首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
13C and ΣCO2 data from the North and South Atlantic, the Antarctic, and the North and South Pacific are given. The δ13C of the ΣCO2 in the deep water (~3000m) decreases from 1.7‰ in the North Atlantic to ?0.10‰ in the North Pacific. This change is attributed to the addition of about 158 μmoles of CO2 per kg of seawater. The in-situ oxidation of organic matter accounts for 83% of this increase in ΣCO2, while the remainder is attributed to dissolution of calcium carbonate.The δ13C of the dissolved CO2 in mid-latitude surface water samples is controlled by a quasi-steady-state equilibrium with atmospheric CO2 at a mean temperature of 16°C. The δ13C and ΣCO2 values of Antarctic surface water samples suggest that these waters are derived from a mixture of North Atlantic deep water and equilibrated surface water.  相似文献   

2.
Radiocarbon data for 11 stations and tritium data for 16 stations in the North Atlantic Ocean from 74°N to 3°N are presented. For radiocarbon, normal errors inΔ14C are± 4‰, and in tritium,± 0.09TU or± 3%, whichever is larger. There is a remarkable, but not simply linear, correlation between oceanic bomb transients in14C and3H. The deep convective mixing in the Greenland Sea is reflected in substantial bomb tracer penetration to all depths, with residence time for the deep, cold core water that seems to be 20 to 30 years. The outflow in the bottom layer southward over the sills of the Denmark Strait and Faroe Passage carries significant tritium concentration, at least to 40°N. Complicated, but coherent, profile structures in the subtropical Atlantic suggest effects of large-scale lateral advection. In particular, a pronounced minimum in both14C and3H might be associated with the Antarctic intermediate water.  相似文献   

3.
Tritium and14C data of the “GOGO I” station at 28.5°N, 121.6°W in November 1971 are reported. The tritium decline between 150 and 350 m depth is as pronounced as was observed on a previous occupation of the same position, station “Geosecs I” in September 1969, and the tritium concentrations below 200 m are unchanged.14C data from the depth range of tritium decline are corrected for fallout14C contribution. The correcting procedure requires simultaneous measurements of14C, ΣCO2, and tritium. It is concluded that the natural absolute14C concentration attains a maximum near 400 m depth, of 7.5% excess over that of surface water.  相似文献   

4.
226Ra data on eleven vertical profiles taken during the GEOSECS program from the Antarctic Ocean and its vicinity in both the Atlantic and the Pacific are presented. Replicate measurements were made on each sample using the Rn-emanation method. The precision (1 σ) based on triplicate analyses averages about ±2.5%. Waters all around the Antarctic continent below 2 km depth appear to exhibit a uniform226Ra concentration of 21.5 ± 1dpm/100kg, except perhaps locally such as the Ross Sea and the Drake Passage where small variations may be present. Higher in the water column, the226Ra contents decrease toward the surface with gradients which vary as a function of the influence exerted by the Antarctic Convergence. Across this oceanic front, a north-to-south increase of226Ra occurs (the increase being the largest near the surface: from 8 to 18 dpm/100 kg), reflecting the combining effect of deep-water upwelling and meridional water mixing. The core layer of the Antarctic Intermediate Water contains about 14 dpm/100 kg of226Ra and that of the Circumpolar Intermediate Water (O2 minimum and local T maximum) about 18 dpm/100 kg. To a first approximation,226Ra covaries with Si in the circumpolar waters.  相似文献   

5.
Based on results obtained during the GEOSECS program the primary features of the distribution of226Ra in the Atlantic Ocean can be defined. Outside the Antarctic no significant variation has been found in the226Ra content of surface waters. Eighty samples yield an average of 7.4 dpm/100 kg (normalized to a salinity of 35.00‰). Deep waters in the central Atlantic have226Ra contents several dpm/100 kg higher than expected from the mixing of Antarctic Bottom Water (21.3 dpm/100 kg) and basal North Atlantic Deep Water (10.3 dpm/100 kg). These excesses correlate well with deficiencies in O2 and excesses in SiO2. The intermediate water226Ra maximum in the South Atlantic is associated with the inflow of low-oxygen Circumpolar Intermediate Water beneath the Antarctic Intermediate Water.  相似文献   

6.

