing ratio of 1:10 between ASR well water and lake water is deemed more applicable than others based on the given composition of ASR well water, which might buffer more external phosphorus loading in the long run.  相似文献   

19.
Ocean modellers use bathymetric datasets like ETOPO5 and ETOPO2 to represent the ocean bottom topography. The former dataset is based on digitization of depth contours greater than 200 m, and the latter is based on satellite altimetry. Hence, they are not always reliable in shallow regions. An improved shelf bathymetry for the Indian Ocean region (20°E to 112°E and 38°S to 32°N) is derived by digitizing the depth contours and sounding depths less than 200 m from the hydrographic charts published by the National Hydrographic Office, India. The digitized data are then gridded and used to modify the existing ETOPO5 and ETOPO2 datasets for depths less than 200 m. In combining the digitized data with the original ETOPO dataset, we apply an appropriate blending technique near the 200 m contour to ensure smooth merging of the datasets. Using the modified ETOPO5, we demonstrate that the original ETOPO5 is indeed inaccurate in depths of less than 200 m and has features that are not actually present on the ocean bottom. Though the present version of ETOPO2 (ETOPO2v2) is a better bathymetry compared to its earlier versions, there are still differences between the ETOPO2v2 and the modified ETOPO2. We assess the improvements of these bathymetric grids with the performance of existing models of tidal circulation and tsunami propagation.  相似文献   

20.
Shallow landslides induced by heavy rainfall events represent one of the most disastrous hazards in mountainous regions because of their high frequency and rapid mobility. Recent advancements in the availability and accessibility of remote sensing data, including topography, land cover and precipitation products, allow landslide hazard assessment to be considered at larger spatial scales. A theoretical framework for a landslide forecasting system was prototyped in this study using several remotely sensed and surface parameters. The applied physical model SLope-Infiltration-Distributed Equilibrium (SLIDE) takes into account some simplified hypotheses on water infiltration and defines a direct relation between factor of safety and the rainfall depth on an infinite slope. This prototype model is applied to a case study in Honduras during Hurricane Mitch in 1998. Two study areas were selected where a high density of shallow landslides occurred, covering approximately 1,200 km2. The results were quantitatively evaluated using landslide inventory data compiled by the United States Geological Survey (USGS) following Hurricane Mitch’s landfall. The agreement between the SLIDE modeling results and landslide observations demonstrates good predictive skill and suggests that this framework could serve as a potential tool for the future early landslide warning systems. Results show that within the two study areas, the values of rates of successful estimation of slope failure locations reached as high as 78 and 75%, while the error indices were 35 and 49%. Despite positive model performance, the SLIDE model is limited by several assumptions including using general parameter calibration rather than in situ tests and neglecting geologic information. Advantages and limitations of this physically based model are discussed with respect to future applications of landslide assessment and prediction over large scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号