首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the Last Glacial Maximum, the British–Irish Ice Sheet was dominated by a number of accumulation centres, including a terrestrially based, semi‐independent icecap centred on Wales. The dynamics of this Welsh Ice Cap (WIC) over the last glacial period are still relatively poorly understood, with few studies taking into consideration the dynamic evolution of the icecap as a whole. Here we contrast results from two modelled reconstructions of the WIC in conjunction with the wider glacial geomorphological record to elucidate understanding of its form, extent and dynamics. Model output was analysed to yield zones of high basal motion and the spatial distribution of potential glacial erosion. We conclude that coherent flowsets of streamlined bedforms are linked to fast‐flowing outlets dominated by basal sliding. Large‐scale changes in dynamics are discussed, with a number of possible major advances proposed over the glacial cycle. Maximum ice thicknesses of ~1200 m in Mid Wales indicate that all mountain summits were probably ice‐covered during the Last Glacial Maximum, even if it was with a thin protective mantle of cold‐based ice, leading to landscape preservation of these upland zones. The distribution, dynamism and landscape modification related to the WIC are further discussed at the regional scale. Model predictions of glacier distribution through the Younger Dryas stadial accord well with geologically reconstructed limits at this time.  相似文献   

2.
This paper presents three maps that summarize current knowledge as to the extent of Past permafrost and Relict permafrost in North America at approximately the time of the Last Glacial Maximum (LGM; c. 25–17 ka BP) and during subsequent deglaciation until c. 10 ka BP. Analysis of the post‐1983 literature suggests that the extent of Past permafrost south of the LGM limit was broader in eastern North America and slightly narrower in the Interior Great Plains than previously mapped. The recognition and dating of Relict permafrost in the nonglaciated terrain of the northwestern Arctic suggests that permafrost may be of great antiquity and can persist under changing climatic conditions. The formation of permafrost features during deglaciation suggests that ice‐proximal climatic conditions remained cold at least long enough for short‐lived permafrost aggradation; a latitudinal gradient is evident in the timing of its development as the Laurentide Ice Sheet retreated.  相似文献   

3.
This paper presents the first terrestrial age constraints from the outer continental shelf for the maximum extent of the NW sector of the last British–Irish Ice Sheet. Cosmogenic 10Be ages from eight glacially transported boulders on the island of North Rona show that the Late Devensian (Late Weichselian) British–Irish Ice Sheet overrode the island at its maximal stage and retreated c. 25 ka BP. These new dates, supported by other geological evidence, indicate that the north‐western part of the ice sheet was most extensive between 27 and 25 ka BP, reaching the outer continental shelf during the global eustatic sea‐level minimum at the Last Glacial Maximum. Copyright © 2012 British Geological Survey/Natural Environment Research Council copyright 2012. Reproduced with the permission of BGS/NERC. Published by John Wiley & Sons, Ltd.  相似文献   

4.
5.
Knowledge of the glaciation of central East Iceland between 15 and 9 cal. ka BP is important for the understanding of the extent, retreat and dynamics of the Icelandic Ice Sheet. Crucially, it is not known if the key area of Fljótsdalur‐Úthérað carried a fast‐flowing ice stream during the Last Glacial Maximum; the timing and mode of deglaciation is unclear; and the history and ages of successive lake‐phases in the Lögurinn basin are uncertain. We use the distribution of glacial and fluvioglacial deposits and gradients of former lake shorelines to reconstruct the glaciation and deglaciation history, and to constrain glacio‐isostatic age modelling. We conclude that during the Last Glacial Maximum, Fljótsdalur‐Úthérað was covered by a fast‐flowing ice stream, and that the Lögurinn basin was deglaciated between 14.7 and 13.2 cal. ka BP at the earliest. The Fljótsdalur outlet glacier re‐advanced and reached a temporary maximum extent on two separate occasions, during the Younger Dryas and the Preboreal. In the Younger Dryas, about 12.1 cal. ka BP, the outlet glacier reached the Tjarnarland terminal zone, and filled the Lögurinn basin. During deglaciation, a proglacial lake formed in the Lögurinn basin. Through time, gradients of ice‐lake shorelines increased as a result of continuous but non‐uniform glacio‐isostatic uplift as the Fljótsdalur outlet glacier retreated across the Valþjófsstaður terminal zone. Changes in shoreline gradients are defined as a function of time, expressed with an exponential equation that is used to model ages of individual shorelines. A glaciolacustrine phase of Lake Lögurinn existed between 12.1 and 9.1 cal. ka BP; as the ice retreated from the basin catchment, a wholly lacustrine phase of Lake Lögurinn commenced and lasted until about 4.2 cal. ka BP when neoglacial ice expansion started the current glaciolacustrine phase of the lake.  相似文献   

