共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
David Savage Josep M. SolerKohei Yamaguchi Colin WalkerAkira Honda Manabu InagakiClaire Watson James WilsonSteven Benbow Irina GausJoerg Rueedi 《Applied Geochemistry》2011,26(7):1138-1152
The use of cement and concrete as fracture grouting or as tunnel seals in a geological disposal facility for radioactive wastes creates potential issues concerning chemical reactivity. From a long-term safety perspective, it is desirable to be able model these interactions and changes quantitatively. The ‘Long-term Cement Studies’ (LCS) project was formulated with an emphasis on in situ field experiments with more realistic boundary conditions and longer time scales compared with former experiments. As part of the project programme, a modelling inter-comparison has been conducted, involving the modelling of two experiments describing cement hydration on one hand and cement-rock reaction on the other, with teams representing the NDA (UK), Posiva (Finland), and JAEA (Japan).This modelling exercise showed that the dominant reaction pathways in the two experiments are fairly well understood and are consistent between the different modelling teams, although significant differences existed amongst the precise parameterisation (e.g. reactive surface areas, dependences of rate upon pH, types of secondary minerals), and in some instances, processes (e.g. partition of alkali elements between solids and liquid during cement hydration; kinetic models of cement hydration). It was not conclusive if certain processes such as surface complexation (preferred by some modellers, but not by others) played a role in the cement-rock experiment or not. These processes appear to be more relevant at early times in the experiment and the evolution at longer timescales was not affected. The observed permeability profile with time could not be matched. The fact that no secondary minerals could be observed and that the precipitated mass calculated during the simulations is minor might suggest that the permeability reduction does not have a chemical origin, although a small amount of precipitates at pore throats could have a large impact on permeability.The modelling exercises showed that there is an interest in keeping the numerical models as simple as possible and trying to obtain a reasonable fit with a minimum of processes, minerals and parameters. However, up-scaling processes and model parameterisation to the timescales appropriate to repository safety assessment are of considerable concern. Future modelling exercises of this type should focus on a suitable natural or industrial analogue that might aid assessing mineral-fluid reactions at these longer timescales. 相似文献
3.
Platinum-group element (PGE) abundances in mantle rocks are generally considered to result from a late meteorite addition to the early Earth, post-dating the core separation event. As such, PGEs are key tracers for the Earth accretion history. For decades, the PGEs systematics of undepleted mantle peridotites has been used to constrain the composition of meteorite impactors involved in the late veneer material. Despite multiple evidence of considerable modifications by partial melting, harzburgites from the Sumail ophiolite (Oman) display a mean PGE composition very akin to recently refined estimates for the Primitive Upper Mantle (PUM) of the Earth. These rocks document a resetting of the PUM signature by percolating basaltic melts, which precipitated Pd-enriched Cu–Ni sulphides within a strongly Pd-depleted residual harzburgitic protolith. Such a resetting casts doubt on both the reliability of any PUM estimates and relevance of the PUM concept itself, at least for PGEs. 相似文献
4.
The compositional variability of the lithospheric mantle at extensional settings is largely caused by the reactive percolation of uprising melts in the thermal boundary layer and in lithospheric environments.The Alpine-Apennine(A-A)ophiolites are predominantly constituted by mantle peridotites and are widely thought to represent analogs of the oceanic lithosphere formed at ocean/continent transition and slow-to ultraslow-spreading settings.Structural and geochemical studies on the A-A mantle peridotites have revealed that they preserve significant compositional and isotopic heterogeneity at variable scale,reflecting a long-lived multi-stage melt migration,intrusion and melt-rock interaction history,occurred at different lithospheric depths during progressive uplift.The A-A mantle peridotites thus constitute a unique window on mantle dynamics and lithosphere-asthenosphere interactions in very slow spreading environments.In this work,we review field,microstructural and chemical-isotopic evidence on the major stages of melt percolation and melt-rock interaction recorded by the A-A peridotites and discuss their consequences in creating chemical-isotopic heterogeneities at variable scales and enhancing weakening and deformation of the extending mantle.Focus will be on three most important stages:(i)old(pre-Jurassic)pyroxenite emplacement,and the significant isotopic modification induced in the host mantle by pyroxenite-derived melts,(ii)melt-peridotite interactions during Jurassic mantle exhumation,i.e.the open-system reactive porous flow at spinel facies depths causing bulk depletion(origin of reactive harzburgites and dunites),and the shallower melt impregnation which originated plagioclase-rich peridotites and an overall mantle refertilization.We infer that migrating melts largely originated as shallow,variably depleted,melt fractions,and acquired Si-rich composition by reactive dissolution of mantle pyroxenes during upward migration.Such melt-rock reaction processes share significant similarities with those documented in modern oceanic peridotites from slow-to ultraslow-spreading environments and track the progressive exhumation of large mantle sectors at shallow depths in oceanic settings where a thicker thermal boundary layer exists,as a consequence of slow-spreading rate. 相似文献
5.