The study of water masses is important as they transport water properties affecting the biosphere and ocean dynamics. In this study, we revisit water masses in the Caribbean Sea using climatology and 11 months of observations at different depths from 3 moorings placed in the Guajira upwelling region, providing some new findings. The Caribbean Surface Water (CSW) seasonal variability is studied at the mixed layer depth. Salinity differences between CSW and the saltier North Atlantic Subtropical Underwater (SUW) determine static stability spatial and temporal variations, with implications for regional ocean dynamics. Besides, we assess the climatologic distribution of water masses below the salinity maximum using the optimum multiparameter analysis and the Thermodynamic Equation of Seawater 2010, defining their source water indices when entering the Caribbean Sea. The SUW, with its core at ~ 150 m depth, occupies 16% of the Caribbean Sea volume, complemented by 38% of Antarctic Intermediate Water, with its core at ~ 700 m depth and North Atlantic Deep Water, which as bottom water occupies 46% of the volume. Hydrographic observations do not differ from climatology, regardless of their large sub-annual variations decreasing with depth. Daily time series of dominant water fractions at different depths correlate at each mooring, indicating a common forcing. Besides, rotated wind stress, which is an indicator of the Guajira upwelling, correlates regularly with water mass fractions down to 700 m depth. However, during strong wind shifts, upwelling seems to affect them down to 1450 m depth.

  相似文献   

7.
Following Roether et al. [1] an upwelling model has been tested to explain the distribution of bomb-produced tritium at the GEOSECS I test station off Baja, California. We have extended their treatment to include the time histories for tritium and for bomb radiocarbon now available for this station. If the CO2 gas exchange rate at this station is similar to the ocean average value of 20 moles/m2 yr, then the upwelling rate must be quite small (<3 m/yr). However, a satisfactory match to the time histories of14C and of3H is achieved only if an upwelling rate of 40 m/yr is used. In this case, however, a CO2 exchange rate of 70 moles/m2 yr would be required to match the observed surface water14C/C ratios and a tritium input 4 times the expected value would be needed. The inconsistency in the bomb14C time history obtained using the accepted CO2 exchange rate is likely the result of horizontal effects which void the validity of one dimensional modeling in this region of the ocean.  相似文献   

8.
The consequences of a coastal upwelling event on physical and chemical patterns were studied in the central Gulf of Finland. Weekly mapping of hydrographical and -chemical fields were carried out across the Gulf between Tallinn and Helsinki in July–August 2006. In each survey, vertical profiles of temperature and salinity were recorded at 27 stations and water samples for chemical analyses (PO43−, NO2+NO3) were collected at 14 stations along the transect. An ordinary distribution of hydrophysical and -chemical variables with the seasonal thermocline at the depths of 10–20 m was observed in the beginning of the measurements in July. Nutrient concentrations in the upper mixed layer were below the detection limit and nutriclines were located just below or in the lower part of the thermocline. In the first half of August, a very intense upwelling event occurred near the southern coast of the Gulf when waters with low temperature and high salinity from the intermediate layer surfaced. High nutrient concentrations were measured in the upwelled water – 0.4 μmol l−1 of phosphates and 0.6 μmol l−1 of nitrates+nitrites. We estimated the amount of nutrients transported into the surface layer as 238–290 tons of phosphorus (P)-PO43− and 175–255 tons of N-NOx for a 12 m thick, 20 km wide and 100 km long coastal stretch. Taking into account a characteristic along-shore extension of the upwelling of 200 km, the phosphate-phosphorus amount is approximately equal to the average total monthly riverine load of phosphorus to the Gulf of Finland. It is shown that TS-characteristics of water masses and vertical distribution of nutrients along the study transect experienced drastic changes caused by the upwelling event in the entire studied water column. TS-analysis of profiles obtained before and during the upwelling event suggests that while welled up, the cold intermediate layer water was mixed with the water from the upper mixed layer with a share of 85% and 15%. We suggest that the coastal upwelling events contribute remarkably to the vertical mixing of waters in the Gulf of Finland. Intrusions of nutrient-rich waters along the inclined isopycnal surfaces in the vicinity of upwelling front were revealed. The upwelling event widened the separation of phosphocline and nitracline which in turn prevented surfacing of nitrate+nitrite-nitrogen during the next upwelling event observed a week after the upwelling relaxation. A suggestion is made that such widening of nutricline separation caused by similar upwelling events in early summer could create favourable conditions for late summer cyanobacterial blooms.  相似文献   

