首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Seismic wave propagation through the earth is often strongly affected by the presence of fractures. When these fractures are filled with fluids (oil, gas, water, CO2, etc.), the type and state of the fluid (liquid or gas) can make a large difference in the response of the seismic waves. This paper summarizes recent work on methods of deconstructing the effects of fractures, and any fluids within these fractures, on seismic wave propagation as observed in reflection seismic data. One method explored here is Thomsen's weak anisotropy approximation for wave moveout (since fractures often induce elastic anisotropy due to non-uniform crack-orientation statistics). Another method makes use of some very convenient crack/fracture parameters introduced previously that permit a relatively simple deconstruction of the elastic and wave propagation behaviour in terms of a small number of crack-influence parameters (whenever this is appropriate, as is certainly the case for small crack densities). Then, the quantitative effects of fluids on these crack-influence parameters are shown to be directly related to Skempton's coefficient B of undrained poroelasticity (where B typically ranges from 0 to 1). In particular, the rigorous result obtained for the low crack density limit is that the crack-influence parameters are multiplied by a factor  (1 − B )  for undrained systems. It is also shown how fracture anisotropy affects Rayleigh wave speed, and how measured Rayleigh wave speeds can be used to infer shear wave speed of the fractured medium in some cases. Higher crack density results are also presented by incorporating recent simulation data on such cracked systems.  相似文献   

5.
Summary. A set of stable algorithms for computing synthetic seismograms in attenuating transversely isotropic media is presented. The structures of these algorithms for anisotropic media are formally equivalent to their counterparts for isotropic media. The seismic responses of a periodically layered isotropic medium are compared with those of its long-wave equivalent transversely isotropic medium. The synthetics for the two media show observable differences in the range of frequencies considered. The differences are small in the P -waves, but partly large in later arrivals.  相似文献   

6.
7.
8.
9.
Surface waves in layered anisotropic structures   总被引:1,自引:0,他引:1  
  相似文献   

10.
11.
12.
13.
14.
15.
An explicit analytical formula for the complete elastodynamic Green tensor for homogeneous unbounded weak transversely isotropic media is presented. The formula was derived by analytical calculations of higher-order approximations of the ray series. The ray series is finite and consists of seven non-zero terms. The formula for the Green tensor is complete and correct for the whole frequency range, thus it describes correctly the wavefield at all distances and at all directions including the shear-wave singularity direction. The Green tensor consists of P, SV and SH far-field waves and four coupling waves. Three of them couple P and SV waves, and the fourth wave couples the SV and SH waves. The P-SV coupling waves behave similarly to the near-field waves in isotropy. However, the SV-SH coupling wave, which is called 'shear-wave coupling', behaves exceptionally and it has no analogy in the Green tensor for isotropy. The formula for the elastostatic Green tensor is also derived.  相似文献   

16.
17.
18.
19.
20.
We propose approximate equations for P -wave ray theory Green's function for smooth inhomogeneous weakly anisotropic media. Equations are based on perturbation theory, in which deviations of anisotropy from isotropy are considered to be the first-order quantities. For evaluation of the approximate Green's function, earlier derived first-order ray tracing equations and in this paper derived first-order dynamic ray tracing equations are used.
The first-order ray theory P -wave Green's function for inhomogeneous, weakly anisotropic media of arbitrary symmetry depends, at most, on 15 weak-anisotropy parameters. For anisotropic media of higher-symmetry than monoclinic, all equations involved differ only slightly from the corresponding equations for isotropic media. For vanishing anisotropy, the equations reduce to equations for computation of standard ray theory Green's function for isotropic media. These properties make the proposed approximate Green's function an easy and natural substitute of traditional Green's function for isotropic media.
Numerical tests for configuration and models used in seismic prospecting indicate negligible dependence of accuracy of the approximate Green's function on inhomogeneity of the medium. Accuracy depends more strongly on strength of anisotropy in general and on angular variation of phase velocity due to anisotropy in particular. For example, for anisotropy of about 8 per cent, considered in the examples presented, the relative errors of the geometrical spreading are usually under 1 per cent; for anisotropy of about 20 per cent, however, they may locally reach as much as 20 per cent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号