Chunguang Wang Yan Liang Wenliang Xu Nick Dygert 《Contributions to Mineralogy and Petrology》2013,166(5):1469-1488
Interaction between basaltic melts and peridotites has played an important role in modifying the lithospheric and asthenospheric mantle during magma genesis in a number of tectonic settings. Compositions of basaltic melts vary considerably and may play an important role in controlling the kinetics of melt–peridotite interaction. To better understand the effect of melt composition on melt–peridotite interaction, we conducted spinel lherzolite dissolution experiments at 2 GPa and 1,425 °C using the dissolution couple method. The reacting melts include a basaltic andesite, a ferro-basalt, and an alkali basalt. Dissolution of lherzolite in the basaltic andesite and the ferro-basalt produced harzburgite–lherzolite sequences with a thin orthopyroxenite layer at the melt–harzburgite interface, whereas dissolution of lherzolite in the alkali basalt produced a dunite–harzburgite–lherzolite sequence. Systematic variations in mineral compositions across the lithological units are observed. These mineral compositional variations are attributed to grain-scale processes that involve dissolution, precipitation, and reprecipitation and depend strongly on reacting melt composition. Comparison of mineral compositional variations across the dissolution couples with those observed in mantle xenoliths from the North China Craton (NCC) helps to assess the spatial and temporal variations in the extent of siliceous melt and peridotite interaction in modifying the lithospheric mantle beneath the NCC. We found that such melt–rock interaction mainly took place in Early Cretaceous, and is responsible for the enrichment of pyroxene in the lithospheric mantle. Spatially, siliceous melt–peridotite interaction took place in the ancient orogens with thickened lower crust. 相似文献
6.
The dissolution kinetics of shallow water marine carbonates (low-Mg calcite, aragonite and Mg-calcites) were investigated in seawater (S = 35) at 25°C and a PCO2 of 10?2.5 atm. using the pH-stat method. Carbonate dissoluton rates (μmoles g?1 hr?1) fit the empirical kinetic expression, R = k(1 - Ω)n, where R = dissolution rate, k = rate constant, Ω = saturation state, and n = order of reaction. Reaction orders were near 2.9 for low-Mg calcites, 2.5 for aragonites and 3.4 for Mg-calcites.The rate constant, k, expressed as μmoles g?1 hr?1, varied by nearly a factor of ten for the different samples, reflecting differences in amount of reactive surface area. Reactive surface area of the biogenic phases ranged from 0.3% to 66% of the total surface area determined by the BET gas adsorption method. The discrepancy between reactive and total surface area was greatest for samples with high BET surface areas (> 1 m2 g?1) and delicate microstructures.Relative dissolution rates of the various biogenic carbonates as a function of seawater calcium carbonate ion molal product (IMP) were related to both mineral stability and grain microstructure. In seawater undersaturated with respect to aragonite, finely crystalline aragonites dissolved more rapidly than thermodynamically less stable high Mg-calcites (15–18 mole% MgCO3) with lower reactive surface areas. Therefore, under certain conditions, differences in grain microstructural complexity can override thermodynamic constraints and lead to selective dissolution of a thermodynamically more stable mineral phase. 相似文献
7.