6.
唐古拉山地区第四纪冰川作用与冰川特征   总被引:4,自引:2,他引:2  
自中更新世以来,唐古拉山地区发生过3次更新世冰川作用(即昆仑冰期、倒数第二次冰期和末次错冰期)和2次全新世晚期冰进(即新冰期和小冰期冰进).昆仑冰期(最大冰期)发生在中更新世早期(0.80~0.60MaBP),不仅是本区最早的一次冰期,而且也是冰川规模最大的一次冰期,当时的冰川规模比现代冰川大16~18倍;倒数第二次冰期发生在中更新世晚期(0.30~0.135MaBP),比现代冰川大13~15倍;末次冰期发生在晚更新世晚期,应分为末次冰期早冰阶(75.0~58.0kaBP)和晚冰阶(32.0~15.0kaBP,23.0kaBP时达到极盛),但在唐古拉山地区截止目前还未找到早冰阶的冰川遗迹,因此,只对末次冰期的晚冰阶(LMG)进行了探讨.LMG时,冰川规模比现代冰川大10倍;新冰期发生在全新世高温期后,冰碛物的14C测年为(3540±160)aBP,冰川规模略大于现代冰川;小冰期发生在15~1世纪,冰川规模已接近于现代冰川.由于青藏高原的上升,对高原腹部地区引起的干旱化过程和水分严重不足,使唐古拉山地区的冰川自昆仑冰期以来,冰川规模一次比一次明显的减小.  相似文献   

7.
In this study, we present new information on the glacial history of the Greenland Ice Sheet (GrIS) and a local ice cap in Qaanaaq, northwest Greenland. We use geomorphological mapping, 10Be exposure dating of boulders, analysis of lake cores, and 14C dating of reworked marine molluscs and subfossil plants to constrain the glacial history. Our 14C ages of reworked marine molluscs reveal that the ice extent in the area was at or behind its present‐day position from 42.2 ± 0.4 to 30.6 ± 0.3k cal a BP after which the GrIS expanded to its maximum position during the Last Glacial Maximum. We find evidence of early ice retreat in the deep fjord (Inglefield Bredning) at 11.9 ± 0.6 ka whereas the Taserssuit Valley was deglaciated ~4 ka later at 7.8 ± 0.1k cal a BP. A proglacial lake record suggests that the local ice cap survived the Holocene Thermal Maximum but moss kill‐dates reveal that it was smaller than present for a period of time before 3.3 ± 0.1k until 0.9 ± 0.1k cal a BP, following which the ice in the area expanded towards its Little Ice Age extent. Copyright © 2019 John Wiley & Sons, Ltd.  相似文献   

