首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
The large-scale post-perihelion evolution of the dust tail in Comet C/1995 O1 (Hale–Bopp) was monitored with Schmidt telescope exposures at the European Southern Observatory (ESO) La Silla in Chile. In early October 1997 signatures of a peculiar dust-tail appeared as straight, but diffuse extensions in the northern and southern coma hemisphere. With the approach of the Earth to the orbital plane of the comet a needle-like anti-tail with a similar, but much longer counterpart in the region of the normal dust tail formed. In early January 1998, i.e., close to the plane crossing, the anti-tail pointed towards position angle 190° and was at least 0.4°long, its counter part extended over more than 5° into oppositedirection. During February and March 1998 the position angles of both features increased by more than 40$°– while their appearance became shorter, wider and more diffuse again. Thepeculiar dust tail was last observed in April 1998.Modeling of the dust tail dynamics shows that the anti-tail andpeculiar tail phenomenon observed is formed by a neck-line structureof heavy dust grains released around perihelion passage. Two scenariiare introduced to explain the extension of the anti-tail feature:(1) grains ejected about 20 days post-perihelion with a initial velocity of 170 m/s in radial direction towards the Sun and(2) grains released about 60–80 days before perihelion at a speed of70m/s into the orbital plane and against the motion directionof the comet. The out-of-plane velocity component of the dust wasless than 25 m/s. Both scenarios require dust of < 0.001to be involved, i.e., grains of at least mm-size. The rather symmetric shading of the neck-line structure before and after passage of theEarth through the orbital plane of the comet in early January 1998 supports the idea that dust of both scenarii may have contributed to the phenomenon.  相似文献   

2.
During the recent apparition of comet Hale—Bopp (1995 O1) near infrared photometric observations were carried out in the J, H, K filter bands and also in the 3.0—3.4 μm region at the 1.2 m telescope at Gurushikkar, India. The effective temperature of the comet was substantially higher than the equilibrium blackbody temperature. A mean superheat value of 1.83 was derived in the post-perihelion phase which implies that a large fraction of the grain population are made up of small and hot grains with radii <0.5 μm. High albedo values of ∼0.4 were also derived in the scattering angle range 135° to 160° which could explain the unusual brightness of comet Hale—Bopp. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Vanscheidt  R.  Bleul  H.  Manthey  E.  Jütte  M.  Pohlen  M.  Schmidtobreick  L.  Altmann  M.  Dieball  A.  Geffert  M.  Sanner  J.  Notni  P.  Schmoll  J. 《Earth, Moon, and Planets》1998,81(3):223-231
Extensive widefield CCD direct imaging of C/1995 O1 (Hale-Bopp) at UBVRI was carried out at Hoher List Observatory with the 1.06 m telescope (field of view 20′ × 20′) and at Potsdam Observatory with the 0.70 m telescope (field of view 8′ × 8′). The corresponding spatial resolution is 850–1000 km pix-1and 525–590 km pix-1, respectively. The data covers 25 nights from February 20 to April 21, 1997. In order to quantify the various features in the apparent inner coma we introduce a new tomographic method that minimizes the morphological bias caused by image processing. The tomographic analysis leads to quantitative maps refering to the position and intensity of the dust ejections for each image frame. Variability and periodicity within the inner coma can be thoroughly deduced due to various sets of consecutive nights in the observation period mentioned above. The results are compared with applications of adaptive Laplace filtering. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Solar System Research - “The Great Comet of 1997” was a significant event in cometary physics. Numerous interesting scientific studies are devoted to this comet. Unfortunately, in the...  相似文献   

