首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Scenarios of land cover in China   总被引:3,自引:0,他引:3  
A method for surface modeling of land cover change (SMLC) is developed on the basis of establishing transition probability matrixes between land cover types and HLZ types. SMLC is used to simulate land cover scenarios of China for the years 2039, 2069 and 2099, for which HLZ scenarios are first simulated in terms of HadCM3 climatic scenarios that are downscaled in zonal model of spatial climate change in China. This paper also analyzes spatial distribution of land cover types, area change and mean center shift of each land cover type, ecotope diversity, and patch connectivity under the land cover scenarios. The results show that cultivated land would decrease and woodland would expand greatly with climatic change, which coincides with consequences expected by implementation of Grain-for-Green policy. Nival area would shrink, and desertification area would expand at a comparatively slow rate in future 100 years. Climate change would generally cause less ecotope diversity and more patch connectivity. Ecosystems in China would have a pattern of beneficial cycle after efficient ecological conservation and restoration. However, if human activities would exceed regulation capacity of ecosystems themselves, the ecosystems in China might deteriorate more seriously.  相似文献   

2.
The possible response of life zones in China under global climate change   总被引:5,自引:0,他引:5  
The response of natural vegetation to climate change is of global concern. In this research, an aggregated Holdridge Life Zone System was used to study the possible response of life zones in China under doubled atmospheric CO2 concentration with the input climatic parameters at 0.5×0.5° resolution of longitude and latitude from NCAR regional climate model 2 (RegCM2) coupled with the CSIRO global climate model. The results indicate that the latitudinal distribution of life zones would become irregular because of the complicated climate change. In particular, new life zones, such as subtropical desert (SD), tropical desert (TDE) and tropical thorn woodland (TTW), would appear. Subtropical evergreen broadleaved forest (SEBF), tropical rainforest and monsoon forest (TRF), SD, TDE and TTW zones would appear in the northeastern China. Cool-temperate mixed coniferous and broadleaved forest (CMC) and warm-temperate deciduous broadleaved forest (WDBF) zones would appear at latitudes 25–35°N. The temperate desert (TD) in the western China would become Tibetan high-cold plateau (THP), SEBF, WDBF and temperate steppe (TS), and a large part of THP would be replaced by TRF, TDE, SEBF, TS and TTW. The relative area (distribution area/total terrestrial area) of CMC, TRF, TDE and TTW zone would increase about 3%, 21%, 3% and 6%, respectively. However, the relative area of SEBF, TS, TD and THP would decrease about 5%, 3%, 19% and 4%, respectively. In all, the relative area of forests (CCF, CMC, WDBF, SEBF, TRF) would increase about 15%, but the relative area of desert (TD, SD, TDE, and TTW) and THP would decrease about 9% and 4%, respectively. Therefore, responses of different life zones in China to climate change would be dramatic, and nationwide corridors should be considered for the conservation of migrating species under climate change.  相似文献   

3.
In this study, we report on the validation of process-based forest growth and carbon and nitrogen model of TRIPLEX against observed data, and the use of the model to investigate the potential impacts and interaction of climate change and increasing atmospheric CO2 on forest net primary productivity (NPP) and carbon budgets in northeast of China. The model validation results show that the simulated tree total volume, NPP, total biomass and soil carbon are consistent with observed data across the Northeast of China, demonstrating that the improved TRIPLEX model is able to simulate forest growth and carbon dynamics of the boreal and temperate forest ecosystems at regional scale. The climate change would increase forest NPP and biomass carbon but decrease overall soil carbon under all three climate change scenarios. The combined effects of climate change and CO2 fertilization on the increase of NPP were estimated to be 10–12% for 2030s and 28–37% in 2090s. The simulated effects of CO2 fertilization significantly offset the soil carbon loss due to climate change alone. Overall, future climate change and increasing atmospheric CO2 would have a significant impact on the forest ecosystems of Northeastern China.  相似文献   

