首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T. Takakura 《Solar physics》1977,52(2):429-461
Numerical analysis of quasi-linear relaxation has been made for four models of electron beam with a finite length travelling through the plasma. In Model 4, a model atmosphere of the corona is adopted and also an increase in the cross-section of the electron beam is taken into account. The electron velocity distribution generally becomes a quasi-plateau form in limited velocity and time ranges. If, however, collisional decay of the fast electrons is too strong and the initial beam density is not high enough, the plateau does not appear. Collisional damping of plasma waves cannot be neglected, since the growth rate of the waves is strongly suppressed by the appearance of the quasi-plateau.An approximate formula for the velocity distribution of the solar electrons passing through the corona has been derived analytically taking into account not only the interaction with plasma waves, but also the collisional damping of the plasma waves and collisions with thermal particles. By the use of this formula, we can easily compute the time profile of the plasma waves caused by these solar electrons at any given place in the interplanetary space. The validity of this semi-analytical approach is checked by the numerical analysis of Model 4, showing a satisfactory fit between the numerical and semi-analytical results.The direct application of this method to the problems of type III radio bursts is left to a later paper.  相似文献   

2.
T. Takakura 《Solar physics》1979,61(1):161-186
A simulation of normal type III radio bursts has been made in a whole frequency range of about 200 MHz to 30 kHz by the usage of the semi-analytical method as developed in previous papers for the plasma waves excited by a cloud of fast electrons. Three-dimensional plasma waves are computed, though the velocities of fast electrons are assumed to be one-dimensional. Many basic problems about type III radio bursts and associated solar electrons have been solved showing the following striking or unexpected results.Induced scattering of plasma waves, by thermal ions, into the plasma waves with opposite wave vectors is efficient even for a solar electron cloud of rather low number density. Therefore, the second harmonic radio emission as attributed to the coalescence of two plasma waves predominates in a whole range from meter waves to km waves. Fundamental radio emission as ascribed to the scattering of plasma waves by thermal ions is negligibly small almost in the whole range. On the other hand, third harmonic radio emission can be strong enough to be observed in a limited frequency range.If, however, the time integral of electron flux is, for example, 2 × 1013 cm–2 (>5 keV) or more at the height of 4.3 × 1010 cm ( p = 40 MHz) above the photosphere, the fundamental may be comparable with or greater than the second harmonic, but an effective area of cross-section of the electron beam is required to be very small, 1017 cm2 or less, and hence much larger sizes of the observed radio sources must be attributed to the scattering alone of radio waves.The radio flux density expected at the Earth for the second harmonic can increase with decreasing frequencies giving high flux densities at low frequencies as observed, if x-dependence of the cross-sectional area of the electron beam is x 1.5 or less instead of x 2, at least at x 2 × 1012 cm.The second harmonic radio waves are emitted predominantly into forward direction at first, but the direction of emission may reverse a few times in a course of a single burst showing a greater backward emission at the low frequencies.In a standard low frequency model, a total number of solar electrons above 18 keV arriving at the Earth orbit reduces to 12% of the initial value due mainly to the collisional decay of plasma waves before the waves are reabsorbed by the beam electrons arriving later. However, no deceleration of the apparent velocity of exciter appears. A change in the apparent velocity, if any, results from a change in growth rate of the plasma waves instead of the deceleration of individual electrons.Near the Earth, the peak of second harmonic radio flux as emitted from the local plasma appears well after the passage of a whole solar electron cloud through this layer. This is ascribed to the secondary and the third plasma waves as caused in non-resonant regions by the induced scattering of primary plasma waves in a resonant region.  相似文献   

3.
For the critical values of the parameters q and V, the work (Samanta et al. in Phys. Plasma 20:022111, 2013b) is unable to describe the nonlinear wave features in magnetized dusty plasma with superthermal electrons. To describe the nonlinear wave features for critical values of the parameters q and V, we extend the work (Samanta et al. in Phys. Plasma 20:022111, 2013b). To extend the work, we derive the modified Kadomtsev-Petviashvili (MKP) equation for dust ion acoustic waves in a magnetized dusty plasma with q-nonextensive velocity distributed electrons by considering higher order coefficients of ?. By applying the bifurcation theory of planar dynamical systems to this MKP equation, the existence of solitary wave solutions of both types rarefactive and compressive, periodic travelling wave solutions and kink and anti-kink wave solutions is proved. Three exact solutions of these above waves are determined. The present study could be helpful for understanding the nonlinear travelling waves propagating in mercury, solar wind, Saturn and in magnetosphere of the Earth.  相似文献   

