首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on high‐resolution TOPAS acoustic data, bathymetric data sets and sediment cores from the Norwegian Channel, the last retreat of the Norwegian Channel Ice Stream has been investigated. Mapping of ice‐marginal features such as grounding‐zone wedges and terminal moraines off western Norway suggest that the retreat of the grounding line in this part of the channel was interrupted by frequent stillstands, whereas the channel south of the threshold at Jæren does not have crossing ice‐marginal landforms. Three main seismic units have been identified, and, based on their seismic characteristics, in addition to study of sediment cores, these units are interpreted as till (U1), glacial marine sediment (U2) and Holocene hemipelagic sediment (U3). Based on new and published radiocarbon dates of the lower part of U2, combined with dates from the adjacent areas, it is concluded that the grounding line started to retreat from the shelf edge at about 19 ka and that the inner part of Skagerrak was ice free at 17.6 ka. This gives an average retreat rate of 450 m a−1, which is generally higher than mean retreat rates estimated for other palaeo‐ice streams (15–310 m a−1).  相似文献   

2.
The last deglaciation of the Franz Victoria Trough, northern Barents Sea   总被引:4,自引:0,他引:4  
A study of two piston cores and a 3.5 kHz seismic profile from the Franz Victoria Trough provides new stratigraphic, stable isotopic and foraminiferal AMS 14C data that help constrain the timing of ice-sheet retreat in the northern Barents Sea and the nature of the deglacial marine environment. Silty diamicton at the base of each core, interpreted as till or ice-marginal debris flow, suggests that the Barents ice sheet was grounded at the core sites (470 m water depth). Eight AMS 14C dates on sediment overlying the diamicton indicate that the ice sheet retreated from both core sites by 12.9 ka and that postglacial sedimentation began 10 ka ago. These dates, combined with a recently published 14C date from a nearby core, suggest that the Franz Victoria Trough may not have been deglaciated until c . 13 ka, 2000 years later than modeled ice-sheet reconstructions indicate. In the trough, oxygen isotopic ratios in planktonic foraminifera N. pachyderma (sinistral) were 0.5–0.750, lower during deglaciation than after, probably as a result of ice-sheet and/or iceberg melting. Foraminiferal assemblages suggest that Atlantic-derived intermediate water may have begun to penetrate the trough c . 13 ka ago.  相似文献   

3.
Processes occurring at the grounding zone of marine terminating ice streams are crucial to marginal stability, influencing ice discharge over the grounding-line, and thereby regulating ice-sheet mass balance. We present new marine geophysical data sets over a ~30×40 km area from a former ice-stream grounding zone in Storfjordrenna, a large cross-shelf trough in the western Barents Sea, south of Svalbard. Mapped ice-marginal landforms on the outer shelf include a large accumulation of grounding-zone deposits and a diverse population of iceberg ploughmarks. Published minimum ages of deglaciation in this region indicate that the deposits relate to the deglaciation of the Late Weichselian Storfjordrenna Ice Stream, a major outlet of the Barents Sea–Svalbard Ice Sheet. Sea-floor geomorphology records initial ice-stream retreat from the continental shelf break, and subsequent stabilization of the ice margin in outer-Storfjordrenna. Clustering of distinct iceberg ploughmark sets suggests locally diverse controls on iceberg calving, producing multi-keeled, tabular icebergs at the southern sector of the former ice margin, and deep-drafted, single-keeled icebergs in the northern sector. Retreat of the palaeo-ice stream from the continental shelf break was characterized by ice-margin break-up via large calving events, evidenced by intensive iceberg scouring on the outer shelf. The retreating ice margin stabilized in outer-Storfjordrenna, where the southern tip of Spitsbergen and underlying bedrock ridges provide lateral and basal pinning points. Ice-proximal fans on the western flank of the grounding-zone deposits document subglacial meltwater conduit and meltwater plume activity at the ice margin during deglaciation. Along the length of the former ice margin, key environmental parameters probably impacted ice-margin stability and grounding-zone deposition, and should be taken into consideration when reconstructing recent changes or predicting future changes to the margins of modern ice streams.  相似文献   