4.
Forest ecosystems play an important role in global carbon cycle regulation. Clarifying the dynamics and mechanism of carbon sink is of both scientific and political importance. In this paper, we have investigated the spatiotemporal change of forest net primary production (NPP) in China for recent two decades based on the geographically weighted regression (GWR) with a cumulative remote sensing index, the maximum normalized difference vegetation index (NDVImax). GWR is a recently developed regression method with special emphasis on spatial non-stationarity. Outputs of forest NPP at three different stages was generated by the GWR model with NDVImax for the 1980s, early and late 1990s which were consequently analyzed. Our results indicated a wave-like pattern of change in forest NPP in the three stages with a trough-like depression for the early 1990s. The average forest NPP increased by about 0.72% from the 1980s to the late 1990s. A continuously increasing trend at a pace of 0.07% and 0.22% yr− 1 was observed in the tropical and subtropical zones from the 1980s to late 1990s respectively, while a continuously decreasing trend (− 0.05% yr− 1) was noted for the temperate zone. From forest type perspective, only the deciduous broadleaf forests exhibited a continuously decreasing trend of 0.18% yr− 1. The complex spatiotemporal patterns revealed by this study suggest the need for further research in this direction in order to build in-depth insights into the revealed complexities.  相似文献   

5.
The global climate–vegetation model HadSM3_TRIFFID has been used to estimate the equilibrium states of climate and vegetation with pre-industrial and last glacial boundary conditions. The present study focuses on the evaluation of the terrestrial biosphere component (TRIFFID) and its response to changes in climate and CO2 concentration. We also show how, by means of a diagnosis of the distribution of plant functional types according to climate parameters (soil temperature, winter temperature, growing-degree days, precipitation), it is possible to get better insights into the strengths and weaknesses of the biosphere model by reference to field knowledge of ecosystems.The model exhibits profound changes between the vegetation distribution at the Last Glacial Maximum and today that are generally consistent with palaeoclimate data, such as the disappearance of the Siberian boreal forest (taiga), an increase in shrub cover in Europe and an increase of the subtropical desert area. The effective equatorial and sub-tropical tree area is reduced by 18%. There is also an increase in cover of wooded species in North-Western Africa and in Mexico. The analysis of bioclimatic relationships turns out to be an efficient method to infer the contributions of different climatic factors to vegetation changes, both at high latitudes, where the position of the boreal treeline appears in this model to be more directly constrained by the water stress than by summer temperature, and in semi-humid areas where the contributions of temperature and precipitation changes may partly compensate each other. Our study also confirms the major contribution of the decrease in CO2 to environmental changes and carbon storage through its selective impact on gross primary productivity of C3 and C4 plants and a reduction by 25% of water-use efficiency. Specifically, the reduction in CO2 concentration increases the amount of precipitation necessary to sustain at least 20% of grass fraction by 50 mm/year; the corresponding threshold for trees is increased by about 150 mm/year. As a consequence, a reduction in CO2 concentration considerably widens the climatic range where grasses and shrubs dominate.  相似文献   

6.
The importance of orbital forcing and ocean impact on the Asian summer monsoon in the Holocene is investigated by comparing simulations with a fully coupled ocean–atmosphere general circulation model (FOAM) and with the atmospheric component of this model (FSSTAM) forced with prescribed modern sea-surface temperatures (SSTs). The results show: (1) the ocean amplifies the orbitally-induced increase in African monsoon precipitation, makes somewhat increase in southern India and damps the increase over the southeastern China. (2) The ocean could change the spatial distribution and local intensity of the orbitally-induced latitudinal atmospheric oscillation over the southeastern China and the subtropical western Pacific Ocean. (3) The orbital forcing mostly enhances the Asian summer precipitation in the FOAM and FSSTAM simulations. However, the ocean reduces the orbitally-induced summer precipitation and postpones the time of summer monsoon onset over the Asian monsoon region. (4) The orbital forcing considerably enhances the intensity of upper divergence, which is amplified by ocean further, over the eastern hemisphere. But the divergence is weaker in the FOAM simulations than in the FSSTAM simulations when the orbital forcing is fixed. (5) The orbital forcing can enhance the amplitude of precipitation variability over the subtropical Africa, the southeastern China and northwestern China, inversely, reduce it over central India and North China in the FOAM and FSSTAM simulations. The ocean obviously reduces the amplitude of precipitation variability over most of the Asian monsoon regions in the fixed orbital forcing simulations. (6) The areas characterized by increased summer precipitation in the long-term mean are mostly characterized by increased amplitude of short-term variability, whereas regions characterized by decreased precipitation are primarily characterized by decreased amplitude of short-term variability. However, the influences of orbital forcing or dynamical ocean on regional climate depend on the model.  相似文献   