4.
The contraction of an interstellar cloud is followed. The results indicates that there are shock waves appear during contraction. In order to study the effect of shock waves, two models have been studied. The post-shock temperature for the two models are, respectively, 3006 K and 2984 K. The density increases by more than three orders of magnitude. The gas is generally cooled by atoms, molecules, and grains. The dominant cooling process changes according to the chemical composition and the temperature of the gas. The thermal equilibrium depends on the existing physical conditions.  相似文献   

5.
6.
L.A. Sromovsky  P.M. Fry 《Icarus》2005,179(2):459-484
Near-infrared adaptive optics imaging of Uranus by the Keck 2 telescope during 2003 and 2004 has revealed numerous discrete cloud features, 70 of which were used to extend the zonal wind profile of Uranus up to 60° N. We confirmed the presence of a north-south asymmetry in the circulation [Karkoschka, E., 1998. Science 280, 570-572], and improved its characterization. We found no clear indication of long term change in wind speed between 1986 and 2004, although results of Hammel et al. [Hammel, H.B., Rages, K., Lockwood, G.W., Karkoschka, E., de Pater, I., 2001. Icarus 153, 229-235] based on 2001 HST and Keck observations average ∼10 m/s less westward than earlier and later results, and 2003 observations by Hammel et al. [Hammel, H.B., de Pater, I., Gibbard, S., Lockwood, G.W., Rages, K., 2005. Icarus 175, 534-545] show increased wind speeds near 45° N, which we do not see in our 2003-2004 observations. We observed a wide range of lifetimes for discrete cloud features: some features evolve within ∼1 h, many have persisted at least one month, and one feature near 34° S (termed S34) seems to have persisted for nearly two decades, a conclusion derived with the help of Voyager 2 and HST observations. S34 oscillates in latitude between 32° S and 36.5° S, with a period of ∼1000 days, which may be a result of a non-barotropic Rossby wave. It also varied its longitudinal drift rate between −20°/day and −31°/day in approximate accord with the latitudinal gradient in the zonal wind profile, exhibiting behavior similar to that of the DS2 feature observed on Neptune [Sromovsky, L.A., Limaye, S.S., Fry, P.M., 1993. Icarus 105, 110-141]. S34 also exhibits a superimposed rapid oscillation with an amplitude of 0.57° in latitude and period of 0.7 days, which is approximately consistent with an inertial oscillation.  相似文献   

7.
Stars passing through the Oort cloud eject comets to interstellar space and initiate showers of comets into the planetary region. Monte Carlo simulations of such passages are performed on a representative distribution of cometary orbits. Ejected comets generally lie along a narrow tunnel drilled by the star through the cloud. However, shower comets come from the entire cloud, and do not give a strong signature of the star's passage, except in the inverse semimajor axis distribution for the shower comets. The planetary system is likely not experiencing a cometary shower at this time.  相似文献   

8.
Stars passing through the Oort cloud eject comets to interstellar space and initiate showers of comets into the planetary region. Monte Carlo simulations of such passages are performed on a representative distribution of cometary orbits. Ejected comets generally lie along a narrow tunnel “drilled” by the star through the cloud. However, shower comets come from the entire cloud, and do not give a strong signature of the star's passage, except in the inverse semimajor axis distribution for the shower comets. The planetary system is likely not experiencing a cometary shower at this time.  相似文献   

9.
Gravitational instability of small perturbations propagating through the central area of a gas cloud is discussed regarding the basic state and taking into account radiative pressure. Instability criterion similar to Jean's one is obtained and it was shown that the inhomogeneity can act in two ways, to stabilize or destabilize the system, depending on the value of the second derivative of the basic state temperature.  相似文献   

10.
Bifurcation behavior of nonlinear dust ion acoustic travelling waves in a magnetized quantum dusty plasma has been studied. Applying the reductive perturbation technique (RPT), we have derived a Kadomtsev-Petviashili (KP) equation for dust ion acoustic waves (DIAWs) in a magnetized quantum dusty plasma. By using the bifurcation theory of planar dynamical systems to the KP equation, we have proved that our model has solitary wave solutions and periodic travelling wave solutions. We have derived two exact explicit solutions of the above travelling waves depending on different parameters.  相似文献   

11.
The possibility of gyrosynchrotron instability development in a plasma with moderately relativistic electrons is revealed. The absorption and emission coefficients are numerically calculated for a Gaussian distribution function of these electrons. It shows the presence of emission bands where the absorption coefficientµ is negative, and their dependence on the halfwidth,v, of the Gaussian as well as on the observation angle is established. In conclusion, results obtained are applied for the interpretation of microwave bursts registered during solar flares.  相似文献   

