首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
洞穴沉积物—石笋已成为研究岩溶区环境气候变化历史的重要载体。在我国湘西地区,某些洞穴石笋原始沉积多为不稳定的文石矿物,极易发生重结晶,可能使石笋中相关化学元素含量最终偏离原生矿物的特征,限制了文石石笋某些代用指标在古气候研究中的应用。文章以前人研究成果为基础,总结梳理了文石石笋发生重结晶的影响因素及其对石笋记录古气候的影响:(1)石笋剖面特征、XRD结果、显微镜观察和地球化学元素特征等可作为石笋发生重结晶的判别依据;(2)洞穴滴水和石笋孔隙水饱和度、文石晶体缺陷和晶体之间的方解石胶结物以及岩溶水体中Mg2+浓度等均会影响文石石笋的矿物转变;(3)在文石向方解石转变过程中,石笋铀含量会有一定程度的流失,可导致放射性铀系定年的异常或年代倒序;(4)矿物重结晶可导致δ18O、δ13C及石笋微量元素浓度(或比值)等指标发生改变,其变化特征因洞穴而异,从而影响其作为环境指示器的可靠性;(5)湖南龙山惹迷洞石笋(RM2)发生了不均一的矿物重结晶,自顶部至20.3 cm以放射状为主,20.3 cm至底部主要为糖粒状,并结合年代结果发现文石重结晶对石笋铀系定年产生了影响,而重结晶作用对该石笋其他指标的影响还有待进一步研究。   相似文献   

2.
Ancient carbonate buildups may contain extraordinarily large amounts of early diagenetic precipitates. In some, host rock lamination may be traced into inclusion bands within the 'cement' crystals, suggesting that the crystals are replacive. By analogy with a Pleistocene speleothem from the Sorrento Peninsula, however, these relationships can be explained differently. In the speleothem, large, repeatedly split and dendritic calcite crystals occur within a laminated carbonate. Lamination consists of sub-mm alternations of micrite and microspar. Micritic laminae pass laterally into inclusion-rich growth bands in the dendritic calcite crystals, and have replaced an aragonitic cement, whereas the microspar laminae were primary calcite cements. Three types of inclusion-rich bands occur in the dendrite crystals: (1) with aragonite relicts, (2) 'ribbon calcite' and (3) with oriented micropores. When aragonite precipitated, the calcite dendrite branches were unable to keep growing as single crystals and split into crystallites (separated by micropores, some forming ribbon calcite), whereas during episodes of calcite lamina precipitation, the larger crystals were regenerated by crystallite coalescence. Calcite crystals are primary: they did not replace a micritic precursor. By analogy with the Italian speleothem, some ancient reefal sparry carbonates may not be replacements of earlier laminated sediments, but may have grown concurrently with them. It is also probable that some ancient laminated sediments were instead sea-floor precipitates, and that stromatolites containing cross-cutting crystal fabrics, and the alternating micrite-microspar laminae typical of Archaeolithoporella , could be largely abiotic crystal growths.  相似文献   

3.
Diagenesis in shallow cores from the Lower Cretaceous Edwards Limestone was investigated in thin sections and with the scanning electron microscope (SEM). The SEM is a particularly useful tool in the study of diagenesis in porous fine-grained carbonate rocks because of its good resolution and depth of field.The Edwards Group was deposited in shallow-marine environments and underwent normal early diagenesis. Dolomite and evaporite minerals such as gypsum formed penecontemporaneously in some tidal-flat sediments. Slightly later, when the carbonate sediments were flushed by fresh water, carbonate mud recrystallized to micrite and aragonite allochems altered to calcite or were leached. Some cementation by calcite occurred in a fresh-water phreatic environment.The Edwards Limestone was divided into two zones by Miocene faulting along the Balcones Fault Zone. On the upthrown side of the fault a circulating fresh-water aquifer developed, whereas relatively stagnant brackish water remained present on the down-thrown side. Differences in the chemistry of the interstitial fluids in these zones resulted in different types of diagenesis. The presence of fresh water caused extensive oxidation, solution along fractures, recrystallization of micrite to coarse microspar and pseudospar, precipitation of equant sparry-calcite crystals in a variety of shapes and sizes, and extensive dedolomitization. The dedolomitization is thought to have been caused by the high Ca/Mg ratio of the circulating fresh water in a shallow subsurface environment.In the brackish-water zone, textures and fabrics related to deposition or early diagenesis, such as primary porosity, unoxidized organic material, framboidal pyrite, and evaporite minerals have been preserved. Some precipitation of authigenic dolomite, celestite, and kaolinite occurred in the brackish-water zone. In contrast to the fresh-water zone, precipitation of coarse calcite spar, dedolomitization, and recrystallization of micrite to microspar occurred only rarely in the brackish-water zone.  相似文献   