8.
The offshore sector around Shetland remains one of the least well-studied parts of the former British–Irish Ice Sheet with several long-standing scientific issues unresolved. These key issues include (i) the dominance of a locally sourced ‘Shetland ice cap’ vs an invasive Fennoscandian Ice Sheet; (ii) the flow configuration and style of glaciation at the Last Glacial Maximum (i.e. terrestrial vs marine glaciation); (iii) the nature of confluence between the British–Irish and Fennoscandian Ice Sheets; (iv) the cause, style and rate of ice sheet separation; and (v) the wider implications of ice sheet uncoupling on the tempo of subsequent deglaciation. As part of the Britice-Chrono project, we present new geological (seabed cores), geomorphological, marine geophysical and geochronological data from the northernmost sector of the last British–Irish Ice Sheet (north of 59.5°N) to address these questions. The study area covers ca. 95 000 km2, an area approximately the size of Ireland, and includes the islands of Shetland and the surrounding continental shelf, some of the continental slope, and the western margin of the Norwegian Channel. We collect and analyse data from onshore in Shetland and along key transects offshore, to establish the most coherent picture, so far, of former ice-sheet deglaciation in this important sector. Alongside new seabed mapping and Quaternary sediment analysis, we use a multi-proxy suite of new isotopic age assessments, including 32 cosmogenic-nuclide exposure ages from glacially transported boulders and 35 radiocarbon dates from deglacial marine sediments, to develop a synoptic sector-wide reconstruction combining strong onshore and offshore geological evidence with Bayesian chronosequence modelling. The results show widespread and significant spatial fluctuations in size, shape and flow configuration of an ice sheet/ice cap centred on, or to the east of, the Orkney–Shetland Platform, between ~30 and ~15 ka BP. At its maximum extent ca. 26–25 ka BP , this ice sheet was coalescent with the Fennoscandian Ice Sheet to the east. Between ~25 and 23 ka BP the ice sheet in this sector underwent a significant size reduction from ca. 85 000 to <50 000 km2, accompanied by several ice-margin oscillations. Soon after, connection was lost with the Fennoscandian Ice Sheet and a marine corridor opened to the east of Shetland. This triggered initial (and unstable) re-growth of a glaciologically independent Shetland Ice Cap ca. 21–20 ka BP with a strong east–west asymmetry with respect to topography. Ice mass growth was followed by rapid collapse, from an area of ca. 45 000 km2 to ca. 15 000 km2 between 19 and 18 ka BP , stabilizing at ca. 2000 km2 by ~17 ka BP. Final deglaciation of Shetland occurred ca. 17–15 ka BP , and may have involved one or more subsidiary ice centres on now-submerged parts of the continental shelf. We suggest that the unusually dynamic behaviour of the northernmost sector of the British–Irish Ice Sheet between 21 and 18 ka BP – characterized by numerous extensive ice sheet/ice mass readvances, rapid loss and flow redistributions – was driven by significant changes in ice mass geometry, ice divide location and calving flux as the glaciologically independent ice cap adjusted to new boundary conditions. We propose that this dynamism was forced to a large degree by internal (glaciological) factors specific to the strongly marine-influenced Shetland Ice Cap.  相似文献   

9.
Bateman, M. D., Buckland, P. C., Whyte, M. A., Ashurst, R. A., Boulter, C. & Panagiotakopulu, E. 2011: Re‐evaluation of the Last Glacial Maximum typesite at Dimlington, UK. Boreas, 10.1111/j.1502‐3885.2011.00204.x. ISSN 0300‐9483. Recent erosion has allowed re‐examination of the stratigraphy and sampling for both optically stimulated luminescence dating and palaeoecological analysis of the key sections in the Last Glacial Maximum deposits at Dimlington in East Yorkshire, England. Both stratigraphy and fossil insect evidence support a subaerial origin for laminated and cross‐bedded sediments between two diamictons previously interpreted as synchronous. The fossil biota indicates conditions similar to those of a pond on sandur in the high Arctic, with little or no vegetation cover. The existence of distinct oscillations of the ice front is indicated. The first, within the period 21.7–16.2 ka, appears coincident with climate warming, as deduced from Greenland ice‐core evidence, and is interpreted as an ice stream associated with changing flow patterns within the British–Irish Ice Sheet (BIIS). The second, dating between 16.2 and 15.5 ka, appears to coincide with a climatic cooling, although current models show that the BIIS had by this period already retreated back to ice centres. This new evidence supports the view that the eastern sector of the BIIS did not reach its maximal extent synchronously with other parts of the BIIS.  相似文献   

10.
Key external forcing factors have been proposed to explain the collapse of ice sheets, including atmospheric and ocean temperatures, subglacial topography, relative sea level and tidal amplitudes. For past ice sheets it has not hitherto been possible to separate relative sea level and tidal amplitudes from the other controls to analyse their influence on deglaciation style and rate. Here we isolate the relative sea level and tidal amplitude controls on key ice stream sectors of the last British–Irish and Fennoscandian ice sheets using published glacial isostatic adjustment models, combined with a new and previously published palaeotidal models for the NE Atlantic since the Last Glacial Maximum (22 ka BP). Relative sea level and tidal amplitude data are combined into a sea surface elevation index for each ice stream sector demonstrating that these controls were potentially important drivers of deglaciation in the western British Irish Ice Sheet ice stream sectors. In contrast, the Norwegian Channel Ice Stream was characterized by falling relative sea level and small tidal amplitudes during most of the deglaciation. As these simulations provide a basis for observational field testing we propose a means of identifying the significance of sea level and tidal amplitudes in ice sheet collapse.  相似文献   