9.
Individual vertical profiles and north-south sections for the distribution of theδ13C of total dissolved inorganic carbon are presented for the Atlantic stations of the GEOSECS program. In most cases theδ13C data parallel the distribution of dissolved O2. Differences are attributed to in-situ oxidation of organic matter and dissolution of particles of CaCO3. Antarctic Bottom and Intermediate Waters have aδ13C value of near 0.5‰ relative to the PDB isotopic standard. The lowest values in the Atlantic ocean were found in the Antarctic Circumpolar waters which haveδ13C values as low as 0.2‰. The core of the North Atlantic Deep Water has aδ13C value of 1.0‰.  相似文献   

10.
Four vertical Ra profiles have been measured across the East Pacific Rise (EPR) from Callao to Tahiti. These profiles show that Ra in the deep water (below 2 km depth) increases toward the EPR. However, this increase does not necessarily indicate a Ra source on the EPR. The increase from Tahiti toward the EPR reflects the general trend of the Pacific Ra distribution. The decrease from the EPR eastward to the Peru Basin is probably due to the continental effect with higher sedimentation rates.The hydrography, especially potential temperature and oxygen, indicates significant differences below about 3 km depth between the east and west flanks of the EPR indicating the effect of the cold bottom water to the west of the EPR. The benthic front is identified at 3.9 km depth at the westernmost station near Tahiti. Silicate and salinity data are by no means unique and reflect a complicated local circulation and mixing pattern with a minor intrusion of the Antarctic Bottom Water from the south into the Peru Basin.The θ-Ra and Ra-Si relationships both indicate an enrichment of Ra in the deep water below 2 km depth probably due to input from the underlying sediments. Above 2 km depth, Ra covaries almost linearly with θ as well as Si, mimicking a stable conservative property. This suggests that the radiodecay rate is nearly balanced by the input rate within the water column between 1 and 2 km depth in which θ is linearly correlated withS.Simple vertical model calculations show that the in-situ production of Ra by particulate dissolution in the deep water is negligible within a reasonable range of upwelling rates from 2 to 12 m/yr. Thus the Ra profiles show a net decay effect and so the θ-Ra relations are not linear in the deep water. In fact, the composite θ-Ra plots show a break at 25 dpm/100 kg (at 2 km depth) rather than a smooth curve, while theθ-S plots are essentially linear. A maximum Ra production rate of about 8 × 10?3 (dpm/100 kg) yr?1 is obtained from all the profiles with minimum upwelling rates between 0.7 and 3.5 m/yr.  相似文献   

11.
The coastal confined aquifer in the Gulf of Urabá (Colombia) is an important water source for the banana agro‐industry as well as for urban and rural communities. However, the main processes controlling recharge and mixing in the aquifer are still poorly understood. Hydrochemical analyses and stable isotope monitoring were conducted to (a) determine groundwater recharge origin, mean groundwater age, and the main processes governing groundwater chemistry and the potential mixing of marine water and the influence of diffusive processes from the two surrounding aquitard layers. Hydrochemical data indicate that the main processes affecting the dissolved chemical composition include cation exchange, dissolution of carbonated and CO2, and silicate weathering. δ18O and δ2H compositions combined with 14C data highlight the differences in climatic conditions between the recharge zone and the confined section of the aquifer, which is close to the Atlantic Ocean. Groundwater samples with 14C ages from recent to 28,300 years BP show a depleted isotopic trend ranging from ?6.43‰ to ?9.14‰ in δ18O and from ?43.2‰ to ?65.7‰ in δ2H. The most depleted δ18O and δ2H compositions suggest a cooler recharge climate than the current conditions (corresponding to the last glacial period of the late Pleistocene). Depleted δ13C values in the total dissolved inorganic carbon indicate the existence of organic material oxidation processes within the geologic formation. These results can be used or transferred to enhance groundwater modelling efforts in other confined coastal aquifers of South America where scarcity of long‐term monitoring data limits water resources planification under a changing climate.  相似文献   