4.
Molar-tooth (MT) structure is an enigmatic sedimentary structure consisting of variously-shaped cracks and voids filled with a characteristically uniform, equant calcite microspar. It is globally distributed but temporally restricted to rocks from Neoarchean to Neoproterozoic age. The origin of MT structures has been debated for more than a century and the topic continues to be highly contentious. Some features of MT structure occurring in micritic limestones of the Mesoproterozoic Gaoyuzhuang Formation (ca. 1500 Ma to ca. 1400 Ma), Jixian section, Tianjin City, North China show that: 1) there is a definite interface or lining, rich in organic material and pyrite, between the MT crack-filling calcite microspar and the micritic host rock, which is also rich in organic matter; 2) the micritic host rocks are notable for the absence of stromatolites and microbial laminites; 3) distinctive conglomeratic lag deposits made up of intraclasts of MT microspar result from storm reworking of the MT structures; 4) the MT structure is associated with possible algal megafossils such as Chuaria; 5) the MT microspar is made up of the larger calcite crystal and the MT crack is marked by the diversity of configurations; 6) both the TOC content and the carbon-isotopic value (δ13CPDB) among the host rock, the MT microspar and the possible algae fossil are obviously different. For the forming mechanism of the Gaoyuzhuang MT structure, these features can still indicate that: A) the MT microspar was formed by rapid precipitation and lithification; B) the MT microspar precipitated directly within the cracks; C) the decomposition of organic matter within the host micrite might be the chief mechanism producing gas bubbles; D) microscale gas-sediment interaction led to the generation of the MT cracks and the precipitation of microspar therein; E) the MT cracks might represent the track of migration and expansion of gas bubbles, and that the recrystallization of host micrites cannot be eliminated during forming process of the MT microspar; F) the MT structure is occurred in early diagenetic period; and G) the formation of MT microspars is a complex diagenetic process. Therefore, model of the microbially-induced gas-bubble expansion and migration is the best interpretation for the formation of the MT structure. Effectively, MT structures are a type of sedimentary structure that is formed in the early diagenetic period and is related to microbial activities and organic matter degradation.  相似文献   

5.
At burial depths of 800-1000 m, within the epicontinental Queensland Trough of north-east Australia (ODP Site 823), microcrystalline inter- and intraskeletal mosaics of anhedral (loaf-shaped, rounded) calcite have Sr2+ values ranging from below microprobe detection limits (<150 ppm) to 8100 ppm. Host rocks are well lithified, fine-grained mixed sediment to clayey wackestone and packstone of Middle and Late Miocene age. Petrography demonstrates that calcite precipitation has spanned shallow to deep burial, overlapping formation of framboidal pyrite in the upper 50 m; shallow-burial dolomitization (<300 m); and dedolomitization during sediment consolidation and incipient chemical compaction at greater (>400–500 m) depths. Petrographic observations illustrate that the calcite microfabric formed through coalescing crystal growth resulting from one or a combination of displacive growth in clay, porphyroid neomorphism of aragonite/vaterite, and clay replacement by calcite. Sr2+ mean concentrations in calcite between depths of 800 and 1000 m are similar to an expected equilibrium pore-water concentration, using a Dsr of 0.06, and may indicate active calcite precipitation. However, Sr2+ variation (2000–5000 ppm) within and among crystals, and concentrations that range well above predicted equilibrium values for a given depth, illustrate either variable Sr2+ retention during recrystallization of shelf-derived aragonite (and authigenic local vaterite) or relative uptake of Sr2+ during calcite precipitation with burial. Within the context of calcite formation during burial to 1 km, diagenetic attributes that affect the latter process include increased concentrations of pore-water Sr2+ with depth associated with aragonite recrystallization/dissolution; upward migration of Sr-rich pore water; and increased DSr related to local variation in precipitation/recrystallization rates, differential crystal sector growth rates and/or microvariation in aragonite distribution.  相似文献   