4.
The sediment core NP05‐71GC, retrieved from 360 m water depth south of Kvitøya, northwestern Barents Sea, was investigated for the distribution of benthic and planktic foraminifera, stable isotopes and sedimentological parameters to reconstruct palaeoceanographic changes and the growth and retreat of the Svalbard–Barents Sea Ice Sheet during the last ~16 000 years. The purpose is to gain better insight into the timing and variability of ocean circulation, climatic changes and ice‐sheet behaviour during the deglaciation and the Holocene. The results show that glaciomarine sedimentation commenced c. 16 000 a BP, indicating that the ice sheet had retreated from its maximum position at the shelf edge around Svalbard before that time. A strong subsurface influx of Atlantic‐derived bottom water occurred from 14 600 a BP during the Bølling and Allerød interstadials and lasted until the onset of the Younger Dryas cooling. In the Younger Dryas cold interval, the sea surface was covered by near‐permanent sea ice. The early Holocene, 11 700–11 000 a BP, was influenced by meltwater, followed by a strong inflow of highly saline and chilled Atlantic Water until c. 8600 a BP. From 8600 to 7600 a BP, faunal and isotopic evidence indicates cooling and a weaker flow of the Atlantic Water followed by a stronger influence of Atlantic Water until c. 6000 a BP. Thereafter, the environment generally deteriorated. Our results imply that (i) the deglaciation occurred earlier in this area than previously thought, and (ii) the Younger Dryas ice sheet was smaller than indicated by previous reconstructions.  相似文献   

5.
Nine seismic stratigraphic units were distinguished, and their distribution mapped, in an 80 × 130 km submeridionally oriented area in the north-central Baltic Sea, east of Gotska Sandön and Farö. Analysis of these units revealed a great influence of the bedrock topography on the structure and distribution of the glacial deposits. Major glacially eroded valleys in the Baltic Clint, connecting the Faro Deep and the North Central Baltic Basin (Harff & Winterhalter 1996) across a narrow sill, form an extensive submeridional bedrock depression. The concentration of ice flow into this depression is reflected in the drumlinized surface of the till near the Baltic Clint. Large eskers in the elongated bedrock depressions and on the Ordovician Plateau mark the locations of former subglacial meltwater conduits. Termination of the eskers with extensive glacio fluvial outwash fans at the northern limit of the Farö Deep, the presence of subaquatic melt-out till in the bottom of it, and wedge-shaped ice-marginal grounding-line deposit on the Silurian Plateau suggest floating ice margin conditions in the low-lying areas and a local ice shelf confined to the Frö Deep during the deglaciation.  相似文献   

6.
Southwestern Barents Sea sediments contain important information on Lateglacial and Holocene environmental development of the area, i.e. sediment provenance characteristics related to ice‐flow patterns and ice drifting from different regional sectors. In this study, we present investigations of clay, heavy minerals, and ice‐rafted debris from three sediment cores obtained from the SW Barents Sea. The sediments studied are subglacial/glaciomarine to marine in origin. The core sequences were divided into three lithostratigraphical units. The lowest, Unit 3, consists of laminated glaciomarine sediments related to regional deglaciation. The overlying Unit 2 is a diamicton, dominated by mud and oversized clasts. Unit 2 reflects a more ice‐proximal glaciomarine sedimentary environment or even a subglacial depositional environment; its deposition may indicate a glacial re‐advance or stillstand during an overall retreat. The uppermost Unit 1 consists of Holocene marine sediments and current‐reworked sedimentary material with a relatively high carbonate content. A significant proportion of the sedimentary material could be derived from Svalbard and transported by sea ice or icebergs to the Barents Sea during the late deglacial phase. The Fennoscandian sources and local Mesozoic strata from the bottom of the Barents Sea are the likely provenances of sediments deposited during the deglacial and ice re‐advance phases. Bottom currents and sea‐ice transport were the main mechanisms influencing sedimentation during the Holocene. Our results indicate that the provenance areas can be reliably related to certain ice‐flow sectors and transport mechanisms in the deglaciated Barents Sea.  相似文献   