A FEM model for analysis of fully coupled multiphase flow, thermal transport and stress/deformation in geological porous media was developed based on the momentum, mass and energy conservation laws of the continuum mechanics and the averaging approach of the mixture theory over a three phase (solid–liquid–gas) system. Six processes (i.e. stress–strain, water flow, gas flow, vapor flow, heat transport and porosity evolution processes) and their coupling effects are considered, which not only makes the problem well-defined, but renders the governing PDEs closed, complete, compact and compatible. Displacements, pore water pressure, pore gas pressure, pore vapor pressure, temperature and porosity are selected as basic unknowns. The physical phenomena such as phase transition, gas solubility in liquid, thermo-osmosis, moisture transfer and moisture swelling are modeled. As a result, the relative humidity and other related variables in porous media can be evaluated on a sounder physical basis. A three dimensional computer code, THYME3D, was developed, with eight degrees of freedom at each node. The laboratory CEA Mock-up test and the field scale FEBEX benchmark test on bentonite performance assessment for underground nuclear waste repositories were used to validate the numerical model and the software. The coupled THM behaviors of the bentonite barriers were satisfactorily simulated, and the effects and impacts of the governing equations, constitutive relations and property parameters on the coupled THM processes were understood in terms of more straightforward interpretation of physical processes at microscopic scale of the porous media. The work developed enables further in-depth research on fully coupled THM or THMC processes in porous media. 相似文献
8.
《Earth》2007,85(3-4):87-102
Predicting rill erosion rates for a given discharge and slope minimally requires a model for rill hydraulics that allows the prediction of hydraulic parameters and a model for sediment detachment. Several relationships that describe rill hydraulics and/or sediment detachment within an eroding rill have been proposed and are incorporated into state of the art soil erosion models.In this paper a critical review of the theoretical concepts that are underpinning current rill flow and sediment detachment models is made in the light of recent experimental results. Approaches to define detachment–hydraulics relationship are generally based on developments in alluvial river hydraulics. However, experimental evidence to support the use of these concepts in models of rill erosion is scarce and recent experimental findings suggest that the basic assumptions used to model rill erosion are to some extent flawed. An analysis of empirically collected data on rill hydraulics conclusively shows that the empirical Manning equation does not hold for rill flow and should therefore not be used in rill erosion models. An empirical power law relationship relating velocity to discharges is much better in agreement with available experimental data, both for soils with and without rock fragments. In the absence of vegetation residue and/or other macroscopic, immobile elements such as rock fragments, total shear stress and unit length shear force can be used to predict soil detachment. The use of unit length shear force has the advantage that no information about rill geometry is necessary.The evidence for sediment load and rill flow detachment interaction is somewhat conflicting: the presence of a heavy sediment load appears to restrict rill flow detachment, but the exact form of the relationship between detachment rate and sediment load remains unclear. The effect of the presence of a sediment load on flow detachments under natural conditions is also limited by the nature of the detachment and transporting capacity relationships: on a rectilinear hillslope, transporting capacity increases much more rapidly with discharge than detachment capacity.We propose modifications to the theoretical formulations used in rill erosion models so that they are in better agreement with experimental evidence. Finally, we illustrate the potential of simplified models and conclude that the combination of empirical equations for flow detachment and rill hydraulics leads to results that are consistent with empirical data relating rill erosion rates to topography. 相似文献
9.
吉林双辽地区古近纪玄武岩中一方辉橄榄岩包体记录了上地幔交代作用的信息。原生斜方辉石被交代成因的单斜辉石和橄榄石所围绕,或形成反应边结构,或斜方辉石残留在次生单斜辉石中。这些反应结构仅出现在尖晶石的周围。电子探针分析表明次生单斜辉石具有高Mg#、Cr#和CaO/Al2O3比值,次生橄榄石高Mg#、CaO和Cr2O3,被交代的尖晶石边部高Cr#、CaO。由于交代作用并未影响橄榄岩体系的Mg#,而且熔体-岩石反应结构指示Opx(斜方辉石) Sp(尖晶石) 熔体(Ⅰ)→Cpx(单斜辉石) Ol(橄榄石) 熔体(Ⅱ),结合实验以及文献资料,认为双辽地区的岩石圈地幔受到了硅酸盐熔体的交代。这种交代导致橄榄岩中斜方辉石逐渐减少,单斜辉石和橄榄石逐渐增加,从而使方辉橄榄岩渐变成易剥橄榄岩。这种交代现象可能发生在软流圈-岩石圈接触带上的熔-岩反应区,暗示了在古近纪双辽地区岩石圈减薄和软流圈上涌导致的软流圈-岩石圈的相互作用仍在继续。 相似文献
10.