6.
Aragonite, the dense form of CaCO3, grew hydrothermally at 100–300° C and dry at 300–400° C at very low pressures from calcite strained by grinding. Nearly complete inversion to aragonite occurred in some runs with Ca-Mg chloride solutions at 0–2.4 kb and 100–200° C on strained calcite having a (10¯14) reflection with a half-width of 0.48° 2 Cu K. A little aragonite grew dry at one atm. from the ground calcite at 300–400° C in a few hrs. Simultaneous shear during recrystallization of calcite in a rotating squeezer resulted in significant aragonite at 300–400° C several kb. below the stability field. No inversion occurred in any ground calcite when previously annealed in CO2 at 500° C for a few hrs. Thermochemical data show that at least 200 cal/mole of strain energy can be produced in calcite by mild deformation. This much stored energy would lower the pressure requirements of aragonite, relative to the strained calcite by more than 3 kb, and our observation that aragonite growth was faster than strain recovery of calcite indicates that aragonite can grow in nature at reduced pressures from strained calcite.Some experiments were also carried out on highly magnesian calcites with the thought that aragonite might also form at the expense of this metastable material. No aragonite was produced, but the possibility that this mechanism could be operative in nature cannot be discounted.The microtexture of aragonitic deformed marbles from NW Washington (prehnite-pumpellyite facies rocks, courtesy of J. A. Vance) as well as electron probe microanalysis of these rocks indicates that aragonite selectively replaced highly strained calcite. The calcite-aragonite transition is thus a questionable indicator of high-pressure in certain metamorphic rocks.  相似文献   

7.
Aragonite relic preservation in Jurassic calcite-replaced bivalves   总被引:1,自引:0,他引:1  
Shells of the aragonite bivalve Neomiodon (Great Estuarine Group, Jurassic, Scotland) replaced by coarse neomorphic calcite contain oriented relics of the original aragonite ultrastructure. The presence of these relics in such old altered shells, as well as the high Sr content of the replacement calcite, indicate that the process of calcite replacement of aragonite is not a cumulative slow process involving repeated alteration events, but rather a rapid, one-step process. Aragonite relics, once encased in neomorphic spar, will survive as unequivocal evidence of original aragonite mineralogy, barring total remobilization of the enclosing stable calcite, a generally unlikely event. The retention of this residual aragonite and high-Sr calcite supports recent isotopic studies which suggest that the multiple phases of alteration (‘recrystallization’) invoked in earlier literature are unlikely events in the diagenesis of most undolomitized limestones. Retention of aragonite relics appears to be independent of whether alteration occurs in shallow meteoric or, as in the case of our Neomiodon material, deeper burial environments. Pseudopleochroism of the replaced Neomiodon shells appears to be due to organic, largely graphitic, relics, not to the aragonite relics.  相似文献   