11.
Graham, A.G.C., Lonergan, L. & Stoker, M.S. 2010: Depositional environments and chronology of Late Weichselian glaciation and deglaciation in the central North Sea. Boreas, Vol. 39, pp. 471–491. 10.1111/j.1502‐3885.2010.00144.x. ISSN 0300‐9483. Geological constraints on ice‐sheet deglaciation are essential for improving the modelling of ice masses and understanding their potential for future change. Here, we present a detailed interpretation of depositional environments from a new 30‐m‐long borehole in the central North Sea, with the aim of improving constraints on the history of the marine Late Pleistocene British–Fennoscandian Ice Sheet. Seven units characterize a sequence of compacted and distorted glaciomarine diamictons, which are overlain by interbedded glaciomarine diamictons and soft, bedded to homogeneous marine muds. Through correlation of borehole and 2D/3D seismic observations, we identify three palaeoregimes. These are: a period of advance and ice‐sheet overriding; a phase of deglaciation; and a phase of postglacial glaciomarine‐to‐marine sedimentation. Deformed subglacial sediments correlate with a buried suite of streamlined subglacial bedforms, and indicate overriding by the SE–NW‐flowing Witch Ground ice stream. AMS 14C dating confirms ice‐stream activity and extensive glaciation of the North Sea during the Last Glacial Maximum, between c. 30 and 16.2 14C ka BP. Sediments overlying the ice‐compacted deposits have been reworked, but can be used to constrain initial deglaciation to no later than 16.2 14C ka BP. A re‐advance of British ice during the last deglaciation, dated at 13.9 14C ka BP, delivered ice‐proximal deposits to the core site and deposited glaciomarine sediments rapidly during the subsequent retreat. A transition to more temperate marine conditions is clear in lithostratigraphic and seismic records, marked by a regionally pervasive iceberg‐ploughmarked erosion surface. The iceberg discharges that formed this horizon are dated to between 13.9 and 12 14C ka BP, and may correspond to oscillating ice‐sheet margins during final, dynamic ice‐sheet decay.  相似文献   

12.
Twelve palaeogeographical reconstructions illustrate environmental changes at the southwest rim of the Scandinavian Ice Sheet 40–15 kyr BP. Synchronised land, sea and glacier configurations are based on the lithostratigraphy of tills and intertill sediments. Dating is provided by optically stimulated luminescence and calibrated accelerator mass spectrometry radiocarbon. An interstadial sequence ca. 40–30 kyr BP with boreo‐arctic proglacial fjords and subarctic flora and occasional glaciation in the Baltic was succeeded by a Last Glacial Maximum sequence ca. 30–20 kyr BP, with the closure of fjords and subsequent ice streams in glacial lake basins in Kattegat and the Baltic. Steadily flowing ice from Sweden bordered the Norwegian Channel Ice Stream. A deglaciation sequence ca. 20–15 kyr BP indicates the transgression of arctic waters, retreat of the Swedish ice and advance of Baltic ice streams succeeded by a return to interstadial conditions. When ameliorated ice‐free conditions prevailed in maritime regions, glaciers advanced through the Baltic and when interstadial regimes dominated the Baltic, glaciers expanded off the Norwegian coast. The largest glacier extent was reached in the North Sea around 29 kyr BP, about 22 kyr BP in Denmark and ca. 18 kyr BP in the Baltic. Our model provides new data for future numerical and qualitative landform‐based models. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
During decline of the last British–Irish Ice Sheet (BIIS) down‐wasting of ice meant that local sources played a larger role in regulating ice flow dynamics and driving the sediment and landform record. At the Last Glacial Maximum, glaciers in north‐western England interacted with an Irish Sea Ice Stream (ISIS) occupying the eastern Irish Sea basin (ISB) and advanced as a unified ice‐mass. During a retreat constrained to 21–17.3 ka, the sediment landform assemblages lain down reflect the progressive unzipping of the ice masses, oscillations of the ice margin during retreat, and then rapid wastage and disintegration. Evacuation of ice from the Ribble valley and Lancashire occurred first while the ISIS occupied the ISB to the west, creating ice‐dammed lakes. Deglaciation, complete after 18.6–17.3 ka, was rapid (50–25 m a?1), but slower than rates identified for the western ISIS (550–100 m a?1). The slower pace is interpreted as reflecting the lack of a calving margin and the decline of a terrestrial, grounded glacier. Ice marginal oscillations during retreat were probably forced by ice‐sheet dynamics rather than climatic variation. These data demonstrate that large grounded glaciers can display complex uncoupling and realignment during deglaciation, with asynchronous behaviour between adjacent ice lobes generating complex landform records.
  相似文献   