The present study compares the dissolution rates of plagioclase, microcline and biotite/chlorite from a bulk granite to the dissolution rates of the same minerals in mineral-rich fractions that were separated from the granite sample. The dissolution rate of plagioclase is enhanced with time as a result of exposure of its surface sites due to the removal of an iron oxide coating. Removal of the iron coating was slower in the experiment with the bulk granite than in the mineral-rich fractions due to a higher Fe concentration from biotite dissolution. As a result, the increase in plagioclase dissolution rate was initially slower in the experiment with the bulk granite. The measured steady state dissolution rates of both plagioclase (6.2 ± 1.2 × 10−11 mol g−1 s−1) and microcline (1.6 ± 0.3 × 10−11 mol g−1 s−1) were the same in experiments conducted with the plagioclase-rich fraction, the alkali feldspar-rich fraction and the bulk granite.Based on the observed release rates of the major elements, we suggest that the biotite/chlorite-rich fraction dissolved non-congruently under near-equilibrium conditions. In contrast, the biotite and chlorite within the bulk granite sample dissolved congruently under far from equilibrium conditions. These differences result from variations in the degree of saturation of the solutions with respect to both the dissolving biotite/chlorite and to nontronite, which probably was precipitating during dissolution of the biotite and chlorite-rich fraction. Following drying of the bulk granite, the dissolution rate of biotite was significantly enhanced, whereas the dissolution rate of plagioclase decreased.The presence of coatings, wetting and drying cycles and near equilibrium conditions all significantly affect mineral dissolution rates in the field in comparison to the dissolution rate of fully wetted clean minerals under far from equilibrium laboratory conditions. To bridge the gap between the field and the laboratory mineral dissolution rates, these effects on dissolution rate should be further studied. 相似文献
11.
James E. Amonette Jonathan L. Barr Rebecca L. Erikson Laura M. Dobeck Jamie L. Barr Joseph A. Shaw 《Environmental Earth Sciences》2013,70(4):1717-1726
A multi-channel, steady-state flow-through (SSFT), soil-CO2 flux monitoring system was modified to include a larger-diameter vent tube and an array of inexpensive pyroelectric non-dispersive infrared detectors for full-range (0–100 %) coverage of CO2 concentrations without dilution. Field testing of this system was then conducted from late July to mid-September 2010 at the Zero Emissions Research and Technology project site located in Bozeman, Montana, USA. Subsequently, laboratory testing was conducted at the Pacific Northwest National Laboratory in Richland, WA, USA using a flux bucket filled with dry sand. In the field, an array of 25 SSFT and 3 non-steady-state (NSS) flux chambers was installed in a 10 × 4 m area, the long boundary of which was directly above a shallow (2-m depth) horizontal injection well located 0.5 m below the water table. Two additional chambers (one SSFT and one NSS) were installed 10 m from the well for background measurements. Volumetric soil moisture sensors were installed at each SSFT chamber to measure mean moisture levels in the top 0.15 m of soil. A total flux of 52 kg CO2 day?1 was injected into the well for 27 days and the efflux from the soil was monitored by the chambers before, during, and for 27 days after the injection. Overall, the results were consistent with those from previous years, showing a radial efflux pattern centered on a known “hot spot”, rapid responses to changes in injection rate and wind power, evidence for movement of the CO2 plume during the injection, and nominal flux levels from the SSFT chambers that were up to sevenfold higher than those measured by adjacent NSS chambers. Soil moisture levels varied during the experiment from moderate to near saturation with the highest levels occurring consistently at the hot spot. The effects of wind on measured flux were complex and decreased as soil moisture content increased. In the laboratory, flux-bucket testing with the SSFT chamber showed large measured-flux enhancement due to the Venturi effect on the chamber vent, but an overall decrease in measured flux when wind also reached the sand surface. Flux-bucket tests at a high flux (comparable to that at the hot spot) also showed that the measured flux levels increase linearly with the chamber-flushing rate until the actual level is reached. At the SSFT chamber-flushing rate used in the field experiment, the measured flux in the laboratory was only about a third of the actual flux. The ratio of measured to actual flux increased logarithmically as flux decreased, and reached parity at low levels typical of diffusive-flux systems. Taken together, the results suggest that values for advective CO2 flux measured by SSFT and NSS chamber systems are likely to be significantly lower than the actual values due to back pressure developed in the chamber that diverts flux from entering the chamber. Chamber designs that counteract the back pressure and also avoid large Venturi effects associated with vent tubes, such as the SSFT with a narrow vent tube operated at a high chamber-flushing rate, are likely to yield flux measurements closer to the true values. 相似文献
12.