7.
Sensitivities of species compositions of the broadleaf–conifer mixed forest in eastern Eurasian continent to climate change were evaluated with three forest gap models, namely KOPIDE, NEWCOP, and ForClim. Testing sites are located on Changbai Mountain, the middle of the distribution range for the mixed forest. Six climate change scenarios characterizing increase in temperature and increase/decrease in precipitation were used to test the sensitivities of species composition to climate change. Simulations suggest that the mixed forest in temperate Monsoon Asia will face changes in species composition should climate change be almost certain. At the minimum level, the order of dominant species is going to change due to species competition, resulting in the increase in the proportion of broadleaved tree species in the forest. If air temperature increases and precipitation decreases, Pinus koraiensis is going to disappear from the forest and the mixed forest will become hardwood forest. This experiment supports some earlier predictions under other climate change scenarios.  相似文献   

8.
The anticipated change of climatic conditions within the next decades is thought to have far reaching consequences for agricultural cropping systems. The success of crop production in China, the world's most populous country, will also have effects on the global food supply. More than 30% of the cropping area in China is irrigated producing the major part of the agricultural production. To model the effects of climate change on irrigation requirements for crop production in China a high-resolution (0.25°, monthly time series for temperature, precipitation and potential evapotranspiration) gridded climate data set that specifically allows for the effects of topography on climate was integrated with digital soil data in a GIS. Observed long-term trends of monthly means as well as trends of interannual variations were combined for climate scenarios for the year 2030 with average conditions as well as ‘best case’ and ‘worst case’ scenarios.Regional cropping calendars with allowance for multiple cropping systems and the adaptation of the begin and length of the growing season to climatic variations were incorporated in the FAO water balance model to calculate irrigation amounts to obtain maximum yields for the period 1951–1990 and the climate scenarios.During the period 1951–1990 irrigation demand displayed a considerable variation both in temporal and spatial respects. Future scenarios indicate a varied pattern of generally increasing irrigation demand and an enlargement of the subtropical cropping zone rather than a general northward drift of all zones as predicted by GCM models. The effects of interannual variability appear to have likely more impact on future cropping conditions than the anticipated poleward migration of cropping zones.  相似文献   

9.
Using an exosphere model which includes the effects of rotation and temperature and density variations at the exobase, we determine kinetic temperature and density distributions for planetary exospheres in general and terrestrial O, He and H in particular, the latter being based on empirical models for density and temperature variations at exobase altitudes. We examine the effects of energy flow and confirm Fahr's suggestion that the lateral energy flow at the exobase should be important for the temperature distributions above the base. Considering uniform density and sinusoidal temperature variations at the base, we find that temperatures decrease with altitude above the diurnal temperature maximum Tmax at the base. On the other hand, above the diurnal temperature minimum Tmin at the base, the temperatures increase from the base to peak values (except for low values of mMG/kT0) and then decrease above the peaks, tending to approach the values above Tmax. The corresponding densities near the base, above Tmin, decrease with altitude more rapidly than above Tmax but exhibit considerable increases in their scale heights in the vicinity of their temperature peaks, at which points the densities begin to approach those above Tmax. In the converse case, with uniform base temperature and sinusoidal base density variations, the exospheric density and temperature distributions above the diurnal density maximum Nmax and minimum Nmin at the base result in similar characteristics to those above Tmax and Tmin, respectively. Applying the model to terrestrial O, He and H, we find that multiple exospheric temperatures should occur wherein temperatures above Tmax decrease less rapidly with altitude for increasing species mass. On the other hand, O and He temperatures increase with altitude above Tmin to peak values near 5000 km and then decrease above the peaks while H temperatures decrease with altitude throughout. We also examine the effects of the terrestrial exospheric H temperature distribution on optical depths for Lyman alpha absorption and find that such temperature variation may be important for radiative transfer calculations when the depths are greater than unity and satellite orbits are unimportant.  相似文献   