7.
High resolution cores from the upper continental slope, northern Norwegian Sea, document rapid climatic fluctuations during the latest deglaciation and the Holocene. Based on down-core analysis of planktic and benthic foraminifera, stable oxygen and carbon isotopes, carbonate and organic carbon and radiocarbon dating, the following evolution is proposed: sea-ice cover broke up, the surface ocean warmed and an in situ benthic foraminiferal fauna was established at 12 500 BP. The Younger Dryas was characterized by reduced sedimentaion and foraminiferal production, due to surface ocean cooling. At the end of the Younger Dryas there were major shifts in both surface and bottom water conditions. The surface ocean warmed to temperatures similar to modern levels within < 100 years, reaching a maximum at about 9200 BP when foraminiferal production was high. A benthic foraminiferal assemblage indicative of bottom water conditions similar to present conditions was established at 10 000 BP. This was followed by a gradual decline in nutrients or an increase in ventilation of the bottom water throughout the Holocene. A gradual surface ocean cooling of c . 2°C ended around 6500 BP followed by a second warming that culminated at 2000 BP. The warming at the end of the Younger Dryas and the succeeding older Holocene temperature maximum correlate to a June insolation maximum in the northern hemisphere. In addition, fluctuating surface temperatures in the Holocene may be driven by variations in inflow of Atlantic Water.  相似文献   

8.

南大洋因其面积广阔等优势,能够存储更多的热量和二氧化碳(CO2),因此在全球碳循环及气候变化中的地位十分重要。罗斯海作为南大洋第二大边缘海,是研究古海洋演化的理想海域。本研究采用罗斯海陆坡和海盆区的3根插管沉积物岩芯——BC008(水深1063 m,长27 cm,年龄6.0~14.8 ka B.P.)、BC010(水深2055 m,长44 cm,年龄0~15.5 ka B.P.)和BC006(水深2120 m,长54 cm,年龄0~22.3 ka B.P.),通过分析其生物硅含量及浮游有孔虫碳同位素比值(Nps-δ13C)的变化发现,生物硅含量在末次冰消期较高,在约16 ka B.P.达到极大值,这指示了冰消期罗斯海海域深层水上涌增强并在约16 ka B.P.最为剧烈。与此同时,Nps-δ13C的负偏,指示了南大洋上涌的水团将溶解的硅酸盐传递至海洋表层的同时,也将碳同位素等化学信号传递至表层海水。深层水上涌在末次冰消期显著增强的趋势,与大气CO2浓度在冰消期之后的急剧上升十分吻合,这进一步验证了冰消期南大洋深层水上涌的假说及其对大气CO2浓度上升的贡献。此外,本研究进一步讨论了引起末次冰消期南大洋深层水上涌的可能触发机制,主要可能因南北两极热量分布不均,导致南半球西风带位置和强度以及大西洋经向翻转流强度发生变化,进而驱动南大洋深层水上涌。

