首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Five minor and trace elements, known to be chemically stable during alteration and metamorphism, have been combined in a set of binary diagrams that distinguish fresh tholeiites from alkali basalts. Of the five elements: Ti, P, Zr, Y, Nb, only P shows slight mobility during metamorphism, which is not sufficient to alter greatly the point distribution on the binary diagrams. Using these stable elements altered basaltic rocks: greenstones, spilites and amphibolites may be distinguished in the same way as fresh basalts, and their original magma may be identified as tholeiitic or alkaline basalt. All five elements are readily and rapidly determined, using XRF, thus this method may be applied as a rapid, easy way of discriminating the magma types of altered basaltic rocks. Using this method it can be demonstrated that alkali basalt magma was produced in minor quantities in the Precambrian.  相似文献   

3.
Summary The changes of the anisotropy of magnetic susceptibility of igneous rocks, induced by a magnetic field, are studied. It is proved that changes in the degree of anisotropy of susceptibility and of the orientation of the susceptibility ellispoid of specimens occur due to the configuration of the domain structure under the effect of the magnetic field. The influence of this effect on the total anisotropy of rocks depends on the degree of anisotropy due to the shape factor and on the stability of the domain structure. A model concept is presented, explaining the qualitatively different pattern of the changes of the anisotropy of susceptibility under the effect of the magnetic field in various directions of the specimens.  相似文献   

4.
Curie temperatures, hysteresis, alternating field properties and anhysteretic and ordinary susceptibilities have been used to characterize the titanomagnetites in a large collection of continental granites, diorites, syenites, anorthosites, gabbros, diabases and basalts. Low-Curie-point titanomagnetites or titanomaghemites were found only in basalts. In all shallow and deep-seated intrusive rocks, the predominant magnetic phase was nearly-titanium-free titanomagnetite with a Curie point of 520–580°C. Most felsic plutonic rocks owed their magnetic properties to coarse, discrete titanomagnetites with truly multidomain properties. Many mafic plutonic rocks (anorthosites, gabbros, norites) displayed bimodal magnetic properties, strong-field properties being due to the discrete titanomagnetites and weak-field properties being due to fine magnetite inclusions in deuterically altered silicates. The Lowrie-Fuller test and the anhysteretic induction curve were the most diagnostic tests of this bimodal behaviour. Grain-size variation within a single diabase dike or sill had a strong expression in all magnetic properties, except HR/Hc and the Lowrie-Fuller test. On the other hand, the Lowrie-Fuller test was a sensitive indicator of changes in “effective” grain size in basalts due to the subdivision of grains by ilmenite lamellae.  相似文献   

5.
6.
Summary The high field torque curves of hematite bearing rocks are not caused by directional differences in the energy of magnetization to saturation, but rather by the couple between the ferromagnetic moment and the applied field. An expression, derived for the high field torque curve of a single crystal of hematite, whose basal plane makes an arbitrary angle with the plane of rotation of the applied field, is found to be in excellent agreement with experiment. Furthermore it is shown that the Fourier spectrum of hematite bearing rocks should in general contain significant higher harmonics and that therefore the high field method is not particularly suitable for determining the preferred crystalline alignment of hematite bearing rocks.  相似文献   

7.
Summary An induced anisotropy of magnetic susceptibility results from the domain alignment which is produced by treating stationary specimens in a strong alternating field. Appreciable domain re-orientation occurs in fields as low as 50 oersteds and the effect must therefore normally be an important part of the process of alternating field demagnetization. Induced anisotropy has been measured in a number of igneous rocks with a range of palaeomagnetic stabilities and in magnetite powders of controlled grain sizes, dispersed in plaster or kaolin specimens which were mechanically deformed to produce instrinsic magnetic anisotropy by grain alignment. The saturation magnitude of the induced anisotropy is not a function of grain size but the saturating field required increases with decreasing grain size. In the larger grains, induced anisotropy is a function of grain orientation.  相似文献   

8.
9.
The frequency-dependent anisotropy of magnetic susceptibility (AMS) can be most easily determined through subtracting directional susceptibilities measured at two operating frequencies along each of the measuring directions and the differences subsequently processed using standard methods for AMS computation. The effect of the measurement precision on the accuracy of the determination of the frequency-dependent AMS is investigated through mathematical simulation of the measurement process using the statistical theory of measuring the AMS of rocks. The accuracy of the AMS determination is presented in terms of the errors in determining the principal susceptibilities and principal directions. By modelling the measuring errors, the limits are discovered for the investigation of the frequency-dependent AMS. The modelling shows extremely high requirements for measurement accuracy met by the most sensitive instruments, only.  相似文献   