12.
To constrain short-term changes of climate and oceanography in the northern South China Sea(SCS)over interglacial marine isotope stage(MIS)5.5,we studied planktic and benthic 18O records of seven marine sediment cores with a time resolution of70–700 yr.Using 6–8 tie points the planktic records were tuned to the U/Th chronology of speleothem 18O records in China and Europe.The last occurrence of pink Globigerinoides ruber marks the top of Heinrich stadial 11(HS-11)near 128.4 ka.HS-11 matches a 2300-yr long positive 18O excursion by 1.5/0.8‰both in planktic and benthic 18O records.Hence half of the planktic 18O signal was linked to increased upwelling of18O-and12C-enriched deep waters in the southwestern SCS.The increase was possibly linked to a strengthened inflow of Pacific deep waters through the Bashi Strait,that form a boundary current along the northern slope of the SCS,building a major sediment drift.At its lower margin near 2300–2400 m water depth(w.d.)Parasound records reveal a belt of modern erosion.At the end of glacial termination 2,stratigraphic gaps deleted HS-11 in core MD05-2904 and subsequent peak MIS 5.5 at ODP Site 1144.Likewise hiatuses probably earmarked all preceding glacial terminations at Site 1144 back to 650 ka.Accordingly,boundary current erosion then shifted~300 m upslope to~2040–2060 m w.d.These vertical shifts imply a rise in boundary current buoyancy,that in turn may be linked to transient events of North Pacific deepwater formation similar to that traced in SCS and North Pacific paleoceanographic records over glacial termination 1.  相似文献   

13.
In this study,to further promote the application of the stable carbon isotope natural abundance(SCINA)method to the study of CH4in paddy fields in China,field experiments were carried out to investigate carbon isotope fractionation during CH4transport in both rice-and non-rice-growing seasons.More importantly,two new methods for the measurement of the CH4transport fractionation factor(εtransport)in paddy fields were introduced.The results indicated that the closed chamber+syringe method was much better for the determination ofεtransport during the non-rice-growing season.Presently,εtransport was calculated using theδ13C value of the CH4emitted from a rice field minus that of the CH4in the floodwater(–6.7‰to–3.0‰).In addition,there were three methods available for estimatingεtransport during the rice-growing season:deduction of theδ13C value of the CH4in the floodwater from that of the CH4emitted from the field(–16.6‰to–15.2‰);deduction of theδ13C value of the CH4in the soil pore water from that of the CH4emitted from the field(–13.2‰to–1.1‰);and deduction of theδ13C value of the CH4in the aerenchyma of plants from that of the CH4emitted from plants(–16.3‰to–10.9‰).Unfortunately,the first two methods showed relatively large uncertainties.Only the last one,the dividing+cutting method,was not only scientific and reliable but also provided accurate measurements.  相似文献   

14.
15.
Assessing natural vs. anthropogenic sources of methane in drinking water aquifers is a critical issue in areas of shale oil and gas production. The objective of this study was to determine controls on methane occurrences in aquifers in the Eagle Ford Shale play footprint. A total of 110 water wells were tested for dissolved light alkanes, isotopes of methane, and major ions, mostly in the eastern section of the play. Multiple aquifers were sampled with approximately 47 samples from the Carrizo‐Wilcox Aquifer (250‐1200 m depth range) and Queen City‐Sparta Aquifer (150‐900 m depth range) and 63 samples from other shallow aquifers but mostly from the Catahoula Formation (depth <150 m). Besides three shallow wells with unambiguously microbial methane, only deeper wells show significant dissolved methane (22 samples >1 mg/L, 10 samples >10 mg/L). No dissolved methane samples exhibit thermogenic characteristics that would link them unequivocally to oil and gas sourced from the Eagle Ford Shale. In particular, the well water samples contain very little or no ethane and propane (C1/C2+C3 molar ratio >453), unlike what would be expected in an oil province, but they also display relatively heavier δ13Cmethane (>?55‰) and δDmethane (>?180‰). Samples from the deeper Carrizo and Queen City aquifers are consistent with microbial methane sourced from syndepositional organic matter mixed with thermogenic methane input, most likely originating from deeper oil reservoirs and migrating through fault zones. Active oxidation of methane pushes δ13Cmethane and δDmethane toward heavier values, whereas the thermogenic gas component is enriched with methane owing to a long migration path resulting in a higher C1/C2+C3 ratio than in the local reservoirs.  相似文献   