  相似文献   

9.
10.
Tephra abundance data and geochemistry in Late‐glacial and Holocene sediments on the East Greenland shelf are presented. Two well‐known tephras were identified from electron microprobe analysis of tephra shards picked from ash peaks in the cores. These are the Vedde Ash and Saksunarvatn Ash, which probably were deposited on the shelf after transport on drifting ice. The radiocarbon dates (marine reservoir corrected by −550 yr) that constrain the timing of deposition of the tephra layers compare well with the terrestrial and ice‐core ages of the tephras without requiring additional reservoir correction to align them with the known tephra ages. Several prominent tephra layers with a composition of Ash Zone 2 tephra punctuate the deglacial sediments. These tephra peaks coincide with significant light stable isotope events (signifying glacial meltwater) and fine‐grained sediments poor in ice‐rafted detritus. We interpret the Ash Zone 2 tephra peaks as sediment released from the Greenland Ice Sheet during strong melting pulses of the deglaciation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
The upwelling region off northwest Africa is one of the most productive regions in the world ocean. This study details the response of surface‐ and deep‐water environments off Mauritania, northwest Africa, to the rapid climate events of the last deglaciation, especially the Bølling–Allerød (15.5–13.5 ka BP) and Younger Dryas (13.5–11.5 ka BP). A high accumulation rate gravity core GeoB7926‐2, recovered at ~20° N, 18° W, was analysed for the grain size distribution of the terrigenous sediment fraction, the organic carbon content, diatom and benthic foraminifera communities. Humid conditions were observed during the Bølling–Allerød with a high contribution of fluvial sediment input. During the Younger Dryas intensified trade winds caused a larger sediment input of aeolian dust from the Sahara and more intense upwelling with higher primary productivity, as indicated by high diatom concentrations. The abrupt and large increase of organic matter caused low oxygen conditions at the sea floor, reflected by the poor benthic foraminiferal fauna and the dominance of the low‐oxygen‐tolerant foraminiferal species Bulimina exilis. This is surprising since low‐oxygen conditions have not been recorded during modern times at the sea floor in this region, despite present‐day intensive upwelling and high primary productivity. After the Younger Dryas, more humid conditions returned, diatom abundance decreased and B. exilis was replaced by typical deep‐sea species as found in the region today, indicating the return of more oxygenated conditions at the sea floor. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
A detailed high‐resolution seismic stratigraphy, calibrated by core data and terrestrial geomorphological mapping, has been constructed for Loch Ainort, Isle of Skye. This study has provided a palaeoenvironmental history of the area as well as important corroborative evidence for the stepped deglaciation of the Loch Lomond Stadial ice‐field on Skye. The Ainort Glacier reworked pre‐Loch Lomond glacial deposits terminating in a grounded tidewater ice‐front potentially 800 m beyond the previously extrapolated limit. The first stage of deglaciation was characterised by the formation of De Geer moraines indicative of a period of interrupted retreat. The second phase, by contrast, produced hummocky relief with sporadic linear moraines suggesting periods of uninterrupted retreat with occasional stillstands/readvances. Paraglacial reworking of terrestrial slopes resulted in the deposition of thick, subaqueous, debris flows which graded into fluvioglacial dominated sediments and ultimately modern fjordic deposits. The identification of an initial period of active retreat punctuated by numerous readvances correlates directly with the terrestrial record. However, the offshore stratigraphy suggests that although the second phase was dominated by uninterrupted retreat, occasional stillstands/ readvances did occur. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
On the basis of geomorphological and sedimentological data, we believe that the entire Barents Sea was covered by grounded ice during the last glacial maximum. 14C dates on shells embedded in tills suggest marine conditions in the Barents Sea as late as 22 ka BP; and models of the deglaciation history based on uplift data from the northern Norwegian coast suggest that significant parts of the Barents Sea Ice Sheet calved off as early as 15 ka BP. The growth of the ice sheet is related to glacioeustatic fall and the exposure of shallow banks in the central Barents Sea, where ice caps may develop and expand to finally coalesce with the expanding ice masses from Svalbard and Fennoscandia.The outlined model for growth and decay of the Barents Sea Ice Sheet suggests a system which developed and existed under periods of maximum climatic deterioration, and where its growth and decay were strongly related to the fall and rise of sea level.  相似文献   

14.
15.
16.
The origin of two acoustic sediment units has been studied based on lithological facies, chronology and benthic stable isotope values as well as on foraminifera and clay mineral assemblages in six marine sediment cores from Kveithola, a small trough west of Spitsbergenbanken on the western Barents Sea margin. We have identified four time slices with characteristic sedimentary environments. Before c. 14.2 cal. ka, rhythmically laminated muds indicate extensive sea ice cover in the area. From c. 13.9 to 14.2 cal. ka, muds rich in ice‐rafted debris were deposited during the disintegration of grounded ice on Spitsbergenbanken. From c. 10.3 to 13.1 cal. ka, sediments with heterogeneous lithologies suggest a shifting influence of suspension settling and iceberg rafting, probably derived from a decaying Barents Sea Ice Sheet in the inner‐fjord and land areas to the north of Kveithola. Holocene deposition was episodic and characterized by the deposition of calcareous sands and shell debris, indicative of strong bottom currents. We speculate that a marked erosional boundary at c. 8.2 cal. ka may have been caused by the Storegga tsunami. Whilst deposition was sparse during the Holocene, Kveithola acted as a sediment trap during the preceding deglaciation. Investigation of the deglacial sediments provides unprecedented details on the dynamics and timing of glacial retreat from Spitsbergenbanken.  相似文献   