14.
At the end of the Middle Weichselian (30–25 ka BP) a glacier advance from southern Norway, termed the Kattegat Ice Stream, covered northern Denmark, the Kattegat Sea floor and the Swedish West Coast during onset of the Last Glacial Maximum (LGM) at the southwest margin of the Scandinavian Ice Sheet. The lithostratigraphic unit deposited by the ice stream is the till of the Kattegat Formation (Kattegat till). Because morphological features have been erased by later glacial events, stratigraphic control and timing are decisive. The former ice stream is identified by the dispersal of Oslo indicator erratics from southern Norway and by glaciodynamic structures combined with glaciotectonic deformation of subtill sediments. Ice movement was generally from northerly directions and the flow pattern is fan-shaped in marginal areas. To the east, the Kattegat Ice Stream was flanked by passive glaciers in southern Sweden and its distribution was probably governed by the presence of low permeability and highly deformable marine and lacustrine deposits. When glaciers from southern Norway blocked the Norwegian Channel, former marine basins in the Skagerrak and Kattegat experienced glaciolacustrine conditions around 31–29 ka BP. The Kattegat Ice Stream became active some time between 29 ka BP and 26 ka BP, when glaciers from the Oslo region penetrated deep into the shallow depression occupied by the Kattegat Ice Lake. Deglaciation and an interlude with periglacial and glaciolacustrine sedimentation lasted until c. 24–22 ka BP and were succeeded by the Main Glacier Advance from central Sweden reaching the limit of Late Weichselian glaciations in Denmark around 22–20 ka BP, the peak of the LGM. This was followed by deglaciation and marine inundation in the Kattegat and Skagerrak around 17 ka BP.  相似文献   