8.
The geochemistry of coral skeletons may reflect seawater conditions at the time of deposition and the analysis of fossil skeletons offers a method to reconstruct past climate. However the precipitation of cements in the primary coral skeleton during diagenesis may significantly affect bulk skeletal geochemistry. We used secondary ion mass spectrometry (SIMS) to measure Sr, Mg, B, U and Ba concentrations in primary coral aragonite and aragonite and calcite cements in fossil Porites corals from submerged reefs around the Hawaiian Islands. Cement and primary coral geochemistry were significantly different in all corals. We estimate the effects of cement inclusion on climate estimates from drilled coral samples, which combine cements and primary coral aragonite. Secondary 1% calcite or ∼2% aragonite cement contamination significantly affects Sr/Ca SST estimates by +1 °C and −0.4 to −0.9 °C, respectively. Cement inclusion also significantly affects Mg/Ca, B/Ca and U/Ca SST estimates in some corals. X-ray diffraction (XRD) will not detect secondary aragonite cements and significant calcite contamination may be below the limit of detection (∼1%) of the technique. Thorough petrographic examination of fossils is therefore essential to confirm that they are pristine before bulk drilled samples are analysed. To confirm that the geochemistry of the original coral structures is not affected by the precipitation of cements in adjacent pore spaces we analysed the primary coral aragonite in cemented and uncemented areas of the skeleton. Sr/Ca, B/Ca and U/Ca of primary coral aragonite is not affected by the presence of cements in adjacent interskeletal pore spaces i.e. the coral structures maintain their original composition and selective SIMS analysis of these structures offers a route to the reconstruction of accurate SSTs from altered coral skeletons. However, Mg/Ca and Ba/Ca of primary coral aragonite are significantly higher in parts of skeletons infilled with high Mg calcite cement. We hypothesise this reflects cement infilling of intraskeletal pore spaces in the primary coral structure.  相似文献   

9.
Earlier interpretations of textural alteration affecting Great Salt Lake ooids have greatly influenced concepts of ooid diagenesis. Scanning electron microscope study shows, however, that the coarse radial aragonite rays are depositional, that no recrystallization of pellet cores has occurred, and that Great Salt Lake ooids have not suffered noticeable diagenesis. As suggested by Kahle (1974), radial texture in ancient calcitic ooids is probably mainly original, not diagenetic. Retention of such fine textures has been attributed to organic matter (since found to be equivalent in modern skeletal and non-skeletal grains) or to paramorphic replacement (proposed for non-skeletal grains whose original aragonite mineralogy was only inferred from modern analogs). Pleistocene ooids known to have been aragonite alter like aragonite shells to coarse neomorphic calcite, often with aragonite relics. The striking uniformity of that coarse texture in neomorphic calcite replacing known skeletal aragonites throughout the geologic record has been noted for over 100 years. In contrast, Mississippian ooids retain fine texture as do calcite layers of coexisting gastropods, but unlike the strongly altered aragonite layers of these same gastropods. Therefore, inferences of original aragonitic mineralogy of ancient non-skeletal carbonate grains (including muds) which are now calcite but retain fine texture appear unwarranted, as do assumptions of differential diagenetic behaviour of ancient aragonitic skeletal and non-skeletal grains. Accordingly, modern depositional environments of marine ooids and carbonate muds must be rejected as chemically unrepresentative of comparable ancient environments. It is inferred that ancient non-skeletal carbonates were originally predominantly or exclusively calcite because of an earlier lower oceanic Mg/Ca ratio (<2/1) which altered progressively to values favouring aragonite (modern Mg/Ca value = 5/1). Major influencing factors are: selective removal of calcium by planktonic foraminifers and coccolithophorids since Jurassic-Cretaceous time and by abundant younger, Mg-poor aragonite skeletons and an erratic trend toward decreasing dolomite formation (decreasing removal of oceanic Mg). The change to aragonite dominance over calcite for non-skeletal carbonates was probably during early to middle Cenozoic time.  相似文献   

