首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We discuss the expansion of the universe in the FRLW model assuming that the source of dark energy is either tachyonic scalar field or quintessence. The tachyonic scalar field with exponential and power-law potential (function of homogeneous scalar field ?) both gives exponential expansion of the universe. It is found that this behaviour is not distinguishable from the quintessence with respect to these potentials.  相似文献   

2.
Tachyonic scalar field-driven late universe with dust matter content is considered. The cosmic expansion is modeled with power-law and phantom power-law expansion at late time, i.e. z?0.45. WMAP7 and its combined data are used to constraint the model. The forms of potential and the field solution are different for quintessence and tachyonic cases. Power-law cosmology model (driven by either quintessence or tachyonic field) predicts unmatched equation of state parameter to the observational value, hence the power-law model is excluded for both quintessence and tachyonic field. In the opposite, the phantom power-law model predicts agreeing valued of equation of state parameter with the observational data for both quintessence and tachyonic cases, i.e. $w_{\phi, 0} = -1.49^{+11.64}_{-4.08}$ (WMAP7+BAO+H 0) and $w_{\phi, 0} = -1.51^{+3.89}_{-6.72} $ (WMAP7). The phantom-power law exponent β must be less than about ?6, so that the ?2<w ?,0<?1. The phantom power-law tachyonic potential is reconstructed. We found that dimensionless potential slope variable Γ at present is about 1.5. The tachyonic potential reduced to V=V 0 ? ?2 in the limit Ω m,0→0.  相似文献   

3.
In this letter, we have considered a flat FRW universe. Instead of considering only one candidate for the dark energy, we have considered the interaction between phantom field and modified Chaplygin gas. It has been shown that the potential of the phantom field increases from a lower value with evolution of the universe. It has been observed that the field has an increasing tendency and the potential has also an increasing tendency with passage of cosmic time. In the evolution of the universe the crossing of w=−1 has been realized by this interacting model.  相似文献   

4.
5.
We consider cosmological dynamics of a canonical bulk scalar field, which is coupled non-minimally to 5-dimensional Ricci scalar in a DGP setup. We show that presence of this non-minimally coupled bulk scalar field affects the jump conditions of the original DGP model significantly. Within a superpotential approach, we perform some numerical analysis of the model parameter space and consider bulk-brane energy exchange in this setup. Also we show that the normal, ghost-free branch of the DGP solutions in this case has the potential to realize a self-consistent phantom-like behavior and therefore explains late time acceleration of the universe in a consistent way.  相似文献   

6.
Cosmological solutions in the presence of an imperfect fluid and zero-mass scalar field are obtained in higher derivative theory. We investigate both power law and exponential expansion of the universe described by full causal theories proposed by Israel and Stewart. It is observed that energy density, co-efficient of bulk viscosity decrease with time in the presence of massless scalar field and temperature increase with expansion of universe.  相似文献   

7.
We consider a cosmological model in which a scalar field is non-minimally coupled to scalar torsion and a vector field through two coupling functions in the framework of teleparallel gravity. The explicit forms of the coupling functions and the scalar field potential are explored, under the assumption that the Lagrangian admits the Noether symmetry in the Friedmann–Lemaître–Robertson–Walker (FLRW) space–time. The existence of such symmetry allows to solve the equations of motion and achieve exact solutions of the scale factor, scalar and vector fields. It is found that the vector field contributes significantly in the accelerating expansion of the universe in the early times, while the scalar field plays an essential role in the late times.  相似文献   

8.
In the present work we analyze the g-essence model for the particular Lagrangian: . The g-essence models were proposed recently as an alternative and a generalization of the scalar k-essence models. We have presented the three types of the solutions for the g-essence model. We reconstructed the corresponding potentials and the dynamics of the scalar and fermionic fields according the evolution of the scale factor. The results show that the g-essence model predicts that our universe can be in both of the decelerated and accelerated expansion phases. In late time limit, we show that there is a family of exact solutions in which the free parameter may be remains in the range of m>−1. Further we discuss the existence of the de Sitter solutions in such a model.  相似文献   

9.
It has been recently shown that tachyonic chameleon model of dark energy in which tachyon scalar field non-minimally coupled to the matter admits stable scaling attractor solution that could give rise to the late-time accelerated expansion of the universe and hence alleviate the coincidence problem. In the present work, we use data from Type Ia supernova (SN Ia) and Baryon Acoustic oscillations to place constraints on the model parameters. In our analysis we consider in general exponential and non-exponential forms for the non-minimal coupling function and tachyonic potential and show that the scenario is compatible with observations.  相似文献   

10.
In this article we study the properties of the flat FRW chameleon cosmology in which the cosmic expansion of the Universe is affected by the chameleon field and dark energy. In particular, we perform a detailed examination of the model in the light of numerical analysis. The results illustrate that the interacting chameleon filed plays an important role in late time universe acceleration and phantom crossing.  相似文献   