10.
The precipitation and low-level air temperature in East Asia from a regional climate model (RCM) hindcast for the 22-year period 1979–2000 is evaluated against observational data in preparation for the model use in regional climate change research. Emphasis of the evaluation is placed on the RCM capability in capturing the temporal and spatial variability of precipitation and low-level temperature, especially in conjunction with important climatological events such as, ENSO and East Asian monsoon, at three spatial scales of continental, subcontinental, and river basins.Spatial anomaly correlation time series of geopotential height and temperature show that the simulated upper-air fields remain consistent with the driving large-scale fields, NCEP Reanalysis 2 (R2), throughout the period. The simulated seasonal shifts in 850 hPa winds also agree well with R2 over eastern China and the western Pacific Ocean although the magnitudes of the shifts are overestimated, especially over the eastern slope of the Tibetan Plateau and in northern Manchuria. The simulated precipitation climatology agrees reasonably with that from two analysis datasets based on station- and remote-sensing data. Outstanding characteristics of precipitation including the location of the main rainband, climatological means, and the spatiotemporal variability in association with East Asian Monsoon, ENSO, and extreme events, are well represented in the hindcast. The most notable bias in the simulated precipitation is an overestimation of winter rainfall in southwestern coast of China, near the border with Vietnam. The simulation overestimates the interannual variability of seasonal precipitation especially in southern China, however, the corresponding coefficients of variation agree reasonably with observations except in very dry regions. This suggests that climate sensitivity of scaled precipitation can be useful for projecting climate change signals. The simulated low-level temperature climatology agrees reasonably with observational data as well. The most noticeable biases in the simulated low-level temperature are the warm (cold) biases in southern Siberia (northeastern China) during winter (summer) and the systematic underestimation of low-level temperature in the Tibetan Plateau for all seasons. The daily maximum temperature is underestimated for all seasons by 2−3 K with the largest biases in spring and fall except in the northwestern Mongolia region where it has been overestimated during winter. The daily minimum temperature biases ranges from 0.3 K in spring to 2 K in winter, and are much smaller than those in daily maximum temperature. The evaluation of the multidecadal hindcast shows that model errors mostly confined in the region near the lateral boundaries of the model domain with only minor biases in eastern China. This allows us to be cautiously optimistic about the RCM usefulness for studies of precipitation and low-level temperature changes in East Asia induced by increased emissions of greenhouse gases.  相似文献   

11.
We analyze an extensive data set of immersion and emersion lightcurves of the occultation of 28 Sgr by Saturn's atmosphere on 3 July 1989. The data give profiles of number density as a function of altitude at a variety of latitudes, at pressures ranging from about 0.5 to about 20 μbar. The atmosphere is essentially isothermal in this range, with a temperature close to 140 K for an assumed mean molecular weight of 2.135. Owing to favorable ring geometry, an accurate radial scale is available for all observations, and we confirm the substantial equatorial bulge produced by zonal winds of ∼450 m/s first observed in the Voyager radio-occultation experiments. The fact that the bulge is still present at microbar pressures suggests that the equatorial winds persist to high altitudes. According to our radial scale, the 2.4-μbar level, which corresponds to half-flux in the stellar occultations, is at an equatorial radius of 60,960 km. This radial scale is in good agreement with the Voyager radio-occultation data at mbar pressures and allows smooth interpolation of the isothermal structure between the stellar-occultation and radio-occultation regions. We do not have such a smooth interpolation between our data and Voyager ultraviolet occultation data, unless we discard the lowest 200 km of Voyager ultraviolet data. When this is done, we obtain a complete atmospheric model from an equatorial radius of 61,500 km down to an equatorial radius of 60,500 km. This model gives excellent agreement between all 28 Sgr, Voyager, and Pioneer 11 data.  相似文献   

12.
An estimate of the glacial-interglacial change in terrestrial carbon storage was calculated from CLIMAP reconstructions of the earth's surface at the Last Glacial Maximum (LGM). It implies an increase of ≈ 715 Pg C (430–930 Pg C) from the LGM to present, mainly due to the buildup of boreal and temperate forests. This new attempt to reconstruct the LGM ecosystems and carbon content offers an alternative to a previous data-interpretation-based estimate of ≈ 1350 Pg C change. Our estimate is half-way between that 1350 Pg C value and the previous model-based estimate of no change. Furthermore it is consistent with the mean δ13C shift of the ocean. The greatest biomass and soil carbon increaes occurred around 60°N. Our results show that the interpretation of the data is crucial to the estimation of such a budget. It further demonstrates the need for a more complete knowledge of the complexity of the biogeophysical interactions.  相似文献   