10.
AF (alternating field) demagnetization, ARM (anhysteretic remanent magnetization) and strong-field hysteresis properties of a large collection of mostly continental igneous rocks are reported here. The collection included rocks whose magnetic carriers were believed from previous work to be of one of three types: MD (multidomain); SD/PSD (single-domain/pseudo-single-domain); or a bimodal mixture of MD grains (e.g., discrete opaques) and SD/PSD material (e.g., silicate inclusions). Two series of subaerial basalts with a full range of deuteric oxidation classes included examples of all three classes of behaviour. SD/PSD rocks have relatively hard inflected AF decay curves (decay rate initially increasing, then decreasing), MD rocks have soft, exponential-like decay curves, and bimodal rocks have a combination of these characteristics. Relative hardnesses of normalized decay curves of remanences acquired in weak, intermediate and strong fields (the Lowrie-Fuller test) are also distinctively different for the three classes, and the results support the theory developed in an accompanying paper [1] that Lowrie-Fuller characteristics are an expression of the shapes of decay curves. The Lowrie-Fuller test, although its result can be expressed as a numerical parameter, is not capable of fine-scale classification of domain structure or grain size. The shape of the ARM induction curve does have a quasi-continuous variation with grain size, however. The parameter χar/Jrs (initial anhysteretic susceptibility normalized to saturation remanence), which is easily measured with standard paleomagnetic instrumentation, is potentially useful for magnetic granulometry, although χar itself was not diagnostic of grain size.  相似文献   

11.
678 major element analyses and all available trace element determinations of lunar rocks with igneous textures were collected from the literature. Rittmann norms were calculated by an ALGOL program. The norm values, grouped according to increasing clinopyroxene contents, were plotted into quartz-plagioclase-orthopyroxene and olivine-plagioclase-orthopyroxene triangles, respectively. The plots indicate that all lunar rocks form a compositional continuum that starts from rocks very high in plagioclase and continues, with increasing clinopyroxene, to plagioclase-poorer and orthopyroxene-richer rocks containing partly quartz, partly olivine.According to apparent clusters in the plots, and taking into account lunar rock types defined by previous authors, the continuum of normative compositions was subdivided into five major rock groups (I to V). The averages of these groups can be characterized by clinopyroxene contents and plagioclase/orthopyroxene ratios (I: 3% cpx, plag/opx = 30; II: 4% cpx, plag/opx = 7; III: 8% cpx, plag/opx = 2; IV: 26% cpx, plag/opx = 0.8; V: 34% cpx, plag/opx = 1.8). According to the contents in K-feldspar, from groups III and V K-rich subgroups were separated. Average contents of major elements and trace elements were calculated for main groups and subgroups.For the normative groups of lunar igneous rocks, names are proposed which conform to the nomenclature of terrestrial rocks.  相似文献   

12.
Summary Characteristics of remanent magnetization of an igneous rock under a uniaxial compression are divided into those of the soft component and those of the hard component. The soft component of remanent magnetization irreversibly decreases with an increase of compression () regardless whether the axis of is parallel or parpendicular to the direction of magnetization. The hard component changes reversibly with : the magnetic intensity of hard component increases with when the axis of is perpendicular to the magnetization, whereas it decreases with when the axis of is parallel to the magnetization.Theoretically, the irreversible change of the soft component is attributable to the irreversible movement of 90° domain walls which results in the pressure demagnetization effect, while the reversible change of the hard component is due to the reversible rotation of spontaneous magnetization within those domains which are so tightly fixed by large effective anisotropy energy that the induced magnetoelastic energy cannot drive their 90° walls.In natural remanent magnetization of igneous rocks, the soft component corresponds to either one or all of isothermal remanent magnetization, viscous remanent magnetization and piezo-remanent magnetization, whereas the hard component is mostly due to thermo-remanent magnetization.  相似文献   

13.
Summary The changes of magnetic anisotropy under pressure were studied on a set of rocks with marked macroscopic stratification, collected from the Rjvíz borehole. The anisotropy parameters are relatively very stable under directional pressure, acting parallel with the rocks' bedding, and, on the contrary, significantly unstable under pressure acting perpendicular to the bedding. Systematically different magnitudes of stress sensitivity coefficients, , for parallel directional susceptibility were observed in both cases in the same types of rocks. The main cause is probably the different capability of transferring external stress to ferrimagnetics via the stratified non-magnetic matrix. With regard to magnetomechanical phenomena, therefore, a singel value of the stress sensitivity coefficient is insufficient to characterize rocks with a markedly anisotropic matrix.  相似文献   

