首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Type III radio bursts observed at kilometric wavelengths ( 0.35 MHz) by the OGO-5 spacecraft are compared with > 45 keV solar electron events observed near 1 AU by the IMP-5 and Explorer 35 spacecraft for the period March 1968–November 1969.Fifty-six distinct type III bursts extending to 0.35 MHz ( 50 R equivalent height above the photosphere) were observed above the threshold of the OGO-5 detector; all but two were associated with solar flares. Twenty-six of the bursts were followed 40 min later by > 45 keV solar electron events observed at 1 AU. All of these 26 bursts were identified with flares located west of W 09 solar longitude. Of the bursts not associated with electron events only three were identified with flares west of W 09, 18 were located east of W 09 and 7 occurred during times when electron events would be obscured by high background particle fluxes.Thus almost all type III bursts from the western half of the solar disk observed by OGO-5 above a detection flux density threshold of the order of 10–13 Wm–2 Hz–1 at 0.35 MHz are followed by > 45 keV electrons at 1 AU with a maximum flux of 10 cm–2 s–1 ster–1. If particle propagation effects are taken into account it is possible to account for lack of electron events with the type III bursts from flares east of the central meridian. We conclude that streams of 10–100 keV electrons are the exciting agent for type III bursts and that these same electrons escape into the interplanetary medium where they are observed at 1 AU. The total number of > 45 keV electrons emitted in association with a strong kilometer wavelength type III burst is estimated to be 5 × 1032.  相似文献   

2.
During its flyby of Jupiter in February 1992, the Ulysses spacecraft passed through the Southern Hemisphere dusk-side Jovian magnetosphere, a region not previously explored by spacecraft. Among the new findings in this region were numerous, sometimes periodic, bursts of high energy electrons with energies extending from less than 1.5 MeV to beyond 16 MeV. These bursts were discovered by the High Energy Telescope (HET) and the Kiel Electron Telescope (KET) of the COSPIN Consortium. In this paper we provide a detailed analysis of observations related to the bursts using HET measurements. At the onset of bursts, the intensity of > 16 MeV electrons often rose by a factor of > 100 within 1 min, and multiple, pulsed injections were sometimes observed. The electron energy spectrum also hardened significantly at the onset of a burst. In most bursts anisotropy measurements indicated initial strong outward streaming of electrons along magnetic field lines that connect to the southern polar regions of Jupiter, suggesting that the acceleration and/or injection region for the electrons lies at low altitudes near the South Pole. The initial strong outward anisotropies relaxed to strong field-aligned bidirectional anisotropies later in the events. The bursts sometimes appeared as isolated events, but at other times appeared in quasi-periodic series with a period of 40 min. For smaller events shorter periods of the order 2–3 min were also observed in a few cases. For large events, multiple injections were sometimes observed in the first few minutes of the event. Radio bursts identified by the Ulysses URAP experiment in the frequency range 1–50 kHz were correlated with many of the electron bursts, and comparison of the time-intensity profiles for radio and electrons shows that the radio emission typically started several minutes before the electron intensity increase was observed. For the strongest electron bursts, small increases in the low energy (> 0.3 MeV) proton counting rates were also observed. Using a computerized identification algorithm to pick out bursts from the data record using a consistent set of criteria, 121 events were identified as electron bursts during the outbound pass, compared to only three events that satisfied the same criteria during the inbound pass through the day-side magnetosphere. No similar electron burst events have been found outside the magnetopause. Estimates of the electron content of a typical large burst (> 1027 electrons) suggest that these bursts may make significant contributions to the fluxes of electrons observed in Jupiter's outer magnetosphere, and in interplanetary space.  相似文献   

3.
For the time periods 1979 April 22–May 17 and 1980 May 9–June 10, when the HELIOS spacecraft were located inside 0.5 AU, we compared the antenna temperature T A of the 466 kHz type III bursts measured by the SBH instrument on ISEE 3 with the fluxes of 0.5 MeV electrons measured by HELIOS. For 51 flare-associated kilometric type III bursts (FAIII bursts) with log(T A) > 10 we find: (1) 25 bursts (49%) are accompanied by a relativistic electron event in interplanetary space, (2) the probability for detection of an electron event decreases from more than 74% inside a cone of ± 20 ° to 56% inside a cone of ± 60° around the flare site, (3) there is only a small correlation between the brightness temperature of the radio burst and the size of the electron event, and (4) despite the broad scatter of these values there is a clear indication that for a given size of the relativistic electron event the intensity of the type III burst is about a factor of 5 higher if it is accompanied by a type II burst. These results give evidence (a) that at least part of the relativistic electrons frequently is accelerated together with non-relativistic electrons and (b) that the coronal shock associated with the metric type II burst has a weaker effect on relativistic than on non-relativistic electrons.Now at DFVLR, Oberpfaffenhofen, Germany.  相似文献   