13.
Sea level variability during the Quarternary is simulated using a stochastic climate model, and a sensitivity relation for the change in net oceanic evaporation due to a change in sea surface temperature. In the application of this relation, it is assumed that the greater part of the change in net oceanic evaporation causes changes in the land ice storage, rather than being directly returned to the ocean by rivers. The analysis suggests that the observed sea level changes can be interpreted as due to the transfer of heat to the deep ocean from the surface mixed layer, arising from random radiation perturbations of the same variance as would give rise to the interannual variability of the global temperature series. The paradox is that glacial conditions (increase in ice storage) are favoured by positive (temperate) sea surface temperature anomalies, and interglacial conditions (decrease in ice storage) by negative (temperate) sea surface temperature anomalies. The evolution of both these regimes, which are inherently unstable, appears to be controlled by the deep water formation process, while albedo feedback is of minor importance. Fluvial feedback, (in which as the ice storage increases the fluvial inflow decreases), however, is found to be an important process, and a small sensitivity of river inflow to storage is consistent with forcing by random variability or by astronomical forcing. A simple analytical model incorporating the key processes of oceanic evaporation and fluvial feedback is presented. The analysis points to the importance of an accurate river model for climate system modelling.  相似文献   

14.
Equations of thermal equilibrium along coronal loops are solved in the absence of gravity but where the cross-sectional area changes along the loop. The footpoint temperature is assumed to be 2 × 104 K. Several fundamental types of solution are found, namely hot loops, cool loops, hot-cool loops (where the footpoints and summits are cool but the intermediate parts are hotter) and warm loops (cool along most of their lengths except the summits). On increasing the cross-sectional area the summit temperature generally increases slightly except for warm loops where no increase in temperature is recorded and hot-cool loops where a dramatic increase in summit temperature may occur. The cool and hot-cool loops may model elementary fibril structures within prominences.  相似文献   

15.
Abstract. Complete and nearly complete australite buttons in good states of preservation from Port Campbell, Victoria, show excellent structural details and are of great scientific importance. Some of the features on their posterior surfaces are doubtfully assigned a primary origin in an extraterrestrial birthplace but have been modified by terrestrial solution-etching. Secondary features on their anterior surfaces are due to the effects of aerodynamic frictional heating during transit with stable orientation at supersonic velocity through the earth's atmosphere. Tertiary processes such as subaerial weathering have played some part in slightly modifying their shape and sculpture patterns. They contrast strongly with the many thousands of australites collected from the arid and sub-arid regions of Australia, and with a considerable number that were abraded by stream or gravity transportation in the more temperate zones of the strewnfield. The majority of such specimens have been more severely weathered with the resultant loss of much or all of their primary and secondary features.  相似文献   

16.
A simulation model based on satellite observations of monthly vegetation cover was used to estimate monthly carbon fluxes in terrestrial ecosystems from 1982 to 1998. The NASA–CASA model was driven by vegetation properties derived from the Advanced Very High Resolution Radiometer (AVHRR) and radiative transfer algorithms that were developed for Moderate Resolution Imaging Spectroradiometer (MODIS). For the terrestrial biosphere, predicted net ecosystem production (NEP) flux for atmospheric CO2 has varied widely between an annual source of −0.9 Pg C per year and a sink of +2.1 Pg C per year. The southern hemisphere tropical zones (SHT, between 0° and 30°S) have a major influence over the predicted global trends in interannual variability of NEP. In contrast, the terrestrial NEP sink for atmospheric CO2 on the North American (NA) continent has been fairly consistent between +0.2 and +0.3 Pg C per year, except during relatively cool annual periods when continental NEP fluxes are predicted to total to nearly zero. The predicted NEP sink for atmospheric CO2 over Eurasia (EA) increased notably in the late 1980s and has been fairly consistent between +0.3 and +0.55 Pg C per year since 1988. High correlations can be detected between the El Niño Southern Oscillation (ENSO) and predicted NEP fluxes on the EA continent and for the SHT latitude zones, whereas NEP fluxes for the North American continent as a whole do not correlate strongly with ENSO events over the same time series since 1982. These observations support the hypothesis that regional climate warming has had notable but relatively small-scale impacts on high latitude ecosystem (tundra and boreal) sinks for atmospheric CO2.  相似文献   