This paper presents the textural, mineralogical and chemical study of veinlets cross-cutting peridotite xenoliths from the lithospheric mantle and brought to the surface by alkaline basalts (Persani Mountains, Romania). The veinlets utilized pre-existing zones of weakness in the host rocks or display a random distribution, lining grain boundaries or cross-cutting any mineral, and always forming an interconnected network. They are filled with carbonate patches included in a silicate matrix. Both products are holocrystalline. Carbonate products have alkali-poor calciocarbonatitic to sövitic compositions, while the silicate matrix composition ranges from monzodioritic to monzonitic and alkali feldspar syenitic, depending on the host-sample, i.e., within a rather alkaline silica-saturated series. The mineral phases present in the silicate matrix (F-apatite, armalcolite, chromite, diopside–enstatite series, plagioclase–sanidine series) are usually present in the carbonate zones, where forsterite is also found. Some minerals cross-cut the interface between both types of zones. Only the matrix is different, feldspathic (oligoclase to sanidine) in the former and pure calcite in the latter. Thus, mineralogical and textural relationships between both products are consistent with an origin with equilibrium liquid immiscibility. Mantle minerals cross-cut by veinlets are sometimes resorbed at grain boundaries, and at the contact of the most alkaline silicate and carbonate melts, subhedral diopside/augite formed at the expense of mantle enstatite or olivine. In terms of mineral chemistry, the compositional variations recorded by vein minerals vary along a continuous trend. They generally superpose to those observed from lherzolites to harzburgites, and exhibit the same range of composition as that observed between rims and cores of mantle minerals cross-cut by veinlets. In detail, the Ca-rich pyroxenes of veinlets are Al-poor and Mg-rich; cpx in the carbonate zones are slightly more Ca-rich than those in the silicate matrix; spinels are relatively Al- and Mg-poor but rather Cr- and Fe-rich. Existence of only one titanium oxide (armalcolite) and various pairs of pyroxenes suggest crystallization temperatures in the range 1100–1200°C and pressures between 10–15 kb. Feldspar compositions in silicate materials, which vary continuously from labradorite to sanidine, are consistent with hypersolvus and dry crystallization conditions. All of these results provide evidence that immiscibility occurred at mantle depth as the liquid was forcibly injected during hydraulic fracturing of the mantle. The compositions of conjugate melts suggest a very large miscibility gap, as expected at high pressure in a dry environment from the experiments of Kjarsgaard and Hamilton [Kjarsgaard, B.A., Hamilton, D.L., 1988. Liquid immiscibility and the origin of alkali-poor carbonatites. Mineral. Mag. 52, 43–55; Kjarsgaard, B.A., Hamilton, D.L., 1989. The genesis of carbonatites by immiscibility. In: Bell, K. (Ed.), Carbonatites: Genesis and Evolution. Unwyn Hyman, London, pp. 388–404.]. The parental melt was carbonate, silica-undersaturated and rich in F, Cl and CO2. Both immiscible melts were water-undersaturated. The cooling rate until total crystallization in veinlets was very slow, limited and necessarily occurred at mantle depth. Wall rock reactions leading to the formation of Ca-rich pyroxene at the expense of mantle enstatite or olivine occurred only at the contact with somewhat alkali-rich carbonatitic or silicate melts. Calcite, always anhedral, is the last mineral to crystallize. It is a differentiation product formed by magmatic crystallization or wall rock reaction. In some cases, given the rarity of any other minerals, it may be the product of the crystallization of a pure sövite immiscible melt. 相似文献
13.