5.
Qian  Bochen  Tao  Jun  Gu  Minfeng 《Earth, Moon, and Planets》2000,88(2):61-74
We report the observation of an outburst of comet Hale–Bopp (C/1995 O1) happened on September 10–11, 1996, carried by the 1.56 m telescope of Shanghai Astronomical Observatory. Two ejecta were found in CCD images during the outburst. According to the positions of ejecta, we discuss the motion of the ejecta considering dust particles are subjected to the gravity and the Solar radiation pressure, and conclude that the mean radii of dust grains in the ejecta were about submicron-sized. So the observed X-ray emission are most likely produced by small size particles scattering the Solar X-ray. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
7.
We interpret the historical activity of comet 55P/Tempel–Tuttle in terms of the observed characteristics of present-day short period comets. In this respect, it is now realized that such comets are liable to undergo significant outburst and mantle loss events at intervals separated by of order a few hundred years. On this basis one might well expect comet 55P/Tempel–Tuttle to have undergone several outbursts since its earliest sighing in 1366. The limited absolute magnitude data available for 55P/Tempel–Tuttle is not inconsistent with the suggestion that the comet underwent outbursts during its 1699 and 1865 perihelion returns. If the outbursts of comet 55P/Tempel–Tuttle are interpreted in terms of mantle loss events then the bright, electrophonic sound producing fireballs reported during the great Leonid meteor storm of 1833 may have been due to the Earth sampling mantle material ejected during the outburst of 1699. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Comet C/1853 E1 (Secchi) has a hyperbolic orbit with eccentricity 1.01060 and perihelion outside of the Earth's orbit. Integrating the orbit with barycentric coordinates backwards to 50000 AU, the approximate edge of the Oort cloud, shows that the orbit remains hyperbolic. This is still true even if plutoids additional to Pluto are included in the integration. Nor does including Galactic tidal and disc effects and possible nongravitational forces change the orbit to a high eccentricity ellipse. Although certain factors, such as unknown massive plutoids, gravitational effects by interstellar gas clouds, or unmodelled nongravitational forces operating on the comet, could change this situation, the tentative conclusion that the origin of this comet is extrasolar remains the one most consistent with the observations (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Comet Hale-Bopp is, without doubt, one of the most important objects for cometary science which has ever been observed. The light curve is well-observed from a heliocentric distance 7.2 AU and some information is available at distances as great as 17 AU. This allows the photometric evolution of the comet to be studied as different volatiles dominate the activity. Three different phases of activity are seen as the heliocentric distance reduces during 1996: the initial phase of very fast brightening, characterized by a r –5 law; a standstill in the light curve when the brightening law reduced to r –1, which coincides with the initiation of water sublimation at r ~ 4 AU; and a further phase of more rapid brightening with an r –3.5 law, similar to the mean for comets classed as fairly new, which initiated at r ~ 4 AU.  相似文献   

10.
We report spectroscopy of Comet C/1991 T1 (McNaught-Hartley) at 3-13 μm on January 31.62 and February 1.7 2001 UT (delta=1.29 AU, r=1.40 AU) using the broadband array spectrograph system on the IRTF. The spectrum showed a silicate emission feature extending about 20% above the continuum. Two emission features at 10.3 and 11.2 μm appeared above the silicate band, the latter seemingly indicative of crystalline olivine. The 10.3-μm feature is only a 1-2 sigma detection but if real could indicate the presence of hydrated silicates. The color temperature at 8-13 μm was 260±10 K, approximately 6% above the blackbody radiative equilibrium temperature of 235 K. The magnitude at [N] was 3.13±0.02. On the second night, the comet had brightened slightly ([N]=2.98±0.02) and the two prominent emission features were absent, although the silicate emission feature maintained its trapezoidal shape with shoulders at 9.5 and 11.2 μm.  相似文献   

11.
V471 Tau was discovered as a spectroscopic binary by Wilson (General Catalogue of Stellar Radial Velocities, p. 44, 1953). It is the prototype of a post-common envelope system and a progenitor of a cataclysmic binary. The system consists of a cool red dwarf, K2 V, very probably a main sequence star and a hot white dwarf. The object was classified as a close binary with an orbital period of around 0.5 days. Moreover, on the light curve are observed light variations with a period of 191 days, which are connected with an ellipsoidal shape of the red dwarf as well as with the migration of spots on the surface of this cool component. The eclipse of the white dwarf in the binary remains 49 minutes and declines to the minimum and the increase from the minimum takes only 55 s. Such photometric behaviour hinders obtaining good eclipses. In this paper we have obtained during four years seven eclipses with high time resolution with all four contacts to reach precise times of minima. Fortunately these times of the minima show a change of trend in the (O–C) diagram, and we were able to decide about the physical processes responsible for the behaviour of the (O–C) diagram. We showed that this behaviour is caused by a third body in the system with an orbital period of 33.2 years, and its physical and geometrical parameters are presented. For an inclination larger than 35° we get the mass of this body below the stable hydrogen-burning limit and thus most probably the candidate would be a brown dwarf.  相似文献   