4.
Power-law distribution for solar energetic proton events   总被引:1,自引:0,他引:1  
Analyses of the time-integrated fluxes of solar energetic particle events during the period 1965–1990 show that the differential distribution of events with flux F is given by a power law, with indices between 1.2 and 1.4 depending on energy. The power law represents a good fit over three to four orders of magnitude in fluence. Similar power-law distributions have been found for peak proton and electron fluxes, X-ray flares and radio and type III bursts. At fluences greater than 109 cm–2, the slope of the distribution steepens and beyond 1010 cm–2 the power-law index is estimated to be 3.5. At energies greater than 10 MeV, the slope of the distribution was found to be essentially independent of solar cycle, when the active years of solar cycles 20, 21, and 22 were analysed. The results presented are the first for a complete period of 27 years, covering nearly 3 complete solar cycles. Other new aspects of the results include the invariance of the exponent with solar cycle and also with integral energy.  相似文献   

5.
Flux density spectra have been determined for ninety-one simple type III solar bursts observed by the Goddard Space Flight Center radio astronomy experiment on the IMP-6 spacecraft during 1971 and 1972. Spectral peaks were found to occur at frequencies ranging from 44 kHz up to 2500 kHz. Half of the bursts peaked between 250 kHz and 900 kHz, corresponding to emission at solar distances of about 0.3 to 0.1 AU. Maximum burst flux density sometimes exceeds 10–14 W m–2 Hz–1. The primary factor controlling the spectral peak frequency of these bursts appears to be variation in intrinsic power radiated by the source as the exciter moves outward from the Sun, rather than radio propagation effects between the source and IMP-6. Thus, a burst spectrum strongly reflects the evolution of the properties of the exciting electron beam, and according to current theory, beam deceleration could help account for the observations.  相似文献   

6.
The Source Regions of Impulsive Solar Electron Events   总被引:1,自引:0,他引:1  
Benz  Arnold O.  Lin  Robert P.  Sheiner  Olga A.  Krucker  Säm  Fainberg  Joe 《Solar physics》2001,203(1):131-144
Low-energy (2–19 keV) impulsive electron events observed in interplanetary space have been traced back to the Sun, using their interplanetary type III radiation and metric/decimetric radio-spectrograms. For the first time we are able to study the highest frequencies and thus the radio signatures closest to the source region. All the selected impulsive solar electron events have been found to be associated with an interplanetary type III burst. This allows to time the particle events at the 2 MHz plasma level and identify the associated coronal radio emissions. Except for 5 out of 27 cases, the electron events were found to be associated with a coronal type III burst in the metric wavelength range. The start frequency yields a lower limit to the density in the acceleration region. We also search for narrow-band spikes at the start of the type III bursts. In about half of the observed cases we find metric spikes or enhancements of type I bursts associated with the start of the electron event. If interpreted as the plasma emission of the acceleration process, the observed average frequency of spikes suggests a source density of the order of 3×108 cm–3 consistent with the energy cut-off observed.  相似文献   

7.
Solar energetic particles (SEPs) detected in space are statistically associated with flares and coronal mass ejections (CMEs). But it is not clear how these processes actually contribute to the acceleration and transport of the particles. The present work addresses the question why flares accompanied by intense soft X-ray bursts may not produce SEPs detected by observations with the GOES spacecraft. We consider all X-class X-ray bursts between 1996 and 2006 from the western solar hemisphere. 21 out of 69 have no signature in GOES proton intensities above 10 MeV, despite being significant accelerators of electrons, as shown by their radio emission at cm wavelengths. The majority (11/20) has no type III radio bursts from electron beams escaping towards interplanetary space during the impulsive flare phase. Together with other radio properties, this indicates that the electrons accelerated during the impulsive flare phase remain confined in the low corona. This occurs in flares with and without a CME. Although GOES saw no protons above 10 MeV at geosynchronous orbit, energetic particles were detected in some (4/11) confined events at Lagrangian point L1 aboard ACE or SoHO. These events have, besides the confined microwave emission, dm-m wave type II and type IV bursts indicating an independent accelerator in the corona. Three of them are accompanied by CMEs. We conclude that the principal reason why major solar flares in the western hemisphere are not associated with SEPs is the confinement of particles accelerated in the impulsive phase. A coronal shock wave or the restructuring of the magnetically stressed corona, indicated by the type II and IV bursts, can explain the detection of SEPs when flare-accelerated particles do not reach open magnetic field lines. But the mere presence of these radio signatures, especially of a metric type II burst, is not a sufficient condition for a major SEP event.  相似文献   