16.
Iwojima volcano, located on the southernmost part of the Izu-Ogasawara arc, is characterized by the extrusion of trachyte or trachy andesite lavas and pyroclastic rocks of Holocene and surface thermal manifestations. Small phreatic explosions have been recorded frequently during the last 100 years with the most recent in 1999 and 2001. In order to elucidate the behavior of volcanic volatiles and to assess the potential activity of this volcano, diffuse CO2 efflux, CO2 content and δ13C–CO2 in soil gas, and soil temperature at 30 cm depth were measured at 272 sites in March 2000, 112 sites in December 2000 and 40 sites in December 2001. We found that high CO2 efflux values, of more than 100 g m−2 day−1, occurred at several locations on Motoyama volcano corresponding with high soil temperatures (more than 60 °C at 30 cm depth) region and with areas where CO2 with magmatic δ13C was observed. Here, the magmatic δ13C determined for fumarolic CO2 data ranged from −2‰ to +3‰, which is clearly higher than magmatic gas values (−8‰ to −2‰) typically found in island arc settings around the world. However, this can be explained in terms of carbon-isotope fractionation between calcite and CO2 under subsurface temperature and pressure conditions at Iwojima. A total efflux of CO2 for Iwojima volcano is estimated to be 760 t day−1, with a magmatic contribution of about 450 t day−1. This value is rather high compared with other volcanoes in island arc settings. Since Iwojima has no visible plume, almost all volcanic CO2 is released as diffuse efflux through the volcanic edifice.  相似文献   

17.
Oxygen isotope fractionation in dissolved oxygen in the deep sea   总被引:1,自引:0,他引:1  
18O variations in dissolved oxygen have been measured at five stations from the eastern equatorial Pacific, at the GEOSECS-I and -II intercalibration stations in the North Pacific and North Atlantic, and along an Antarctic-South Pacific section from MONSOON expedition. Relative to atmospheric oxygen, dissolved oxygen in the ocean is enriched in18O up to a maximum of 14‰, the extreme enrichments occurring in the oxygen-minimum region of the eastern Pacific. The vertical diffusion-advection model has been used to determine the isotopic fractionation of deep-water in-situ oxygen consumption ascribed to bacterial metabolism. The single-stage enrichment, ε, in Pacific Deep Water below 1 km is 10‰ (α = 0.99,16O consumed preferentially). The model calculations show that the isotopic data cannot be fit without the introduction of a fractionation factor, just as the dissolved oxygen data cannot be fit without an in-situ consumption parameter. The consistency of the positive sign for ε and the negative source term for O2, observed in all deep Pacific profiles analyzed to date, provide strong evidence that vertical transport and in-situ consumption terms dominate the horizontal tracer flux terms, and indicate the presence of a significant “deep metabolism” in abyssal ocean waters.  相似文献   