12.
13.
The properties of propagation of small amplitude ion acoustic solitary waves (IASWs) are studied in a plasma containing cold fluid ions and multi-temperature electrons (cool and hot electrons) with nonextensive distribution. Korteweg-de Vries (KdV) equation with finite amplitude is derived using a reductive perturbation method. From the solitary solutions of KdV equation, the combined effects of nonextensivity and density ratio are studied on characteristics of ion acoustic (IA) solitary waves. Positive as well as negative polarity solitons exist. Since singularity exists for A=0 so we have also derived modified Korteweg de Vries (mKdV) equation to study the solitonic solution for critical values of physical parameters (q,f,σ). The nonextensivity of electrons (via q) and density ratio of electrons and ions (via f) and temperature ratio (σ) significantly influence the characteristics of ion acoustic solitary structures.  相似文献   

14.
《Icarus》1987,71(3):441-447
Several basic magnetospheric processes at Mercury have been investigated with simple models. These include the adiabatic acceleration and convection of equatorially mirroring charged particles, the current sheet acceleration effect, and the acceleration of Na+ and other exospheric ions by the magnetospheric electric and magnetic fields near the planetary surface. The current steady-state treatment of the magnetospheric drift and convection processes suggests that the region of the inner magnetosphere as explored by the Mariner 10 spacecraft during its encounter with Mercury should be largely devoid of energetic (>100 keV) electrons in equatorial mirroring motion. As for ion motion, the large gyroradii of the heavy ions permit surface reimpact as well as loss via intercepting the magnetopause. Because of the kinetic energy gained in the gyromotion, the first effect could lead to sputtering processes and hence generation of secondary ions and neutrals. The second effect could account for the loss of about 50% of Mercury's exospheric ions.  相似文献   

15.
The dissipation of ducted, fast magnetoacoustic waves by ion viscosity, electron heat conduction and radiation is re-considered and the results show that these waves are not readily dissipated in the solar corona. It seems unlikely, therefore, that they will play a role in the heating of the solar atmosphere.  相似文献   

16.
The problem is considered of a cloud of neutral dust moving into a cloud of static plasma which is confined in a magnetic field. Earlier experiments with rotating plasma devices and plasma guns on critical velocity limitation suggest that such limitation could also arise in the case of plasma-neutral dust interaction in cosmos.Nevertheless further analysis is required to provide a clear picture of the relations between the cosmical and laboratory conditions for plasma-neutral gas and plasma-neutral dust interaction. In particular this applies to the question how to relate the experiments, which are largely in the plasma-physical MHD range, to the cosmical interaction which appears to be mainly governed by kinetic effects.Paper dedicated to Professor Hannes Alfvén on the occasion of his 80th birthday, 30 May 1988.  相似文献   

17.
In this work, we consider the formation of electrostatic, dust-acoustic solitary structure in a unmagnetized plasma with Lorentzian electrons (kappa-distributed) and more than one species of thermal ions (Maxwellian). The work is inspired by results of different space-based observations of electrostatic solitary waves (ESW) in the near-earth and magnetospheric plasmas and recent experimental realization of existence of superthermal electron component in various space plasmas. We have, in this work, shown that existence of compressive potential structure is possible only with more than one species of thermal ions. Besides, formation of compressive double layers is also possible which depends on the amount of deviation of the electron thermal velocities from a Maxwellian distribution. We show that both dust-temperature and super-thermal electrons lead to a decrease in the soliton amplitude.  相似文献   

18.
Conclusions Our study shows the universality of the power-law spectrum with =3 in PTR in the presence of a magnetic field. This result is important to astrophysical applications because there is no doubt that magnetic fields are present in many different types of cosmic objects. This universality can be compared with the known statistical analysis of the spectra of various cosmic radio sources (Fig. 5); the most probable value is close to =3. The spread in the observed values of could be due to the escape of particles, nonuniformity, and so on, and requires further study.Moscow Institute of Engineering Physics. Translated from Astrofizika, Vol. 12, No. 1, pp. 107–120, January–March, 1976.  相似文献   

19.
A Langevin equation for electrons in the plasma of a solar flare with electrostatic lower-hybrid-drift turbulence is developed from first principles and in consistency with the kinetic theory in the polarization approximation. The waves are assumed to be excited by small density gradients causing drift velocities below the thermal ion velocity. First utilizable expressions for the space-time spectral density of the wave energy are given, and estimates of the mean wave force on an electron as well as of the intensity of the stochastic wave force are made. It seems that almost electrostatic lower-hybrid-drift waves could contribute to electron chaotization in solar flare plasmas.Presented at the CESRA-Workshop on Coronal Magnetic Energy Release at Caputh near Potsdam in May 1994.  相似文献   

20.
Heating of the ambient plasma by high energy electrons in solar flares is discussed. It is shown that for large flares the heating is enough to produce a thermal plasma of a temperature up to a few times of 107K rapidly in the initial phase of the flares. Thus thermal bremsstrahlung in addition to non-thermal bremsstrahlung should be considered for the X-ray emission of solar flares in the initial phase.NAS-NRC Resident Research Associate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号