8.
We trace electrons from the Sun by a variety of proxy methods - solar flare positions, and metric and kilometric type III radio bursts from the Sun until they can be observed in situ as electrons at the ISEE-3 spacecraft. Our study extends over the period of operation of the electron experiment on ISEE-3 from August 1978 to November 1979. By carefully restricting timing within the data sets involved, we find a peak in the number of flares associated with in situ electrons near 60° west solar longitude. This peak shows that type III bursts can be fairly limited in spatial extent, and that the best connection with the solar surface to the flare is along the Archimedean magnetic field spiral. We use this spatial determination to define an average beam shape for an event. We assume this average beam shape to be representative of the distribution in space of each electron group. The electron numbers at 2 and 29–45 keV energies combined with this average beam shape are used to approximate the total numbers of electrons and energy per burst for individual events. We find that the total number of electrons and total energy for events varies significantly with flare type; that on the average brighter flares are associated with more electrons.  相似文献   

9.
Peak fluxes of flare-associated 8–12 Å X-ray bursts occur at or near the time of the maximum energy content of the soft X-ray source volume. The amplitudes of flare-associated bursts may thus be used as a measure of the energy deposited in the source volume by non-thermal electrons and other processes. In the mean, the soft X-ray burst amplitude is apparently independent of the occurrence of a type III event. This is interpreted to indicate that electrons accelerated by the type III process do not directly participate in establishing the soft X-ray source volume.  相似文献   

10.
R. P. Lin 《Solar physics》1970,12(2):266-303
Observations of prompt 40 keV solar flare electron events by the IMP series of satellites in the period August, 1966 to December, 1967 are tabulated along with prompt energetic solar proton events in the period 1964–1967. The interrelationship of the various types of energetic particle emission by the sun, including relativistic energy electrons reported by Cline and McDonald (1968) are investigated. Relativistic energy electron emission is found to occur only during proton events. The solar optical, radio and X-ray emission associated with these various energetic particle emissions as well as the propagation characteristics of each particle species are examined in order to study the particle acceleration and emission mechanisms in a solar flare. Evidence is presented for two separate particle acceleration and/or emission mechanisms, one of which produces 40 keV electrons and the other of which produces solar proton and possibly relativistic energy electrons. It is found that solar flares can be divided into three categories depending on their energetic particle emission: (1) small flares with no accompanying energetic phenomena either in particles, radio or X-ray emission; (2) small flares which produce low energy electrons and which are accompanied by type III and microwave radio bursts and energetic ( 20 keV) X-ray bursts; and (3) major solar flare eruptions characterized by energetic solar proton production and type II and IV radio bursts and accompanied by intense microwave and X-ray emission and relativistic energy electrons.  相似文献   

11.
S. W. Kahler 《Solar physics》1972,25(2):435-451
The correlation of type III burst-groups with 4 keV solar X-ray emission is examined. A total of 151 burst-groups reported by the Fort Davis Observatory were compared with X-ray emission observed by the Naval Research Laboratory experiment on the OGO-5 satellite. A higher X-ray correlation is found for type III burst-groups when: (1) the bursts are observed on the decimeter band and (2) the bursts are more intense. The bremsstrahlung flux resulting from the proposed coronal loss of the E< 10 keV type III electrons is shown to be below the detection threshold of the OGO-5 experiment. No fine structure is found in the correlated impulsive X-ray bursts with a time scale on the order of one second. It is proposed that electrons are accelerated over a time of 10–100 s or more and that the type III bursts are the result of the occasional escape of a small fraction of the energetic electrons from the acceleration region.  相似文献   