15.
The extent of the last British–Irish Ice Sheet (BIIS) in northern Scotland is disputed. A restricted ice sheet model holds that at the global Last Glacial Maximum (LGM; ca. 23–19 ka) the BIIS terminated on land in northern Scotland, leaving Buchan, Caithness and the Orkney Islands ice‐free. An alternative model implies that these three areas were ice‐covered at the LGM, with the BIIS extending offshore onto the adjacent shelves. We test the two models using cosmogenic 10Be surface exposure dating of erratic boulders and glacially eroded bedrock from the three areas. Our results indicate that the last BIIS covered all of northern Scotland during the LGM, but that widespread deglaciation of Caithness and Orkney occurred prior to rapid warming at ca. 14.5 ka. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
We present results from a suite of forward transient numerical modelling experiments of the British and Irish Ice Sheet (BIIS), consisting of Scottish, Welsh and Irish accumulation centres, spanning the last Glacial period from 38 to 10 ka BP. The 3D thermomechanical model employed uses higher-order physics to solve longitudinal (membrane) stresses and to reproduce grounding-line dynamics. Surface mass balance is derived using a distributed degree-day calculation based on a reference climatology from mean (1961–1990) precipitation and temperature patterns. The model is perturbed from this reference state by a scaled NGRIP oxygen isotope curve and the SPECMAP sea-level reconstruction. Isostatic response to ice loading is computed using an elastic lithosphere/relaxed asthenosphere scheme. A suite of 350 simulations were designed to explore the parameter space of model uncertainties and sensitivities, to yield a subset of experiments that showed close correspondence to offshore and onshore ice-directional indicators, broad BIIS chronology, and the relative sea-level record. Three of these simulations are described in further detail and indicate that the separate ice centres of the modelled BIIS complex are dynamically interdependent during the build up to maximum conditions, but remain largely independent throughout much of the simulation. The modelled BIIS is extremely dynamic, drained mainly by a number of transient but recurrent ice streams which dynamically switch and fluctuate in extent and intensity on a centennial time-scale. A series of binge/purge, advance/retreat, cycles are identified which correspond to alternating periods of relatively cold-based ice, (associated with a high aspect ratio and net growth), and wet-based ice with a lower aspect ratio, characterised by streaming. The timing and dynamics of these events are determined through a combination of basal thermomechanical switching spatially propagated and amplified through longitudinal coupling, but are modulated and phase-lagged to the oscillations within the NGRIP record of climate forcing. Phases of predominant streaming activity coincide with periods of maximum ice extent and are triggered by abrupt transitions from a cold to relatively warm climate, resulting in major iceberg/melt discharge events into the North Sea and Atlantic Ocean. The broad chronology of the modelled BIIS indicates a maximum extent at ~20 ka, with fast-flowing ice across its western and northern sectors that extended to the continental shelf edge. Fast-flowing streams also dominate the Irish Sea and North Sea Basin sectors and impinge onto SW England and East Anglia. From ~19 ka BP deglaciation is achieved in less than 2000 years, discharging the freshwater equivalent of ~2 m global sea-level rise. A much reduced ice sheet centred on Scotland undergoes subsequent retrenchment and a series of advance/retreat cycles into the North Sea Basin from 17 ka onwards, culminating in a sustained Younger Dryas event from 13 to 11.5 ka BP. Modelled ice cover is persistent across the Western and Central Highlands until the last remnant glaciers disappear around 10.5 ka BP.  相似文献   

17.
《Quaternary Science Reviews》2007,26(7-8):920-940
Sea-level records from the Gulf of Mexico at the Last Glacial Maximum, 20 ka, are up to 35 m higher than time-equivalent sea-level records from equatorial regions. The most popular hypothesis for explaining this disparity has been uplift due to the forebulge created by loading from Mississippi River sediments. Using over 50 new radiocarbon dates as well as existing published data obtained from shallow-marine deposits within the northern Gulf of Mexico and numerical models simulating the impact of loading due to the Mississippi Fan and glacio-hydro-isostasy, we test several possible explanations for this sea-level disparity. We find that neither a large radiocarbon reservoir, sedimentary loading due to the Mississippi Fan, nor large-scale regional uplift can explain this disparity. We do find that with an appropriate model for the Laurentide Ice Sheet, the observations from the Gulf of Mexico can be explained by the process of glacio-hydro-isostasy. Our analysis suggests that in order to explain this disparity one must consider a Laurentide Ice Sheet reconstruction with less ice from 15 ka to its disappearance 6 ka and more ice from the Last Glacial Maximum to 15 ka than some earlier models have suggested. This supports a Laurentide contribution to meltwater pulse 1-A, which could not have come entirely from its southern sector.  相似文献   

18.
The offshore and coastal geomorphology of southwest Greenland records evidence for the advance and decay of the Greenland Ice Sheet during the Last Glacial Maximum. Regional ice flow patterns in the vicinity of Sisimiut show an enlarged ice sheet that extended southwestwards on to the shelf, with an ice stream centred over Holsteinsborg dyb. High level periglacial terrain composed of blockfield and tors is dated to between 101 and 142 ka using 26Al and 10Be cosmogenic exposure ages. These limit the maximum surface elevation of the Last Glacial Maximum ice sheet in this part of southwest Greenland to ca 750–810 m asl, and demonstrate that terrain above this level has been ice free since MIS 6. Last Glacial Maximum ice thickness on the coast of ca 700 m implies that the ice sheet reached the mid to outer continental shelf edge to form the Outer Hellefisk moraines. Exposure dates record ice surface thinning from 21.0 to 9.8 ka, with downwasting rates varying from 0.06 to 0.12 m yr−1. This reflects strong surface ablation associated with increased air temperatures running up to the Bølling Interstadial (GIS1e) at ca 14 ka, and later marine calving under high sea levels. The relatively late retreat of the Itilleq ice stream inland of the present coastline is similar to the pattern observed at Jakobshavn Isbræ, located 250 km north in Disko Bugt, which also retreated from the continental shelf after ca 10 ka. We hypothesise that the ice streams of West Greenland persisted on the inner shelf until the early Holocene because of their considerable ice thickness and greater ice discharge compared with the adjacent ice sheet.  相似文献   