《Journal of Structural Geology》2001,23(6-7):857-863
Following work by Stephen Taber 80 years ago, we describe vein-like arrays of parallel, fibrous crystals that grow evaporatively between pairs of brine-soaked, porous ceramic substrates. Crystals of solute grow antitaxially from fixed sites on the substrate, forcing older parts of the crystals away from the growth site, without benefit of any long-range cracking parallel to the substrate. The nutrients for growth are fed to the growth site advectively or diffusively through the substrate blocks themselves, not along the plane of the vein. We call such crystallization Taber growth and suggest, as Taber did, that it might be an important mechanism for non-evaporative fibrous vein development in nature. The Taber growth model provides a ready explanation for the ability of fibers to track vein opening directions, and tracking is indeed the rule in our samples, though exceptions are also seen. Our results lend support to ideas already in the literature that fibrous veins are not necessarily products of a crack-seal process and that fibrous veins are not necessarily syntectonic. Our observations also raise questions about criteria for recognition of syntaxial fibrous veins and underscore the importance of finding new criteria for recognition of the younging direction along fibers. 相似文献
14.
在咸水含水层中进行CO2地质封存是通过向含水层中注入CO2驱走咸水实现的。在大部分地下水被驱走之后,仍会有部分地下水残留在原来的岩石孔隙中形成残余水。残余水的形成过程及残余水饱和度的大小对CO2地质封存潜力及地质封存安全性等都具有重要影响。本研究通过超临界CO2排驱饱水岩心实验,研究了盐水种类对残余水的形成过程及残余水饱和度大小的控制作用。实验结果表明,在盐水浓度相同(35 g/L)的情况下,超临界CO2排驱盐水的最终稳定不可再降的残余水饱和度是去离子水<NaCl盐水<CaCl2盐水。从实验结果看,超临界CO2排驱咸水的过程可划分为3个阶段,本文分别称他们为活塞式排驱阶段、携带式排驱阶段和溶解式排驱阶段。论文提出了一个毛细管模型,利用这一模型对这3个阶段中CO2排驱水的机理进行了分析。 相似文献
15.
16.
We present a database and a graphical analysis of published experimental results for dissolution rates of olivine, quartz plagioclase, clinopyroxene, orthopyroxene, spinel, and garnet in basaltic and andesitic melts covering a range of experimental temperatures (1100–1500°C) and pressures (105 Pa-3.0 GPa). The published datasets of Donaldson (1985, 1990) and Brearly and Scarfe (1986) are the most complete. Experimental dissolution rates from all datasets are recalculated and normalized to a constant oxygen basis to allow for direct comparison of dissolution rates between different minerals. Dissolution rates (ν) range from 5·10−10 oxygen equivalent moles (o.e.m.) cm−2 s−1 for olivine in a basaltic melt to 1.3·10−5 o.e.m. cm−2 s−1 for garnet in a basaltic melt. Values of ln ν are Arthenian for the experiments examined and activation energies range from 118 to 1800 kJ/o.e.m. for quartz and clinopyroxene, respectively.
The relationship between calculated A/RT for the dissolution reactions, where A is the thermodynamic potential affinity, and values of ν is linear for olivine, plagioclase, and quartz. We interpret this as strong evidence in support of using calculated A as a predictor of ν for, at least, superliquidus melt conditions. 相似文献
17.
Yan-Jie Tang Hong-Fu Zhang Takuya Moriguti Ji-Feng Ying 《Geochimica et cosmochimica acta》2007,71(17):4327-4341
Li concentrations and isotopic compositions of coexisting minerals (ol, opx, and cpx) from peridotite xenoliths entrained in the Hannuoba Tertiary basalts, North China Craton, provide insight into Li isotopic fractionation between mantle minerals during melt-rock interaction in the considerably thinned lithospheric mantle. Bulk analyses of mineral separates show significant enrichment of Li in cpx (2.4-3.6 ppm) relative to olivine (1.2-1.8 ppm), indicating that these peridotites have been affected by mantle metasomatism with mafic silicate melts. Bulk olivine separates (δ7Li ∼ +3.3‰ to +6.4‰) are isotopically heavier than coexisting pyroxenes (δ7Li ∼ −3.3‰ to −8.2‰ in cpx, and −4.0‰ to −6.7‰ in opx). Such large variation suggests Li elemental and isotopic disequilibrium. This conclusion is supported by results from in situ SIMS analyses of mineral grains where significant Li elemental and isotopic zonations exist. The olivine and opx have lower Li concentrations and heavier Li isotopes in the rims than in the cores. This reverse correlation of δ7Li with Li concentrations indicates diffusive fractionation of Li isotopes. However, the zoning patterns in coexisting cpx show isotopically heavier rims with higher Li abundances. This positive correlation between δ7Li and Li concentrations suggests a melt mixing trend. We attribute Li concentration and isotope zonation in minerals to the effects of two-stage diffusive fractionation coupled with melt-rock interaction. The earliest melts may have been derived from the subducted oceanic slab with low δ7Li values produced by isotopic fractionation during the dehydration of the seawater-altered slab. Melts at later stages were derived from the asthenosphere and interacted with the peridotites, producing the Li elemental and isotopic zoning in mineral grains. These data thus provide evidence for multiple-stage peridotite-melt interaction in the lithospheric mantle beneath the northern North China Craton. 相似文献
18.