10.
Transient aragonite seas occurred in the early Cambrian but several models suggest the late Cambrian was a time of calcite seas. Here, evidence is presented from the Andam Group, Huqf High, Oman (Gondwana) that suggests a transient Furongian (late Cambrian) aragonite sea, characterized by the precipitation of aragonite and high‐Mg calcite ooids and aragonite isopachous, fibrous, cements. Stable carbon isotope data suggest that precipitation occurred just before and during the SPICE (Steptoean Positive Carbonate Isotope Excursion). Aragonite and high‐Mg calcite precipitation can be accounted for if mMg:Ca ratios were around 1.2 given the very high atmospheric CO2 at that time and if precipitation occurred in warm waters associated with the SPICE. This, together with reported occurrences of early Furongian aragonite ooids from various locations in North America (Laurentia), suggests that aragonite and high‐Mg calcite precipitation from seawater may have been more than just a local phenomenon.  相似文献   

11.
Triassic pisolites from the Calcare Rosso, Lombardy, Italy, were formed in a hypersaline vadose environment and now show alternating dolomite and calcite laminae. The calcite consists either of microsparite laminae with a brick-like fabric, or of a mass of mosaic crystals with the external form of square-ended rays.These features suggest that the original laminae and rays were aragonitic, like those of the Holocene supratidal pisolites of the Persian Gulf, which consist of alternating laminae of unoriented nannomicrite with Mg-rich mucilaginous material, and aragonitic fibers with radial orientation separated by mucilaginous films. It is suggested that the transformation to brick-like and ray textures passed through the following diagenetic path: (1) original formation of fibrous aragonite laminae; (2) local aggrading recrystallization of aragonite fibers to large square-ended rays during hypersaline phases; (3) dolomitization of Mg-rich mucilaginous nannomicrite laminae during hyposaline phases; (4) inversion of the aragonite fibers and rays to calcite on a piece-by piece basis that preserved the original textural details, when the pH or Mg/Ca ratio dropped.The brick-like and ray fabrics have not been found in laminae of continental freshwater pisolites because these were deposited as equant and stable crystals of low-Mg calcite. These textures consequently make it possible to establish the chemistry of the depositional and early diagenetic milieu for some ancient pisolitic rocks.  相似文献   

12.
Coral proxy records of sea surface temperature (SST) and hydrological balance have become important tools in the field of tropical paleoclimatology. However, coral aragonite is subject to post-depositional diagenetic alteration in both the marine and vadose environments. To understand the impact of diagenesis on coral climate proxies, two mid-Holocene Porites corals from raised reefs on Muschu Island, Papua New Guinea, were analysed for Sr/Ca, δ18O, and δ13C along transects from 100% aragonite to 100% calcite. Thin-section analysis showed a characteristic vadose zone diagenetic sequence, beginning with leaching of primary aragonite and fine calcite overgrowths, transitional to calcite void filling and neomorphic, fabric selective replacement of the coral skeleton. Average calcite Sr/Ca and δ18O values were lower than those for coral aragonite, decreasing from 0.0088 to 0.0021 and −5.2 to −8.1‰, respectively. The relatively low Sr/Ca of the secondary calcite reflects the Sr/Ca of dissolving phases and the large difference between aragonite and calcite Sr/Ca partition coefficients. The decrease in δ18O of calcite relative to coral aragonite is a function of the δ18O of precipitation. Carbon-isotope ratios in secondary calcite are variable, though generally lower relative to aragonite, ranging from −2.5 to −10.4%. The variability of δ13C in secondary calcite reflects the amount of soil CO2 contributing 13C-depleted carbon to the precipitating fluids. Diagenesis has a greater impact on Sr/Ca than on δ18O; the calcite compositions reported here convert to SST anomalies of 115°C and 14°C, respectively. Based on calcite Sr/Ca compositions in this study and in the literature, the sensitivity of coral Sr/Ca-SST to vadose-zone calcite diagenesis is 1.1 to 1.5°C per percent calcite. In contrast, the rate of change in coral δ18O-SST is relatively small (−0.2 to 0.2°C per percent calcite). We show that large shifts in δ18O, reported for mid-Holocene and Last Interglacial corals with warmer than present Sr/Ca-SSTs, cannot be caused by calcite diagenesis. Low-level calcite diagenesis can be detected through X-ray diffraction techniques, thin section analysis, and high spatial resolution sampling of the coral skeleton and thus should not impede the production of accurate coral paleoclimate reconstructions.  相似文献   