12.
Flares and coronal mass ejections (CMEs) contribute to the acceleration and propagation of solar energetic particles (SEP) detected in the interplanetary space, but the exact roles of these phenomena are yet to be understood. We examine two types of energetic particle tracers related with 15 CME-less flares that emit bright soft X-ray bursts (GOES X class): radio emission of flare-accelerated electrons and in situ measurements of energetic electrons and protons near 1 AU. The CME-less flares are found to be vigorous accelerators of microwave-emitting electrons, which remain confined in low coronal structures. This is shown by unusually steep low-frequency microwave spectra and by lack of radio emission from the middle and high corona, including dm?–?m wave type IV continua and metre-to-hectometre type III bursts. The confinement of the particles accelerated in CME-less flares agrees with the magnetic field configuration of these events inferred by others. Two events produced isolated metric type II bursts revealing coronal shock waves. None of the seven flares in the western hemisphere was followed by enhanced particle fluxes in the GOES detectors, but one, which was accompanied by a type II burst, caused a weak SEP event detected at SoHO and ACE. Three of the CME-less flares were followed within some hours by SEP-associated flares from the same active region. These SEP-producing events were clearly distinct from the CME-less ones by their association with fast and broad CMEs, dm?–?m wave radio emission, and intense DH type III bursts. We conclude that radio emission at decimetre and longer waves is a reliable indication that flare-accelerated particles have access to the high corona and interplanetary space. The absence of such emission can be used as a signal that no SEP event is to be expected despite the occurrence of a strong soft X-ray burst.  相似文献   

13.
Combined SOHO (Solar and Helisopheric Observatory) and ground based radio observations show evidently signatures of electrons accelerated by a shock wave during the event on July 9, 1996. A solar type II radio burst has been received as a signature of a coronal shock wave at 300 MHz on 9:10:54 UT. It was accompanied with electron beams appearing as type III radio bursts below 80 MHz. Simultaneously, the COSTEP (Comprehensive Suprathermal and Energetic Particle Analyzer) instrument aboard SOHO has measured enhanced electron fluxes in the range 30 keV – 3 MeV. This indicates that a coronal shock wave was able to produce high energetic electrons. A mechanism of electron acceleration up to relativistic velocities is presented and compared with the observations. The electron acceleration takes place at substructures of quasi-parallel collisionless shocks. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
We present statistics relating shock-associated (SA) kilometric bursts (Cane et al., 1981) to solar metric type II bursts. An SA burst is defined here to be any 1980 kHz emission temporally associated with a reported metric type II burst and not temporally associated with a reported metric type III burst. In this way we extend to lower flux densities and shorter durations the original SA concept of Cane et al. About one quarter of 316 metric type II bursts were not accompanied by any 1980 kHz emission, another quarter were accompanied by emission attributable to preceding or simultaneous type III bursts, and nearly half were associated with SA bursts. We have compared the time profiles of 32 SA bursts with Culgoora Observatory dynamic spectral records of metric type II bursts and find that the SA emission is associated with the most intense and structured part of the metric type II burst. On the other hand, the generally poor correlation found between SA burst profiles and Sagamore Hill Observatory 606 and 2695 MHz flux density profiles suggests that most SA emission is not due to energetic electrons escaping from the microwave emission region. These results support the interpretation that SA bursts are the long wavelength extension of type II burst herringbone emission, which is presumed due to the shock acceleration of electrons.Also: Department of Physics and Astronomy, University of Maryland, College Park, MD 20742, U.S.A.  相似文献   

15.
We have investigated common burst spectral features for the 20th cycle of solar activity. The maximum daily radio fluxes in 8 frequency ranges are analysed. For every year the classification of these daily spectra is obtained by cluster analysis methods. There are two spectral minima for average spectra of clusters (in frequency ranges 4–3 and 0.5–0.25 GHz). As a rule their positions do not change during the solar cycle.Every annual spectrum of weak bursts has three minima (in frequency ranges 4–3, 2–1, and 0.5–0.25 GHz). The positions of these minima remain invariable during the solar cycle. But anuual spectra of strong bursts depend essentially on the phase of solar activity.The basic features of most burst spectra can be explained by gyrosynchrotron radiation of thermal and nonthermal electrons and plasma radiation at the plasma frequency and its second harmonic.  相似文献   

16.
Clayton  E.G.  Guzik  T.G.  Wefel  J.P. 《Solar physics》2000,195(1):175-194
During the 1990–1991 solar maximum, the CRRES satellite measured helium from 38 to 110 MeV n–1, with isotopic resolution, during both solar quiet periods and a number of large solar flares, the largest of which were seen during March and June 1991. Helium differential energy spectra and isotopic ratios are analyzed and indicate that (1) the series of large solar energetic particle (SEP) events of 2–22 June display characteristics consistent with CME-driven interplanetary shock acceleration; (2) the SEP events of 23–28 March exhibit signatures of both CME-driven shock acceleration and impulsive SEP acceleration; (3) below about 60 MeV n–1, the helium flux measured by CRRES is dominated by solar helium even during periods of least solar activity; (4) the solar helium below 60 MeV n–1 is enriched in 3He, with a mean 3He/4He ratio of about 0.18 throughout most of the CRRES mission `quiet' periods; and (5) an association of this solar component with small CMEs occurring during the periods selected as solar `quiet' times.  相似文献   