17.
As on Earth, Titan’s atmosphere plays a major role in the cooling of heated surfaces. We have assessed the mechanisms by which Titan’s atmosphere, dominantly N2 at a surface pressure of 1.5 × 105 Pa, cools a warm or heated surface. These heated areas can be caused by impacts generating melt sheets and (possibly) by endogenic processes emplacing cryolavas (a low-temperature liquid that freezes on the surface). We find that for a cooling cryolava flow, lava lake, or impact melt body, heat loss is mainly driven by atmospheric convection. Radiative heat loss, a dominant heat loss mechanism with terrestrial silicate lava flows, plays only a minor role on Titan. Long-term cooling and solidification are dependent on melt sheet or flow thickness, and also local climate, because persistent winds will speed cooling. Relatively rapid cooling caused by winds reduces the detectability of these thermal events by instruments measuring surface thermal emission. Because surface temperature drops by ≈50% within ≈1 day of emplacement, fresh flows or impact melt may be difficult to detect via thermal emission unless an active eruption is directly observed. Cooling of flow or impact melt surfaces are orders of magnitude faster on Titan than on airless moons (e.g., Enceladus or Europa).Although upper surfaces cool fast, the internal cooling and solidification process is relatively slow. Cryolava flow lengths are, therefore, more likely to be volume (effusion) limited, rather than cooling-limited. More detailed modeling awaits constraints on the thermophysical properties of the likely cryomagmas and surface materials.  相似文献   

18.
The role of tropical ecosystems in global carbon cycling is uncertain, at least partially due to an incomplete understanding of climatic forcings of carbon fluxes. To reduce this uncertainty, we simulated and analyzed 1982–1999 Amazonian, African, and Asian carbon fluxes using the Biome-BGC prognostic carbon cycle model driven by National Centers for Environmental Prediction reanalysis daily climate data. We first characterized the individual contribution of temperature, precipitation, radiation, and vapor pressure deficit to interannual variations in carbon fluxes and then calculated trends in gross primary productivity (GPP) and net primary productivity (NPP). In tropical ecosystems, variations in solar radiation and, to a lesser extent, temperature and precipitation, explained most interannual variation in GPP. On the other hand, temperature followed by solar radiation primarily determined variation in NPP. Tropical GPP gradually increased in response to increasing atmospheric CO2. Confirming earlier studies, changes in solar radiation played a dominant role in CO2 uptake over the Amazon relative to other tropical regions. Model results showed negligible impacts from variations and trends in precipitation or vapor pressure deficits on CO2 uptake.  相似文献   

19.
Climate change may affect the sediment generation and transportation processes and the consequent sediment flux in a river. The sensitivity of suspended sediment flux to climate change in the Longchuanjiang catchment is investigated with Artificial Neural Networks (ANNs). ANNs were calibrated and validated using sediment flux data from 1960 to 1990 during which the influence from human activities was relatively stable. The established ANN is used to predict the responses of sediment flux to 25 hypothetical climate scenarios, which were generated by adjusting the baseline temperature up to − 1, 1, 2 and 3 °C and by scaling the baseline precipitation by +/ 10% and +/ 20%. The results indicated when temperature remains unchanged, an increase in rainfall will lead to a rise in sediment flux; when rainfall level remains unchanged, an increase in temperature is likely to result in a decrease in sediment flux. Same percentage of changes in rainfall and temperature are likely to trigger higher responses in wetter months than in drier months. However, it is the combination of the change in temperature and rainfall that determines the change of sediment flux in a river. Higher sediment flux is expected to appear under wetter and warmer climate, when higher transport capacity is accompanied by higher erosion rate.  相似文献   

20.
Lunar seismic data from three Apollo seismometers are interpreted to determine the structure of the Moon's interior to a depth of about 100 km. The travel times and amplitudes ofP arrivals from Saturn IV B and LM impacts are interpreted in terms of a compressional velocity profile. The most outstanding feature of the model is that, in the Fra Mauro region of Oceanus Procellarum, the Moon has a 65 km thick layered crust. Other features of the model are: (i) rapid increase of velocity near the surface due to pressure effects on dry rocks, (ii) a discontinuity at a depth of about 25 km, (iii) near constant velocity (6.8 km/s) between 25 and 65 km deep, (iv) a major discontinuity at 65 km marking the base of the lunar crust, and (v) very high velocity (about 9 km/s) in the lunar mantle below the crust. Velocities in the upper layer of the crust match those of lunar basalts while those in the lower layer fall in the range of terrestrial gabbroic and anorthositic rocks.Lamant-Doherty Geological Observatory Contribution No. 1768.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号