18.
We evaluated changes in siliceous export production and the source of organic matter preserved in sediment core MD07-3109H recovered from the Gulf of Ancud, Chiloé Inner Sea (42°S, 72°W, water column depth: 328 m), southern Chile. We analyzed the abundance of siliceous microfossils (diatoms, silicoflagellates, sponge spicules, Chrysophyte cysts, phytoliths), geochemical proxies (weight percent silicon %SiOPAL, organic carbon, total nitrogen, C/N molar), and sediment stable isotopes (δ13Corg, δ15N). Chronology based on 210Pb and 14C provided an accumulated age of 144 years at the base of the core.Sediments of core MD07-3109H are predominantly marine in origin, averaging δ13Corg=–20.75‰±0.82, δ15N=8.7±0.35‰, and C/N=8.76±0.36. Marine diatoms compose 94% of the total assemblage of siliceous microfossils. Our record of productivity based on the mass accumulation rates of organic carbon, total nitrogen, SiOPAL, and total diatoms showed high values between 1863 and 1869 AD followed by a declining trend until 1921 AD, a transition period from 1921 to 1959 AD with fluctuating values, and a clear decreasing pattern from 1960 AD to the present. This marked reduction in productivity was associated with decreased precipitation and Puelo River streamflow (41°S), as well as a warmer and more stratified water column, especially since the 1980s.  相似文献   

19.
A modified AEI-IM20 ion microprobe has been used to measure87Sr/86Sr ratios in carbonates. A suite of carbonates with varying major elements (Ca, Mg, Fe, Mn) was studied at low and high (M/ΔM ? 3000) mass resolution to determine the types and intensities of molecular species isobaric with Sr peaks; Sr data collected at low mass resolution must be corrected for Ca2 and CaMgO species. Rb/Sr ratios are extremely low, and correction for87Rb is not required (< 0.1‰ of87Sr).Usable Sr isotopic data may be obtained from calcite givenSr≥ 400ppm, and for Sr > 5000 ppm a precision of ~ ± 1‰ (± 0.0007) in87Sr/86Sr (2σ mean) can be achieved under optimum conditions. The corrections for Ca2 and CaMgO are smaller than the within-run precision in calcite, but in dolomite the correction for CaMgO is + 1.5%. Mass fractionation corrections to87Sr/86Sr (based on86Sr/88Sr= 0.1194) are typically +8 to +10‰. Good agreement between ion probe and solid source mass spectrometer results was found for calcites of known Sr isotopic composition: ST4a (~ 400ppm Sr), average ion probe87Sr/86Sr= 0.7267 ± 0.0015, solid source87Sr/86Sr= 0.72680 ± 0.00008 [14]; JCG36 (~ 6000ppm Sr), average ion probe87Sr/86Sr= 0.7056 ± 0.0009, solid source87Sr/86Sr= 0.70588 ± 0.00009 [16]; JCG44 (~ 6000ppm Sr), average ion probe87Sr/86Sr= 0.7057 ± 0.0006, solid source87Sr/86Sr= 0.70540 ± 0.00008 [16]. The ability of the ion microprobe to measure87Sr/86Sr for 10-μm spots in calcite was used: (1) to measure variation in87Sr/86Sr of ~ 0.01 on a centimetre scale in a hydrothermally altered basalt from the Isle of Skye, northwestern Scotland; and (2) to determine the Sr isotopic composition of tiny (< 35 μm) calcite grains in a veined mantle lherzolite from Bultfontein, South Africa. Because of calcite's ubiquitous occurrence in many parageneses this technique may offer many opportunities for the measurement of fine scale heterogeneities in87Sr/86Sr.  相似文献   

20.
Here we present the first species-specific study of boron isotopes in the epibenthic foraminifer species Cibicidoides wuellerstorfi. Coretop samples from a water depth profile from 1000 to 4500 m on the northern flank of the Walvis Ridge are 4.4‰ lower than the values expected, based on calculations of the δ11Bborate of ambient seawater. Similar values for this foraminifer species are presented from ODP site 668B at the Sierra Leone Rise, in the equatorial Atlantic. The consistency between data of the same species suggests the offsets are primary, rather than diagenetic. Glacial C. wuellerstorfi from ODP 668B and Walvis Ridge have boron isotope compositions only slightly different to interglacial samples, that is no larger than + 0.10 pH units, or + 23 µmol kg− 1 in [CO32−] above the reconstructed glacial lysocline, and − 0.07 pH units, or − 14 µmol kg− 1 in [CO32−] below. We use these results to suggest that glacial deep water pH in the Atlantic was similar to interglacial pH. The new data resolve the inconsistency between the previously reported high bottom water pH and the lack of significant carbonate preservation of the glacial deep ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号