17.
We attempt to study the origin of coronal shocks by comparing several flare characteristics for two groups of flares: those with associated metric type II bursts and coronal mass ejections (CMEs) and those with associated metric type II bursts but no CMEs. CMEs accompany about 60% of all flares with type II bursts for solar longitudes greater than 30°, where CMEs are well observed with the NRL Solwind coronagraph. H flare areas, 1–8 Å X-ray fluxes, and impulsive 3 cm fluxes are all statistically smaller for events with no CMEs than for events with CMEs. It appears that both compact and large mass ejection flares are associated with type II bursts. The events with no CMEs imply that at least many type II shocks are not piston-driven, but the large number of events of both groups with small 3 cm bursts does not support the usual assumption that type II shocks are produced by large energy releases in flare impulsive phases. The poor correlation between 3 cm burst fluxes and the occurrence of type II bursts may be due to large variations in the coronal Alfvén velocity.Sachs/Freeman Associates, Inc., Bowie, MD 20715, U.S.A.  相似文献   

18.
This paper discusses the relationship between some characteristics of microwave type IV radio bursts and solar cosmic ray protons of MeV energy. It is shown that the peak flux intensity of those bursts is almost linearly correlated with the MeV proton peak flux observed by satellites near the Earth and that protons and electrons would be accelerated simultaneously by a similar mechanism during the explosive phase of solar flares.Brief discussion is given on the propagation of solar cosmic rays in the solar envelope after ejection from the flare regions.  相似文献   

19.
Data are presented from the IMP-4 satellite of 0.3–12 MeV electrons from the Sun between May 24, 1967 and May 2, 1969. Correlations with contemporary proton intensity increases at energies above 1 MeV are studied. Classical solar flare events such as those frequently observed from 30°W–60°W in solar longitude are not discussed. Categories of unusual events are defined and examples of each type are given. Discussion of these events centers around the emission and propagation of energetic particles from the point of origin on the Sun to the Earth. The results of this study are the following: (1) The differential electron energy spectrum (0.3–12 keV) from solar flares appears to be a constant of the flare process, with the spectral index = (-)3.0 ± 0.2. (2) Particle emission from solar flares contains a prompt component, which is injected into the interplanetary medium beyond the Sun and which is responsible for the diffusion characteristics of solar particle events, and a delayed component which is effectively contained in the lower solar atmosphere where it diffuses typically ± 100° in longitude and gradually escapes into interplanetary space. The delayed component gives rise to the corotating features commonly observed after the impulsive and diffusive onset from the prompt component. This is not the same as the two component model discussed by Lin (1970a) in which 40 keV electrons are often observed as a separate phenomenon and frequently precede higher energy particles observed at 1 AU. (3) Storage of electrons > 300 keV and protons > 1 MeV is essential to explain emission and propagation characteristics of solar particle events. In some rare cases the storage mechanism appears to be very efficient, culminating in a catastrophic decay of the trapping region. (4) The events with low proton/electron ratios all occur at least three weeks after the previous relativistic electron producing flare.  相似文献   

20.
S. R. Kane 《Solar physics》1972,27(1):174-181
Observations of impulsive solar flare X-rays 10 keV made with the OGO-5 satellite are compared with ground based measurements of type III solar radio bursts in 10–580 MHz range. It is shown that the times of maxima of these two emissions, when detectable, agree within 18 s. This maximum time difference is comparable to that between the maxima of the impulsive X-ray and impulsive microwave bursts. In view of the various observational uncertainties, it is argued that the observations are consistent with the impulsive X-ray, impulsive microwave, and type III radio bursts being essentially simultaneous. The observations are also consistent with 10–100 keV electron streams being responsible for the type III emission. It is estimated that the total number of electrons 22 keV required to produce a type III burst is 1034. The observations indicate that the non-thermal electron groups responsible for the impulsive X-ray, impulsive microwave, and type III radio bursts are accelerated simultaneously in essentially the same region of the solar atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号