19.
The volume of Antarctic ice at the Last Glacial Maximum is a key factor for calculating the past contribution of melting ice sheets to Late Pleistocene global sea level change. At present, there are large uncertainties in our knowledge of the extent and thickness of the formerly expanded Antarctic ice sheets, and in the timing of their release as meltwater into the world’s oceans. This paper reviews the four main approaches to determining former Antarctic ice volume, namely glacial geology, glacio-isostatic studies, glaciological modelling, and ice core analysis and attempts to reconcile these to give a ‘best estimate’ for ice volume. In the Ross Sea there was a major expansion of grounded ice at the Last Glacial Maximum, accounting for 2.3–3.2 m of global sea level. At some time in the Weddell Sea a large grounded ice sheet corresponding to c. 2.7 m of global sea level extended to the shelf break. However, this ice expansion has not yet been confidently dated and may not relate to the Last Glacial Maximum. Around East Antarctica there was thickening and advance offshore of ice in coastal regions. Ice core evidence suggests that the interior of East Antarctica was either close to its present elevation or thinner during the last glacial so the effect of East Antarctica on sea level depends on the net balance between marginal thickening and interior thinning. Suggested East Antarctic contributions vary from a 3–5.5 m lowering to a 0.64 m rise in global sea level. The Antarctic Peninsula ice sheet thickened and extended offshore at the Last Glacial Maximum, with a sea level equivalent contribution of c. 1.7 m. Thus, the Antarctic ice sheets accounted for between 6.1 and 13.1 m of global sea level fall at the Last Glacial Maximum. This is substantially less than has been suggested by most previous studies but the maximum figure matches well with one modelling estimate. The timing of Antarctic deglaciation is not well known. In the Ross Sea, terrestrial evidence suggests deglaciation may have begun at c. 13,000 yr BP1 but that grounded ice persisted until c. 6,500 yr BP. Marine evidence suggests the western Ross Sea was deglaciated by c. 11,500 yr BP. Deglaciation of the Weddell Sea is poorly constrained. Grounded ice in the northern Antarctic Peninsula had retreated by c. 13,000 yr BP, and further south deglaciation occurred sometime prior to c. 6,000 yr BP. Many parts of coastal East Antarctica apparently escaped glaciation at the LGM, but in those areas that were ice-covered deglaciation was underway by 10,000 yr BP. With existing data, the timing of deglaciation shows no firm relation to northern hemisphere-driven sea level rise. This is probably due partly to lack of Antarctic dating evidence but also to the combined influence of several forcing mechanisms acting during deglaciation.  相似文献   

20.
The evolution of the southern Greenland Ice Sheet is interpreted from a synthesis of geological data and palaeoclimatic information provided by the ice-sheet cores. At the Last Glacial Maximum the ice margin would have been at the shelf break and the ice sheet was fringed by shelf ice. Virtually all of the present ice-free land was glaciated. The initial ice retreat was controlled by eustatic sea level rise and was mainly by calving. When temperatures increased, melt ablation led to further ice-margin retreat and areas at the outer coast and mountain tops were deglaciated. Retreat was interrupted by a readvance during the Neria stade that may correlate with the Younger Dryas cooling. The abrupt temperature rise at the Younger Dryas-Holocene transition led to a fast retreat of the ice margin, and after ∼9 ka BP the ice sheet was smaller than at present. Expansion of the ice cover began in the Late Holocene, with a maximum generally during the Little Ice Age. The greatest changes in ice cover occurred in lowland areas, i.e. in the region of the Qassimiut lobe. The date of the historical maximum advance shows considerable spatial variability and varies between AD 1600 and the present. Local anomalous readvances are seen at possibly 7-8 ka and at c. 2 ka BP. A marked relative sea level rise is seen in the Late Holocene; this is believed to reflect a direct glacio-isostatic response to increasing ice load.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号