首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Forty-two elements have been measured via INAA and RNAA in six samples of five rocks from a 2-m tan-gray boulder-2 breccia (South Massif), in four soils from the South Massif and a valley soil. The chemical composition of the four metaclastic rocks corresponds to “high alumina” (52% Pl) and medium-K KREEP-type rocks. Rock 72335,2 is a medium K anorthositic gabbro (74% Pl). Both the North and South Massifs appear to be medium-K KREEP in composition and thus may represent a single stratigraphic unit of the Serenitatis basin event. Four soils of the South Massif are identical in composition to medium-K KREEP; they are more feldspathic and lower in LIL trace elements relative to the boulder-2 rocks. The valley soil 75081 is like the 10084 soil; both soils are high in TiO2 and both are deficient in KREEP. Th and U give a sharp distinction between the valley and highland soils. The South Massif rocks and soils contain siderophiles at the 2–4% Cl level and show an ancient meteoritic pattern. Five samples of the four rocks have Ir/Au ratios of ± 0.02 which we assign to the Serenitatis basis planetesimal. The valley soil at Camelot Crater has low siderophiles (1% Cl). Our systematic study of four shadowed and exposed soils does not support the labile hypothesis for Cd, In, Tl and Zn. We observe no volatile (atmophile) movement from the South Massif highland soils to the valley soil 75081. The volatiles Cs and Tl appear to have been fractionated in the boulder-2 rocks during cratering, brecciation and metamorphic processes. The uniform ratio of FeO/MnO = 80–85, observed for all previous mare and highland sites, also holds for the Taurus-Littrow site.  相似文献   

2.
Polymict samples can be used to establish mass-balance constraints regarding the bulk composition of the lunar crust, and to gauge the degree of regional heterogeneity in the composition of the lunar crust. The most ideally polymict type of sample is finely-mixed regolith (lunar soil), or its lithified equivalent, regolith breccia. Fortunately, lunar regolith breccias can occasionally be found at great distances from their points of origin — most of the known lunar meteorites are regolith breccias. We are searching for examples of exotic regolith samples among the Apollo regolith breccia collection. Most of the 21 Apollo regolith breccias analyzed for this study strongly resemble the local soils over which they were collected. Nine regolith breccias from Apollo 16 are surprisingly mature compared to previously-analyzed Apollo 16 regolith breccias, and six of the seven from Apollo 16 Station 5 have lower, more local-soil-like,mg ratios than previously analyzed regolith breccias from this station. Several of the Apollo 14 regolith breccias investigated show significantly highermg, and lower Al, than the local soils.The most interesting sample we have investigated is 14076,1, from a lithology that constitutes roughly half of a 2.0-g pebble. The presence of spherules indicates a regolith derivation for 14076,1, yet its highly aluminous (30 wt.% Al2O3) composition is clearly exotic to the 1.6-km traverse surface over which the Apollo 14 samples were collected. This sample resembles soils from the Descartes (Apollo 16) highlands far more than it does any other polymict sample from the Fra Mauro (Apollo 14) region. The I/sFeO maturity index is extremely low, but this may be a result of thermal annealing. A variety of siderophile elements occur in 14076,1 at typical regolith concentrations. The chemistry of the second most aluminous regolith sample from Apollo 14, 14315, can only be roughly approximated as a mixture of local regolith and 14076,1-like material. However, the low a priori statistical probability for long-distance horizontal transport by impact cratering, along with the relatively high contents of incompatible elements in 14076,1 (despite its high Al content), suggest that this regolith breccia probably originated within a few hundred kilometers of the Appollo 14 site. If so, its compositional resemblance to ferroan anorthosite tends to suggest that the regional crust is, or originally was, far richer in ferroan anorthosite than implied by the meager statistics for pristine rocks from this site. Thus, 14076,1 tends to strengthen the hypothesis that ferroan anorthosite originated as the flotation crust of a global magmasphere.  相似文献   

3.
Mature surface fines have an equilibrium specific surface area of about 0.6 m2/g, the equivalent mean particle size being about 3 μm. The adsorption behavior of inert gases (reversible isotherms) indicates that the particles are also non-porous in the size range of pores 10–300Å. Apparently in mature soils there is a balance in the forces which cause fining, attrition, pore filling and growth of lunar dust grains. Immature, lightly irradiated soils usually have coarser grains which reduce in size as aging proceeds. The specific surface area, determined by nitrogen or krypton sorption at 77°K, is a valuable index of soil maturity.  相似文献   