14.
Charge generation and propagation in igneous rocks   总被引:5,自引:0,他引:5  
Various electrical phenomena have been reported prior to or concurrent with earthquakes such as resistivity changes, ground potentials, electromagnetic (EM), and luminous signals. Doubts have been raised as to whether some of these phenomena are real and indeed precursory. One of the reasons for uncertainty is that, despite decades of intense work, there is still no physically coherent model. Using low- to medium-velocity impacts to measure electrical signals with microsecond time resolution, it has now been observed that when dry gabbro and diorite cores are impacted at relatively low velocities, 100 m/s, highly mobile charge carriers are generated in a small volume near the impact point. They spread through the rocks, causing electric potentials exceeding +400 mV, EM, and light emission. As the charge cloud spreads, the rock becomes momentarily conductive. When a dry granite block is impacted at higher velocity, 1.5 km/s, the propagation of the P and S waves is registered through the transient piezoelectric response of quartz. After the sound waves have passed, the surface of the granite block becomes positively charged, suggesting the same charge carriers as observed during the low-velocity impact experiments, expanding from within the bulk. During the next 2–3 ms the surface potential oscillates, indicating pulses of electrons injected from ground and contact electrodes. The observations are consistent with positive holes, e.g. defect electrons in the O2− sublattice, traveling via the O 2p-dominated valence band of the silicate minerals. Before activation, the positive holes lay dormant in the form of electrically inactive positive hole pairs (PHP), chemically equivalent to peroxy links, O3X/OO\XO3, with X=Si4+, Al3+, etc. PHPs are introduced into the minerals by way of hydroxyl, O3X–OH, which all nominally anhydrous minerals incorporate when crystallizing in H2O-laden environments. The fact that positive holes can be activated by low-energy impacts, and their attendant sound waves, suggests that they can also be activated by microfracturing. Depending on where in the stressed rock volume the charge carriers are activated, they will form rapidly moving or fluctuating charge clouds that may account for earthquake-related electrical signals and EM emission. Wherever such charge clouds intersect the surface, high fields are expected, causing electric discharges and earthquake lights.  相似文献   

15.
Summary A bridge set for measuring the magnetic susceptibility of rocks and its anisotropy is described. The classical transformer bridge has been supplemented with an auxiliary compensating arm for balancing the bridge without any mechanical infringement of the measuring coils. By employing this principle and the appropriate methods a sensitivityof 4 × 10 –8 SI units (3 × 10 –9 e.m.u./cm3) has been achieved for a sample of 8 cm3 in volume. In addition to its high sensitivity the device has a considerable accuracy, which makes it suitable for susceptibility anisotropy measurements even of samples with a very low susceptibility and only slight anisotropy. Well-reproducible results have been achieved for samples with a mean susceptibility of the order of10 –5 SI units with an anisotropy degree of only about 1.05.Institute of Applied Geophysics.  相似文献   

16.
南海重磁异常特征及火成岩分布(英文)   总被引:7,自引:1,他引:7  
南海火成岩油气藏具有广阔的勘探前景,综合利用地球物理方法圈划与识别火成岩体、研究火成岩分布是火成岩油气藏研究的基础。针对南海重磁场特征,采用低纬度、变倾角化极技术进行了磁异常化极处理,利用优选延拓方法实现重磁异常分离并提取南海海域浅部火成岩重磁异常信息,利用磁异常三维相关成像给出南海火成岩的三维空间等效分布,在重磁梯度突出局部异常边界信息的基础上,通过梯度加权的重磁相关分析勾画不同类型火成岩的平面展布,火成岩的分布特征显示出受地壳深部结构及断裂构造的控制与影响。  相似文献   

17.
Summary Measurements have been made of the dieletric anisotropies of a number of rocks for which magnetic anisotropy data have been obtained previously. The purpose was to examine the possible usefulness of dielectric anisotropy as a physical property indicative of rock fabrics. Its advantage over the magnetic method is that it measures an average alignment of crystals of the dominant minerals, whereas magnetic anisotropy is due only to the ferromagnetic grains. Disadvantages are an extreme sensitivity to specimen shape and difficulty in distinguishing the several types of alignment which can give rise to dielectric anisotropy. In a number of strongly foliated rocks the axes of dielectric anisotropy were found to coincide with the axes of magnetic anisotropy. Specimens from a magnesian-pyroxene rich layer in a Tasmanian dolerite sill and from the olivine rich layer of the Palisades dolerite sill, New York, were found to have no systematic anisotropy. The pyroxenes in the Tasmanian dolerite are elongated crystals (about 2: 1) so that the dielectric measurements show that they do not have a preferred horizontal alignment and therefore have probably not settled as individual crystals. Most of the olivines in the Palisades dolerite are more nearly equidimensional so that the absence of measurable anisotropy in this rock is less conclusive evidence against crystal settling.  相似文献   

18.
19.
This paper aims to demonstrate that the elastic stiffnesses and the anisotropic parameters of rocks can be accurately predicted from geophysical features such as the porosity, the density, the compression stress, the pore pressure and the burial depth using relevant machine learning methods. It also suggests that the extreme gradient boosting method is the best method for this purpose. It is more accurate, extremely faster to train and more robust than the artificial neural networks and the support vector machine methods. Very high R-squared scores was obtained for the predicted elastic stiffnesses of a relevant dataset that is available in the literature. This dataset contains different types of rocks, and the values of the features are in large ranges. An optimal set of parameters was obtained by considering an appropriate sensitivity analysis. The optimized model is very easy to implement in Python for practical applications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号