首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The magnetotelluric phase tensor   总被引:31,自引:0,他引:31  
  相似文献   

2.
3.
4.
5.
6.
7.
The marginal distributions for the magnetotelluric (MT) magnitude squared response function (and hence apparent resistivity) and phase are derived from the bivariate complex normal distribution that describes the distribution of response function estimates when the Gauss–Markov theorem is satisfied and the regression random errors are normally distributed. The distribution of the magnitude squared response function is shown to be non-central chi-squared with 2 degrees of freedom, with the non-centrality parameter given by the squared magnitude of the true MT response. The standard estimate for the magnitude squared response function is biased, with the bias proportional to the variance and hence important when the uncertainty is large. The distribution reduces to the exponential when the expected value of the MT response function is zero. The distribution for the phase is also obtained in closed form. It reduces to the uniform distribution when the squared magnitude of the true MT response function is zero or its variance is very large. The phase distribution is symmetric and becomes increasingly concentrated as the variance decreases, although it is shorter-tailed than the Gaussian. The standard estimate for phase is unbiased. Confidence limits are derived from the distributions for magnitude squared response function and phase. Using a data set taken from the 2003 Kaapvaal transect, it is shown that the bias in the apparent resistivity is small and that confidence intervals obtained using the non-parametric delta method are very close to the true values obtained from the distributions. Thus, it appears that the computationally simple delta approximation provides accurate estimates for the confidence intervals, provided that the MT response function is obtained using an estimator that bounds the influence of extreme data.  相似文献   

8.
9.
Understanding telluric distortion matrices   总被引:9,自引:1,他引:9  
  相似文献   

10.
11.
12.
13.
Telluric distortion occurs when electric charges accumulate along near-surface inhomogeneities. At low frequencies, the electric currents associated with these charges can be neglected compared to currents induced deeper in the Earth. At higher frequencies, the magnetic fields associated with these currents may be significant. Some parameters describing the distortion magnetic fields can be estimated from measured magneto-telluric impedance matrices. For regional magnetic fields aligned with regional strike directions, parameters associated with the distortion magnetic field component parallel to the regional magnetic field are undeterminable, whereas parameters associated with the distortion magnetic field component perpendicular to the regional magnetic field can be estimated. Optimal estimates are straightforward even for the realistic case of measurement errors that are correlated between elements of a measured impedance matrix. In a simple example of a 1-D anisotropic model with anisotropy direction varying with depth, the modelling of distortion magnetic fields results in regional impedance estimates corresponding more closely to the responses of uncoupled isotropic models, allowing sensible interpretation of an additional one and a half decades of data.  相似文献   

14.
15.
16.
Rapid relaxation inversion of CSAMT data   总被引:7,自引:0,他引:7  
In this paper an inversion algorithm for controlled-source audio frequency magnetotelluric data is presented. This algorithm combines 2.5-D finite element forward modelling with the concepts of rapid relaxation inversion of magnetotelluric data. The inversion uses the same technique to compute sensitivities as the rapid relaxation inversion, and these approximate sensitivities are validated by comparison with exact 2.5-D sensitivities. The comparison shows that the approximate sensitivities are similar in shape to the exact sensitivities when transmitter–receiver offsets are greater than one skin depth in the Earth. The magnitudes of the two sensitivities differ but the variations with depth are similar. Tests of the algorithm on synthetic data and field data provide promising results.  相似文献   

17.
18.
19.
20.
To speed up the calculation of the field Jacobian for 2-D magnetoteliuric inversion using finite elements, the principle of electromagnetic reciprocity is applied. The governing relationship for the Jacobian of the field along strike is obtained by differentiating the Helmholtz equation with respect to the resistivity of each region in the finite-element mesh. The result is a similar Helmholtz equation for the Jacobian, with new sources distributed over all nodes within the parameter medium. However, according to the principle of electromagnetic reciprocity, the roles of sources and receivers are interchangeable. Utilizing reciprocity, the field values obtained from the original forward problem and for new unit sources imposed at the receivers are then utilized in the calculation of the Jacobian by simple multiplication and summation with finite-element terms at each rectangle in the mesh. For the auxiliary (across-strike) fields, the Jacobian terms are obtained by solving source vectors loaded with parabola coefficients used in the approximation to Maxwell's equations. Jacobian terms for the apparent resistivity ( p a), the impedance phase (φ) and the vertical magnetic field ( K zy) are then calculated utilizing the parallel- and auxiliary-field Jacobians. Comparison of Jacobian values obtained from reciprocity calculations and by differencing two forward solutions show that the reciprocity method is accurate and can be used to decrease the number of calculations required to obtain sensitivities by one to two orders of magnitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号