4.
Glacial meltwater and sediment at the source of the River Rhône have been analyzed to determine: 1. the partitioning of Al, Cd, Co, Cu, Cr. Fe, Mn, Ni, Pb and Zn between the water and particulate phase. 2. the particle size ranges which affect the dissolved trace metal ion composition of the meltwater and 3. the availability (potential release) of the ten trace metal ions from the sediment. Greater than 80% of the total Cd, Cu, Mn, Ni and Zn were found to be in operationally-defined (0.4 μm) dissolved forms. Fe and Al in the meltwater are primarily associated with particles in the size range 0.4–8 μm, while Cd. Cu, Mn, Ni and Zn occur with particles smaller than 0.1 μm. For the sediment, Cu, Ni and Pb were significantly present as exchangeable forms; only Cu, Ni, Pb and Zn were determined as organicallybound forms.  相似文献   

5.
Nanophase Fe metal grains (np-Fe°) are a product of space weathering, formed by processes related to meteorite impacts, and solar-wind sputtering on airless planetary bodies, such as the Moon. Iron isotopes of lunar soils are fractionated during these processes, and the np-Fe° in the finest (<10 μm), mature, size fractions of the soil become enriched in heavier isotopes by ∼0.3‰ in 56Fe/54Fe in comparison to the bulk rocks (0.03±0.05‰), from which the soil was formed. A positive correlation of δ56Fe values with the soil maturity index, IS/FeO, suggests that the high δ56Fe values reflect production of nanophase Fe metal that is produced by space weathering that occurs on airless planetary bodies. Furthermore, the enrichment of δ56Fe in the smallest size fraction of lunar soils supports a model for creation of np-Fe° through vapor deposition induced by micrometeorites, as well as that by solar-wind sputtering.  相似文献   

6.
Six soil samples from various depths of the Luna 24 drill core column have been analysed for their particle track records and light noble gas compositions. The observed particle track records indicate higher degree of maturity for the upper zone (~1 m) of this regolith column as compared to the soils in the lower zone (~0.4 m). The cosmogenic21Ne concentrations decrease rapidly with depth to 1 m, after which the concentrations level off or increase slightly. These data suggest a multi-stage depositional history for this drill core soil column consisting of: (1) rapid deposition of regolith material, (2) a cratering event about 400 m.y. B.P., leading to excavation to a depth of ~1 m from the present regolith surface, (3) a relatively rapid fill up of the crater with near-surface irradiated material, and (4) in-situ irradiation during the last about 250–300 m.y. Such a depositional sequence can also explain the observed lack of correlation between different surface exposure-correlated maturity indices in these drill core soil samples.  相似文献   

7.
This study examines the abundance of trace elements in surface sediments of a former acid sulfate soil (ASS) wetland subjected to marine tidal inundation. Sediment properties of this highly modified study site are compared with those of an adjacent unmodified, intertidal mangrove forest. Whilst some trace elements (Al, Cd, Mn, Ni and Zn) were clearly depleted due to mobilisation and leaching in the previous oxic-acidic phase, other trace elements (As and Cr) displayed significant enrichment in the tidally inundated ASS. Many trace elements were strongly associated with the reactive Fe and acid volatile sulfide (AVS) fractions, suggesting that trace elements may be adsorbed to abundant reactive Fe phases or sequestered as sulfide minerals. These findings provide an important understanding of the fate and mobility of reactive iron, AVS and trace elements during tidal remediation of a formerly acidified Great Barrier Reef (GBR) catchment.  相似文献   

8.
The thermal conductivity of a simulated Apollo 12 lunar soil sample was measured with a needle probe under vacuum. The result showed that the sample, with bulk densities of 1.70–1.85 g cm?3 held in a vertical cylinder (2.54 cm in diameter and 6.99 cm long) has a thermal conductivity ranging from 8.8 to 10.9 mW m?1 K?1. This is comparable to the lunar regolith's thermal conductivity as determined in situ. Besides the dense packing of the soil particles, an enhanced intergranular thermal contact, due to the self-compression of the sample, is necessary to raise the sample's thermal conductivity from the level of loose soil (< 5 mW m?1 K?1) to that of the lunar regolith deeper than 35 cm (~ 10 mW m?1 K?1). A model of the lunar regolith, a thin layer of loose soil resting on a compacted self-compressed substratum, is consistent with the lunar regolith's surface structure as deduced from an observation of the lunar surface's brightness temperature. Martian regolith surface structure is similar, except that its surface layer may be missing in places because of aeolian activity. Measurements of thermal conductivity under simulated martian surface conditions showed that the thermal properties of loose and compacted soils agreed with the two peak values of the martian surface's thermal inertia as observed from “Viking” orbiters, suggesting that drifted loose soil and exposed compacted soil are responsible for the bimodal distribution of the martian surface's thermal inertia near zero elevation. For compacted soil exposed to the martian surface to have the same thermal conductivity as that buried under the surface layer, a cohesion of the soil particles must be assumed.  相似文献   