13.
ABSTRACT
Large septarian concretions from the Kimmeridge Clay, up to 1.2 m in diameter, have centres comprising anhedral calcite microspar passing into margins of radiating fibrous calcite microspar, with a pyrite-rich zone at the transition. Septarian veins formed and were lined with brown calcite synchronously with fibrous matrix growth, with white calcite precipitated in septarian cavities after concretion growth ceased. Septarian veins, filled only with white calcite, formed later, at the same time as the outermost calcite microspar crystals were enlarged.
The concretions were buried in the Late Jurassic to about 130 m, and in the Late Cretaceous to about 550 m, with uplift between. Oxygen isotopes show that the concretion grew throughout the first burial, with septarian veins forming from about 30 m depth onwards. Later septarian veins formed between about 200 and 500 m during the second burial.
Carbon isotopes show that the compact inner matrix grew in the sulphate reduction zone, the end of which is marked by the pyrite-enriched zone. Dissolving shells, and possibly minor methanogenic carbonate, slowly diluted sulphate reduction-zone carbonate during deeper burial. During early concretion growth, Mg and Sr were depleted in the pore water. During later stages of the first burial, Mg, Sr, Mn and Fe all increased, especially after concretion growth ceased. During the second burial, Fe, Mn and Mg decreased as calcite precipitated, implying relatively closed systems for these elements.
Synchronous formation of septarian fractures and fibrous calcite matrix shows that the Kimmeridge Clay became overpressured during the later stages of both burials.  相似文献   

14.
A bored and encrusted late Pleistocene ooid grainstone was recovered from the seafloor at a depth of approximately 40 m on the outer continental shelf of eastern Florida. Ooid cortices are dominantly bimineralic, generally consisting of inner layers of radial magnesian calcite and outer layers of tangential aragonite. Ooid nuclei are dominantly rounded cryptocrystalline grains, although quartz grains and a variety of skeletal grains also occur as nuclei. Ooids are partially cemented by blocky calcite, and interparticle porosity is partially filled by micrite. Radial cortex layers are composed of brightly cathodoluminescent magnesian calcite having a composition of approximately 12 mol% MgCO3 and 1000 ppm strontium. The iron and manganese concentrations in radial cortex layers are generally in the range of 500–1000 ppm and 100–250 ppm, respectively. Tangential cortex layers are composed of noncathodoluminescent aragonite containing approximately 11 500 ppm strontium and less than 0.5 mol% MgCO3. Iron concentrations in tangential cortex layers are generally in the range of 150–400 ppm, and manganese concentrations are generally below the detection limit of 100 ppm. Echinoderm skeletal fragments, which are present as accessory grains, are composed of brightly cathodoluminescent magnesian calcite. Some ooid nuclei and the thin outer edges of some blocky calcite cement are cathodoluminescent; micrite matrix and the bulk of blocky calcite cement are noncathodoluminescent. Ooids do not exhibit textural evidence of recrystallization. The ooid grainstone underwent an episode of meteoric diagenesis. but ooid cortices were not affected by the event. We propose a previously unrecognized process by which the magnesian calcite cortex layers underwent diagenetic alteration in oxygen-depleted seawater. During this diagenesis, magnesium was lost and manganese was incorporated without apparent textural alteration and without mineralogical stabilization. Thus, we Suggest that cathodoluminescence may result from diagenetic alteration on the sea-floor.  相似文献   