Comparison of laboratory testing protocols to field observations of the weathering of sulfide-bearing mine tailings 总被引:1,自引:0,他引:1
Carla Ardau David W. Blowes Carol J. Ptacek 《Journal of Geochemical Exploration》2009,100(2-3):182-191
A laboratory weathering study using a humidity cell procedure was conducted on two sulfide-bearing tailing samples from a metallurgical site in Ontario (Canada). The test was accompanied by microbiological studies to enumerate the major groups of sulfur-oxidizing bacteria and determine their potential role at different stages during the oxidation process. To evaluate the utility of this method, results were compared with those of previous laboratory and field studies on the same materials. The mineralogy of the laboratory samples differs only by the addition of a small amount of hydronium-bearing natrojarosite [(Na,H3O)Fe3(SO4)2(OH)6] to one sample. The progress of sulfide oxidation and the rates of solute release were determined to evaluate the extent of mineral dissolution. These processes were influenced strongly by the capacity of the material to generate acidity, which was enhanced by the presence of hydronium-bearing natrojarosite. Acid-neutralization processes occurring during the laboratory tests were affected by reaction kinetics, consistent with field observations. In particular, the extent of carbonate-mineral dissolution appears to be different in the laboratory than in the field, where more prolonged rock–water interaction allowed more complete chemical equilibration. As a consequence, the capacity of this test procedure to predict weathering reactions in mine tailings is limited by its inability to reproduce the weathering sequence observed in the field. The results of the microbiological study showed that distinct groups of sulfur-oxidizing bacteria operate at different stages of the oxidative process, as was observed in field studies where tailings oxidation occurred under natural conditions, suggesting that microbiological tests performed for laboratory studies are reflective of field conditions. 相似文献
19.
地层特性随机场插值方法应用研究 总被引:5,自引:3,他引:5
地质勘探中钻孔的数量常是有限的,钻孔以外未知的地质特性需要进行插值或推断。实践中一般假定两钻孔之间的地质特性为线性分布,用直线连接。线性连接方法简单,但精度难以保证。因此,有必要进一步研究简便且精度高的插值方法。对常用的空间插值数学方法作一简要评价,认为Kriging法更适用于地质特性随机场的插值。并尝试将Kriging法应用于南水北调穿黄工程砂土地基标准贯入击数及液化范围的空间插值,采用合适的变差函数以反映砂层的空间相关特性,由插值结果得到地基砂层标贯击数及液化范围的沿线分布,从而可以更好地了解地层特征的变化情况。 相似文献
20.
贵州丹寨汞矿田甲烷包裹体研究及其地质意义 总被引:1,自引:0,他引:1
根据显微镜下观察和包裹体均一温度测定,在丹寨汞矿田中发现了大量高密度甲烷包裹体,其均一温度为-92.7~-118.2 ℃,密度为0.278~0.350 g/cm3。与甲烷包裹体共生的盐水包裹体均一温度主要为170~230 ℃。以盐水包裹体的均一温度作为甲烷包裹体的捕获温度,用包裹体热力学方法计算出高密度甲烷包裹体在成矿过程中的捕获压力高达106.8~233.3 MPa。高密度甲烷包裹体的发现,为丹寨古油藏中原油在深埋过程中受高温裂解作用产生超压环境提供了重要证据。甲烷包裹体的观测结果为研究油热裂解气藏的压力条件和探讨汞成矿与油气成藏之间的关系提供了重要信息。 相似文献