11.
In this paper we study the evolution of the dark energy parameter within the scope of a spatially homogeneous and isotropic FRW universe filled with barotropic fluid and dark energy. The scale factor is considered as a power law function of time which yields a constant deceleration parameter. We consider the case when the dark energy is minimally coupled to the perfect fluid as well as direct interaction with it. The cosmic jerk parameter in our derived models is consistent with the recent data of astrophysical observations. It is concluded that in non-interacting case, all the three open, close and flat universes cross the phantom region whereas in interacting case only open and flat universes cross the phantom region. We find that during the evolution of the universe, the equation of state (EoS) for dark energy ω D changes from ω D >−1 to ω D <−1, which is consistent with recent observations.  相似文献   

12.
13.
We consider the BSBM(Bekenstein, Sandvik, Barrow and Magueijo) cosmological model in the presence of tachyon potential with the aim of studying the stability of the model and test it against observations. The phase space analysis shows that from fourteen critical points that represent the state of the universe, only one is stable.With a small perturbation, the universe transits from a state of unstable deceleration to stable acceleration. The stability analysis combined with the best fitting process imposes constraints on the cosmological parameters that are in agreement with observation. In the BSBM theory, the variation of fundamental constants is driven from variation of a scalar field. The tachyonic scalar field, responsible for both variation of fundamental constants and universal acceleration, is reconstructed.  相似文献   

14.
In this paper, we investigate Bianchi type-VI cosmological model for the universe filled with dark energy and viscous fluid in the presence of cosmological constant. Also, we show accelerating expansion of the universe by drawing volume scale, pressure and energy density versus cosmic time. In order to solve the Einstein’s field equations, we assume the expansion scalar is proportional to a component of the shear tensor. Therefore, we obtain the directional scale factors and show the EOS parameter crosses over phantom divided-line.  相似文献   

15.
In this paper it is shown that in non-minimally coupled Brans-Dicke theory containing a self-interacting potential, a suitable conformal transformation can automatically give rise to an interaction between the normal matter and the Brans-Dicke scalar field. Considering the scalar field in the Einstein frame as the quintessence matter, it has been shown that such a non-minimal coupling between the matter and the scalar field can give rise to a late time accelerated expansion for the universe preceded by a decelerated expansion for very high values of the Brans-Dicke parameter ω. We have also studied the observational constraints on the model parameters considering the Hubble and Supernova data.  相似文献   

16.
In this work, we have considered the spatially homogeneous and anisotropic Bianchi type-II universe filled with two interacting fluids; dark matter and holographic dark energy components. Assuming the proportionality relation between one of the components of shear scalar and expansion scalar which yields time dependent deceleration parameter, an exact solution to Einstein’s field equations in Bianchi type-II line element is obtained. We have investigated geometric and kinematics properties of the model and the behaviour of the holographic dark energy. It is observed that the mean anisotropic parameter is uniform through the whole evolution of the universe and the coincidence parameter increases with increasing time. The solutions are also found to be in good agreement with the results of recent observations. We have applied the statefinder diagnostics method to study the behaviour of different stages of the universe and to differentiate the proposed dark energy model from the ΛCDM model. We have also established a correspondence between the holographic dark energy model and the tachyon scalar field dark energy model. We have reconstructed the potential and the dynamics of the tachyon scalar field, which describes accelerated expansion of the universe.  相似文献   

17.
We consider generalized teleparallel gravity in the flat FRW universe with a viable power-law f(T) model. We construct its equation of state and deceleration parameters which give accelerated expansion of the universe in quintessence era for the obtained scale factor. Further, we develop correspondence of f(T) model with scalar field models such as, quintessence, tachyon, K-essence and dilaton. The dynamics of scalar field as well as scalar potential of these models indicate the expansion of the universe with acceleration in the f(T) gravity scenario.  相似文献   

18.
This paper investigates the existence of Noether symmetries of isotropic universe model in \(f(R,T)\) gravity admitting minimal coupling of matter and scalar fields. The scalar field incorporates two dark energy models such as quintessence and phantom models. We determine symmetry generators and corresponding conserved quantities for two particular \(f(R,T)\) models. We also evaluate exact solutions and investigate their physical behavior via different cosmological parameters. For the first model, the graphical behavior of these parameters indicate consistency with recent observations representing accelerated expansion of the universe. For the second model, these parameters identify a transition form accelerated to decelerated expansion of the universe. The potential function is found to be constant for the first model while it becomes \(V(\phi )\approx \phi ^{2}\) for the second model. We conclude that the Noether symmetry generators and corresponding conserved quantities appear in all cases.  相似文献   

19.
We study FRW cosmology for a double scalar-tensor theory of gravity where two scalar fields are nonminimally coupled to the geometry. In a framework to study stability and attractor solutions of the model in the phase space, we constrain the model parameters with the observational data. For an accelerating universe, the model behaves like quintom dark energy models and predicts a transition from quintessence era to phantom era.  相似文献   

20.
We investigate the interacting NADE model in non-flat universe. The effects of spatial curvature Ω k , interaction coefficient α and the main parameter of NADE, n, on EoS parameter w d and deceleration parameter q are studied. We obtain a minimum value for n in both early and present time, in order to that our DE model crosses the phantom divide. Also in a closed universe, changing the sign of q is strongly dependent on α. It has been shown that the quantities w d and q have a different treatment for various spatial curvature. At last, we calculate the statefinder diagnostic and ww analysis in non flat universe. In non flat universe, the statefinder trajectories are discriminated by both n and α.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号