15.
This study uses electron backscatter diffraction (EBSD) and atomic force microscopy (AFM) to identify secondary calcite in coral skeletons. Secondary calcite appears to have nucleated on the original aragonite dissepiments, producing horizontal structures that mimic the morphology of the original coral aragonite, forming dissepiment-like meniscus structures. The Sr/Ca and δ18O of the pristine aragonite and secondary calcite were analysed by secondary ion mass spectrometry (SIMS). The effect of calcite inclusion on the mean geochemistry of the coral carbonate and subsequent sea surface temperature (SST) calculations were determined for both Sr/Ca and δ18O. Inclusion of as little as 1% secondary calcite within the primary coral aragonite elevates the Sr/Ca-derived SST by 1.2 °C and could markedly offset estimates of past tropical climate. Conversely, inclusion of 10% secondary calcite has little effect on the SST estimated from δ18O (+ 0.6 °C) indicating that this proxy is relatively robust to even large amounts of calcite. The different extents to which the two proxies would be influenced by inadvertent inclusion of such meniscus calcite demonstrate the importance of a multi-proxy approach.  相似文献   

16.
The Late Proterozoic Pedro Leopoldo facies (Bambuí Group) in the vicinity of Belo Horizonte, Brazil, comprises alternating laminated microsparitic limestones (10–35 mm thick beds) and fibrous limestones (10–55 mm thick). The latter are composed of a mosaic of sparry calcite crystals. These irregularly crosscut rays and fans are composed of feathery precursor crystal bundles with squared-off growth zones. Ghosts of an original fibrous mineral, hexagonal in cross-section, are visible. The petrographic characteristics, very high strontium content and low magnesium content of the fibrous beds, as well as microspar beds, strongly argue for an original aragonitic mineralogy. The rays are interpreted as having formed by precipitation at the sediment-water interface, whereas the micrite was precipitated from the water column prior to deposition on the sea floor. The lack of emergence features suggests widespread aragonite precipitation under persistently subtidal conditions.  相似文献   

17.
The Pennsylvanian phylloid algal mounds exposed in the Cervatina Limestone of the Cantabrian Zone (NW Spain) developed during the highstands of high-frequency shallowing-upward cycles and lack evidence of subaerial exposure at their tops. Mound core facies are composed of massive bafflestones with variable amounts of calcite cements and anchicodiacean phylloid algae with cyathiform thalli preserved in growth position. Through standard petrographic, isotopic (δ18O and δ13C), major and trace element (Ca, Mg, Fe, Mn, Sr) and cathodoluminescence analyses, five calcite cement phases (cement 1 (C1)–cement 5 (C5)) have been identified filling primary and secondary pores. Early marine diagenesis is represented by micritization and non-luminescent to mottled-dull luminescent high-Mg calcite fibrous marine cement (C1). A dissolution phase then occurred and created vuggy and moldic pores. Based on the absence of field or petrographical or geochemical evidence of exposure, it is inferred that dissolution occurred in near-surface undersaturated marine waters with respect to aragonite related to progressive organic matter oxidation. Secondary porosity was subsequently filled by dull-bright-dull bladed high-Mg calcite (C2), which precipitated in the early shallow burial from marine-derived pore waters. Remaining porosity was occluded by shallow-burial precipitates consisting of non-luminescent scalenohedral low-Mg calcite (C3) followed by non-ferroan dull luminescent calcite spar (C4). Latter phases of calcite spar exhibiting non- and dull luminescence (C5) are associated with burial calcite veins. Low δ18O values (around ?8‰), moderately depleted δ13C values (around 0.5‰) and the homogeneity of trace element contents of carbonate matrix, cements and vein-filling calcites suggest burial isotopic re-equilibration and recrystallization, probably in Early Permian times during post-thrusting orocline formation.  相似文献   