9.
Total concentrations of As, Cd, Cu, Ni, Pb and Zn were determined in order to assess their changes in contamination levels in roadside soils of long-term abandoned tillage (LAT) belt and short-term abandoned tillage (SAT) belt from a plateau lakeshore of China. Results showed that the mean concentrations of these trace elements except for Cd and Pb were lower than background values. The contamination index values of these trace elements fluctuated and generally decreased with increasing distances from the road in both sampling belts except for Cu and Ni. Both LAT and SAT soils were facing Cd and Pb contamination. The integrated contamination level was more serious in LAT soils compared to SAT soils, with heavy contamination levels at the distances from 5 to 10 m in LAT soils. The effects of the studied rural road on both belts were clearly shown up to 250 m away from the road.  相似文献   

10.
According to the List of Hazardous Substances of the Agency of the Toxic Substances and Disease Registry(ATSDR 2017),some metallic elements such as Pb or Cd are still considered as the most polluting elements in the world.These elements accumulate in sediments,and there are various methods available that differentiate lithogenic sources from anthropogenic sources.For that,the natural geochemical background is required,however,its definition is far from unanimous:it can be a global or local value,single or statistically estimated value,depending on the studies.Our study is focused on the Subae River in the state of Bahia,Northeastern Brazil,which was historically contaminated by lead metallurgy.The river sediments were sampled at 21 locations:one at the discharge point of the plant's rainwater basin,ten upstream,and ten downstream.The total contents of Fe,Ti,Mn,Pb,Zn,Cu,Cr,particle-size distribution,and organic matter were analyzed.The conventional geochemical indexes,i.e.,the pollution degree(mCd),pollution load index,and enrichment factor indicated contamination by Zn,Pb,Cr,and Cu.Then,a new enrichment factor is introduced,assuming that the sediments come from erosion of soils in the watershed.After obtaining the natural concentrations of metals in the clay,silt,and sand fractions of uncontaminated reference soils,we corrected the pollution indexes by calculating a new individual background in each sediment sample,according to its grain size distribution.This new approach provided more precise indexes in the assessment of sediment pollution,by highlighting higher contamination of Zn and Pb(around 50%)and at the same time the absence of Cr and Cu contamination,two metals not involved with the metallurgical activity.  相似文献   

11.
The heavy metal content of river water samples with 12 and 15 mg/l dry matter of seston is increased to 400 … 3900μg/l by the addition of inorganic heavy metal salts, and after three days the distribution of the heavy metals is determined by fractional filtration (8, 3, 1.2, 0.8, 0.65, 0.45 and 0.22 μm pore size). More than 80% of Ni, Co and Mn are found in the fraction <0.22 μm, 60% of Pb and Cu in >8 μm as well as 40 and 25%, resp., in <0.22 μm, Cd, Cr and Zn are found in all fractions, 60 … 80% being in the fraction <0.22 μm, 90% of Fe occurring in the fraction >8 μm. The influence of specific parameters of water quality as pH-value and seston concentration on the distribution requires further investigations.  相似文献   

12.
The theoretical motion of individual dust grains in the lunar regolith is analyzed by using a Monte Carlo statistical code where the variables are the mass and speed distribution of meteorites at the lunar surface and the geometrical shape of impact craters. From these computations the detailed irradiation history of the grains in the ancient solar wind is traced back, over a period of 4 billion years, as a function of the grain size. Then by combining this irradiation scheme with the result of solar wind simulation experiments, the time and depth dependent accumulation of solar wind effects in the theoretical grains (solar wind maturation) is inferred. Finally, the validity of these predictions is tentatively checked by discussing a variety of physical and chemical solar wind effects which are registered in the surface layers of lunar dust grains. Therefore these studies give a tentative scenario for the “maturation” of the lunar regolith with respect to solar wind effects, but they also reveal useful guidelines to deduce meaningful information from such effects. In particular, they suggest a “lunar skin” sampling technique for extracting dust grains in lunar core tubes which could help in deciphering the past activity of the ancient solar wind over a time scale of several billion years.  相似文献   