17.
The evolution and dynamics of the last British–Irish Ice Sheet (BIIS) have hitherto largely been reconstructed from onshore and shallow marine glacial geological and geomorphological data. This reconstruction has been problematic because these sequences and data are spatially and temporally incomplete and fragmentary. In order to enhance BIIS reconstruction, we present a compilation of new and previously published ice-rafted detritus (IRD) flux and concentration data from high-resolution sediment cores recovered from the NE Atlantic deep-sea continental slope adjacent to the last BIIS. These cores are situated adjacent to the full latitudinal extent of the last BIIS and cover Marine Isotope Stages (MIS) 2 and 3. Age models are based on radiocarbon dating and graphical tuning of abundances of the polar planktonic foraminifera Neogloboquadrina pachyderma sinistral (% Nps) to the Greenland GISP2 ice core record. Multiple IRD fingerprinting techniques indicate that, at the selected locations, most IRD are sourced from adjacent BIIS ice streams except in the centre of Heinrich (H) layers in which IRD shows a prominent Laurentide Ice Sheet provenance. IRD flux data are interpreted with reference to a conceptual model explaining the relations between flux, North Atlantic hydrography and ice dynamics. Both positive and rapid negative mass balance can cause increases, and prominent peaks, in IRD flux. First-order interpretation of the IRD record indicates the timing of the presence of the BIIS with an actively calving marine margin. The records show a coherent latitudinal, but partly phased, signal during MIS 3 and 2. Published data indicate that the last BIIS initiated during the MIS 5/4 cooling transition; renewed growth just before H5 (46 ka) was succeeded by very strong millennial-scale variability apparently corresponding with Dansgaard–Oeschger (DO) cycles closely coupled to millennial-scale climate variability in the North Atlantic region involving latitudinal migration of the North Atlantic Polar Front. This indicates that the previously defined “precursor events” are not uniquely associated with H events but are part of the millennial-scale variability. Major growth of the ice sheet occurred after 29 ka with the Barra Ice Stream attaining a shelf-edge position and generating turbiditic flows on the Barra–Donegal Fan at ~27 ka. The ice sheet reached its maximum extent at H2 (24 ka), earlier than interpreted in previous studies. Rapid retreat, initially characterised by peak IRD flux, during Greenland Interstadial 2 (23 ka) was followed by readvance between 22 and 16 ka. Readvance during H1 was only characterised by BIIS ice streams draining central dome(s) of the ice sheet, and was followed by rapid deglaciation and ice exhaustion. The evidence for a calving margin and IRD supply from the BIIS during Greenland Stadial 1 (Younger Dryas event) is equivocal. The timing of the initiation, maximum extent, deglacial and readvance phases of the BIIS interpreted from the IRD flux record is strongly supported by recent independent data from both the Irish Sea and North Sea sectors of the ice sheet.  相似文献   

18.
19.
Spatial and quantitative analysis of infilling processes of the tide‐dominated incised valleys beneath the Tokyo Lowland during the last 14 kyr was undertaken by using data from 18 sediment cores, 467 radiocarbon dates and 6100 borehole logs. The post‐Last Glacial Maximum valley fills consist of braided river, meandering river, estuary, spit and delta systems in ascending order. The boundary between the estuary and delta systems is regarded as the maximum flooding surface. The maximum flooding surface beneath the Tokyo Lowland is dated at 8 ka in the Arakawa Valley and 7 ka in the Nakagawa Valley. This age difference is due to the migration of the Tone River from the Arakawa Valley to the Nakagawa Valley at 5 ka, and suggests that the widely held view that the global initiation of deltas coincided with the abrupt rise of sea‐level at 9 to 8 ka is true only where there has been steady sediment supply from major rivers. The meandering river system is dominated by sheet‐like sands that were deposited during lateral migration of channels during the Younger Dryas and isolated vertical sands within muds that reflect vertical aggradation of channels before and after the Younger Dryas. The transition between these channel geometries is controlled by a threshold sea‐level rise of 4 to 7 mm yr?1. Before migration of the Tone River at 5 ka, the tide‐dominated bay in the Nakagawa Valley was filled by upward‐fining laterally accreting muds. The muds accreted from the margin to the axis of the bay. Such lateral accretion of suspended particles derived from outside the bay has been documented in other tide‐dominated coastal environments and is probably common in other similar settings. After the migration of the Tone River, the bay was filled by upward‐coarsening deltaic sediments.  相似文献   

20.
The Quaternary deposits of south Cornwall are described with an emphasis placed on the loess component. A formal lithostratigraphic name – the Lizard Loess – is proposed for the loess formation with a holostratotype designated from the Lizard Peninsula. Two environments of loess deposition are distinguished on the basis of geomorphic position and degree of solifluction activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号