18.
Two types of ‘pseudobreccia’, one with grey and the other with brown mottle fabrics, occur in shoaling‐upward cycles of the Urswick Limestone Formation of Asbian (Late Dinantian, Carboniferous) age in the southern Lake District, UK. The grey mottle pseudobreccia occurs in cycle‐base packstones and developed after backfilling and abandonment of Thalassinoides burrow systems. Burrow infills consist of a fine to coarse crystalline microspar that has dull brown to moderate orange colours under cathodoluminescence. Mottling formed when an early diagenetic ‘aerobic decay clock’ operating on buried organic material was stopped, and sediment entered the sulphate reduction zone. This probably occurred during progradation of grainstone shoal facies, after which there was initial exposure to meteoric water. Microspar calcites then formed rapidly as a result of aragonite stabilization. The precipitation of the main meteoric cements and aragonite bioclast dissolution post‐date this stabilisation event. The brown mottle pseudobreccia fabrics are intimately associated with rhizocretions and calcrete, which developed beneath palaeokarstic surfaces capping cycle‐top grainstones and post‐date all depositional fabrics, although they may also follow primary depositional heterogeneities such as burrows. They consist of coarse, inclusion‐rich, microspar calcites that are always very dull to non‐luminescent under cathodoluminescence, sometimes with some thin bright zones. These are interpreted as capillary rise and pedogenic calcrete precipitates. The δ18O values (?5‰ to ?8‰, PDB) and the δ13C values (+2‰ to ?3‰, PDB) of the ‘pseudobreccias’ are lower than the estimated δ18O values (?3‰ to ?1‰ PDB) and δ13C values of (+2‰ to +4‰ PDB) of normal marine calcite precipitated from Late Dinantian sea water, reflecting the influence of meteoric waters and the input of organic carbon.  相似文献   

19.
Independent lines of geological evidence suggest that fluctuations in the Mg/Ca ratio of seawater between 1.0 and 5.2 have caused the oceans to alternate between favouring the precipitation of the aragonite and high-Mg calcite polymorphs of calcium carbonate ( m Mg/Ca > 2; aragonite seas) and the low-Mg calcite polymorph ( m Mg/Ca < 2; calcite seas) throughout Phanerozoic time. The rise of aragonite-secreting bryopsidalean algae as major producers of carbonate sediments in middle Palaeogene time, a role that they maintained through to the present, has been attributed to a transition from calcite-to-aragonite seas in early Cenozoic time. Recent experiments on the modern, carbonate-sediment-producing bryopsidales Halimeda , Penicillus and Udotea reveal that their rates of calcification, linear extension and primary production decline when reared in experimental calcite seawaters ( m Mg/Ca < 2). These normally aragonite-secreting algae also began producing at least one-quarter of their CaCO3 as calcite under calcite sea conditions, indicating that their biomineralogical control can be partially overridden by ambient seawater chemistry. The observation that primary production and linear extension declined along with calcification in the mineralogically unfavourable seawater suggests that photosynthesis within these algae is enhanced by calcification via liberation of CO2 and/or H+. Thus, the reduced fitness of these algae associated with their low rates of calcification in calcite seas may have been exacerbated by concomitant reductions in tissue mass and algal height.  相似文献   

20.
The precipitation of calcite and aragonite as encrustations directly on the seafloor was an important platform‐building process during deposition of the 2560–2520 Ma Campbellrand‐Malmani carbonate platform, South Africa. Aragonite fans and fibrous coatings are common in unrestricted, shallow subtidal to intertidal facies. They are also present in restricted facies, but are absent from deep subtidal facies. Decimetre‐thick fibrous calcite encrustations are present to abundant in all depositional environments except the deepest slope and basinal facies. The proportion of the rock composed of carbonate that precipitated as encrustations or in primary voids ranges from 0% to > 65% depending on the facies. Subtidal facies commonly contain 20–35%in situ precipitated carbonate, demonstrating that Neoarchaean sea water was supersaturated with respect to aragonite, carbonate crystal growth rates were rapid compared with sediment influx rates, and the dynamics of carbonate precipitation were different from those in younger carbonate platforms. The abundance of aragonite pseudomorphs suggests that sea‐water pH was neutral to alkaline, whereas the paucity of micrite suggests the presence of inhibitors to calcite and aragonite nucleation in the mixed zone of the oceans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号