13.
One of the essential controls on the microwave thermal emissions (MTE) of the lunar regolith is the abundance of FeO and TiO2, known as the (FeO+TiO2) abundance (FTA). In this paper, a radiative transfer simulation is employed first to study the change in the brightness temperature (TB) with FTA under a range of frequencies and surface temperatures. Then, we analyze the influence of FTA on the MTE of the lunar regolith using microwave sounder (CELMS) data from the Chang’E-2 lunar orbiter, Clementine UV-VIS data, and lunar samples recovered from the Apollo and Surveyor projects. We conclude that: (1) FTA strongly influences the MTE of the lunar regolith, but it is not the decisive control, and (2) FTA decreases slightly with depth. This research plays an essential role in appropriately inverting CELMS data to obtain lunar regolith parameters.  相似文献   

14.
The concentrations of 45 elements, and the content of organic substances, amorphous inorganic substances and minerals were determined in 26 samples of Elbe River bottom sediments to determine the correlation between the element composition and the grain size in the £ \le 4, 4--8, 8--16, 16--32, 32--63 7m and bulk samples £ \le 63 7m fractions. The purpose of this study was to obtain information about the role of particle size and their mineral composition as a control of element concentrations in sediments, the potential remobilization of elements under changing environmental conditions, and the chemical speciation of the large excess concentrations of elements in this system.¶About 22--56% of the estimated element yield was associated with sediments with a grain size of less than 4 7m and 82--97% of the element yield was found in the fraction smaller than 32 7m. Sequential extraction carried out for 20 potentially reactive elements in the £ \le 63 7m bulk samples and the £ \le 4 7m fraction showed the increased importance of exchangeable ions in the order Mn = Ni < Mg < Sr < Cu < Zn < Ca < K < Cd < Na < Mo, reducible fractions Zn < Sr < Mo < Co < Cu < Ni < Pb < Mn < Cr < Be < V = Fe < As < Ag, oxidizable chemical phases As = Ca < Cd < K < Sr < Fe = Mn < Zn = Mg < Mo < Co = Ag < Pb < Li < Cu = V < Ni < Cr = Na < Be with small concentrations from lithogenic phases Mn < As < Pb < Sr < Zn = Cu = Na < Be < V < Ni < Cr < Fe < K < Mg < Li. The major accumulative phases were identified for the individual elements.  相似文献   

15.
Lunar equatorial regolith temperature profiles were simulated using the half-limited solid heat conduction model. Based on the infrared data measured using the Diviner radiometer on the Lunar Reconnaissance Orbiter launched by the United Sates in June 2009, three factors influencing temperature profiles were analyzed. The infrared brightness temperature data from Diviner channel 7 were used to retrieve surface temperature. In simulating regolith temperature profiles, the retrieved temperature, rather than temperatures calculated from solar radiance at the lunar surface, were used as the input for surface temperature in solving the heat-conductive equation. The results showed that the bottom-layer temperature at depths of 6 m approached almost 246 K after 10000 iterations. The temperature was different to the temperature of 250 K at the same depth encountered in simulations using solar radiance. Simulations from both methods of surface temperatures over a lunar day gave similar variations. At lunar night, the temperature difference between the two was about 2 K; the main differences occurred when the solar elevation angle was very low when surface temperatures are largely affected by terrain topography. With no certainty in lunar temperature profiles at present, the advantage of the retrieval method using infrared sensor data as input to the boundary conditions in solving the lunar heat conduction equation is that simulations of surface temperature variations are more accurate. This is especially true in areas with large variations in terrain topography, where surface temperatures vary greatly because of shading from the sunlight.  相似文献   

16.
Ground penetrating radar (GPR) is currently within the scope of China's Chang-E 3 lunar mission, to study the shallow subsurface of the Moon. In this study, key factors that could affect a lunar GPR performance, such as frequency, range resolution, and antenna directivity, are discussed firstly. Geometrical optics and ray tracing techniques are used to model GPR echoes, considering the transmission, attenuation, reflection, geometrical spreading of radar waves, and the antenna directivity. The influence on A-scope GPR echoes and on the simulated radargrams for the Sinus Iridum region by surface and subsurface roughness, dielectric loss of the lunar regolith, radar frequency and bandwidth, and the distance between the transmit and receive antennas are discussed. Finally, potential scientific return about lunar subsurface properties from GPR echoes is also discussed. Simulation results suggest that subsurface structure from several to hundreds of meters can be studied from GPR echoes at P and VHF bands, and information about dielectric permittivity and thickness of subsurface layers can be estimated from GPR echoes in combination with regolith composition data.  相似文献   