12.
We present large scale observations of C18O(1–0) towards four massive star forming regions: MON R2,S156,DR17/L906 and M17/M18. The transitions of H2CO(110–111),C18O(1–0) and the 6 cm continuum are compared in these four regions. Our analysis of the observations and the results of the Non–LTE model shows that the brightness temperature of the formaldehyde absorption line is strongest in a background continuum temperature range of about 3 – 8 K. The excitation of the H2 CO absorption line is affected by strong background continuum emission. From a comparison of H2 CO and C18 O maps,we found that the extent of H2 CO absorption is broader than that of C18 O emission in the four regions. Except for the DR17 region,the maximum in H2 CO absorption is located at the same position as the C18 O peak. A good correlation between intensities and widths of H2 CO absorption and C18 O emission lines indicates that the H2 CO absorption line can trace the dense,warm regions of a molecular cloud. We find that N(H2CO) is well correlated with N(C18O) in the four regions and that the average ratio of column densities is N(H2CO)/N(C18O) ~ 0.03.  相似文献   

13.
The spectroscopic observations of comet C/2009 R1 (McNaught) were carried out with the 2 m Zeiss-RCC Telescope of Pik Terskol Observatory operated by the International Center for Astronomical and Medico-Ecological Research (Ukraine, Russia). The Multi Mode Cassegrain spectrometer was used to obtain spectra of moderate spectral resolving power with a wavelength coverage from 4140 to 5240 Å. The spectrum is characterized by the extremely low continuum level and strong molecular features. 192 emission lines of C2, CN, CH, NH2, CO+, and CH+ have been identified by the comparison of the observed and theoretical spectra of the molecules. The ratios of the gas production rates of Q(C2)/Q(CN)=1.32, Q(CH)/Q(CN)=0.49, and Q(NH2)/Q(CN)=0.81 were derived using a Haser model.  相似文献   

14.
The emission spectrum of comet Skoritchenko–George (C/1989 VI), unusual in its information content, was obtained on February 26.7 UT, 1990, with the use of a TV scanner installed on the 6-m BTA reflector of the Special Astronomical Observatory of the Russian Academy of Sciences (SAO RAS) in Nizhni Arkhyz. Detailed identification of the emission lines of this comet was made. The observed spectrum contains 311 emission lines, including those of the molecules. Among others, the lines of the negative carbon C 2 - ion and the lines corresponding to the electron transition in the neutral CO molecule are discovered. The presence of a large number of lines of the neutral CO molecule (the Asundi bands and the triplet bands) in the visible region is one of the uncommon features of the emission spectrum of this comet. The triplet lines : 15–3, 13–2, 11–2, 9–1, 8–1, 7–1, 7–0, 5–0, 4–0; : 7–0, 6–0, 5–0; and a" : 11–1 (K = 3, 4); 16–4 (K= 0, 1, 2, 4); 9-0 (K= 0, 1, 2); 8–0 (K= 0) were identified for the first time. Prior to this work, the lines of CO in the visible range were observed only in the spectrum of comet C/1979 VI (Bradfield) in 1989.  相似文献   

15.
High fluences (i.e. the integrated fluxes) of C, N, O group of nuclei and some of the heavier ones, in the energy interval 10–25 MeV/amu, have been identified in a Lexan polycarbonate detector assembly exposed on the exterior of the Skylab for 73 days. The existence of large flux of low energy nuclei in the Skylab orbit is surprising since the minimum geomagnetic cut-off energy for fully stripped nuclei (A/Z=2) is 50 MeV/amu at the orbit of the satellite, and the period of exposure was a quiet one, free from significant solar particle events. We have considered two sources for these particles: (i) partly ionized interplanetary ions accelerated within the magnetosphere and (ii) heavy nuclei trapped in the Earth's radiation belt. The flux and composition of the nuclei observed by us seem to be significantly different from those in the trapped radiation as known at present; hence it seems likely that the major part of the observed flux may be interpreted, in terms of partly ionized interplanetary ions that are further accelerated in the magnetosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号