17.
207Pb/206Pb of “low temperature sited” (LTS) lead as reported by Silver (1975) increases with40Ar/36Ar of trapped argon in thirteen samples from lunar maria. This strongly supports an earlier conclusion by (1972) that large (40Ar/36Ar)T ratios represent ancient regolith records, and provides a rough (40Ar/36Ar)T timescale.The erasure of (40Ar/36Ar)T records in surface soils by the excavation of deep-seated, “fresh” bedrock and by erosion of particle surfaces via ion sputtering must have been counteracted by conserving processes in the regolith. Two such processes are relatively well understood: agglutinate formation and the excavation and comminution of soil breccias which have preserved an ancient (40Ar/36Ar)T record. The frequency distribution of (40Ar/36Ar)T in 82 “soils” from all Apollo missions suggests a third process, which requires that sizeable “pockets” of ancient regolith materials including soils have survived deep turnover for billions of years.Large-scale mobility of LTS lead throughout all of the regolith does not appear to occur.Inert gas ions with sufficient energy for trapping may have reached the lunar surface more than 3 b.y. ago.The Apollo 11 microbreccias appear to have been formed more than 3 b.y. ago from regoliththen extant on the surface.  相似文献   

18.
Summary The microwave emissivity of relatively low-loss media such as snow, ice, frozen ground, and lunar soil is strongly influenced by fine-scale layering and by internal scattering. Radiometric data, however, are commonly interpreted using a model of emission from a homogeneous, dielectric halfspace whose emissivity derives exclusively from dielectric properties. Conclusions based upon these simple interpretations can be erroneous. Examples are presented showing that the emission from fresh or hardpacked snow over either frozen or moist soil is governed dominantly by the size distribution of ice grains in the snowpack. Similarly, the thickness of seasonally frozen soil and the concentration of rock clasts in lunar soil noticeably affect, respectively, the emissivities of northern latitude soils in winter and of the lunar regolith. Petrophysical data accumulated in support of the geophysical interpretation of microwave data must include measurements of not only dielectric properties, but also of geometric factors such as finescale layering and size distributions of grains, inclusions, and voids.  相似文献   

19.
Four 2–3 m sediment cores were taken at the sites on the periphery of mussel raft concentrations in the subtidal zone of the inner Ría de Vigo (Galicia, NW Spain) with a view to evaluate the potential risk to mariculture from sediment-borne trace elements (As, Cd, Cr, Cu, Mn, Ni, Pb and Zn). The distribution of each of these elements in reactive, organic, pyrite and silicate-bound fractions was determined at 64 samples, and these data were used to calculate the degree of trace metal pyritization (DTMP) of each metal/metalloid. In the top 10–20 cm, relatively oxic conditions led to As, Cd, Cu, Pb and Zn having large reactive fractions due to their association with Fe and Mn oxyhydroxides. At lower levels, anoxic conditions favoured by intense diagenesis led to the precipitation of trace metals and metalloids as sulphides, with or without association with pyrite. Particularly large pyrite fractions in the 20–100 cm layer are attributed to the organic matter of this layer being more marine in origin than that of deeper sediments. DTMP was greatest for Cu and As, and least for Pb, Zn and Cr. The risk of trace element toxicity in the event of disturbances instituting oxic conditions in these sediments is discussed.  相似文献   

20.
Approximately 500 glasses between 1 mm and 125 μm in size have been analyzed from fourteen samples from the Apollo 16 core sections 60002 and 60004. The majority of glasses have compositions comparable to those found in previous studies of lunar surface soils; however, two new and distinct glass compositions that are probably derived in part from mare material occur in the core samples. The major glass composition in all samples is that of Highland Basalt glass, but it also appears that high-K Fra Mauro Basalt (KREEP) glass is more common at the Apollo 16 site than was previously thought. The relative abundance of glasses within the core samples is random in distribution: each sample is characterized by a particular assemblage and distribution of the constituent glass compositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号