首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了探究土体干缩开裂问题,文章采用ERT技术,对黏性土开展了一维干缩开裂动态监测试验。配制初始状态饱和 的泥浆试样,在自然条件下干燥,采用ERT技术获得试样干燥过程中的电阻值变化。结合试样的电阻值图像和裂隙图像, 对土体干缩开裂规律进行了分析。研究结果表明:在干燥蒸发初期,土体电阻值随时间增加缓慢减小,其原因在于土体干 燥收缩导致土颗粒间接触面积增大,颗粒水化膜变薄,进而使得土颗粒表面双电层导电性增强。随着干燥继续进行,气体 进入土体内部,土体由初始饱和状态转变为非饱和状态,电阻值转为缓慢增加。当土体产生裂隙时,裂隙周围土体电阻值 急剧增大,而未发育裂隙的土体电阻依然保持缓慢增加的趋势。通过对比试样电阻值变化曲线和裂隙图像,发现两者所呈 现的裂隙发育位置和状态存在良好的一致性。因此,ERT技术能对干燥过程中土体裂隙发育进行有效的动态监测,准确掌 握裂隙发育的时空动态信息,并且能提前预测裂隙发育的可能位置,为研究极端干旱气候作用下土体的工程性质响应提供 了理想手段。  相似文献   

2.
This paper proposes a two-stage geophysical approach to map the vertical cracking and the structural integrity of flood embankments made up of clay geomaterials susceptible to fissuring. The first stage is based on a ‘coarse-resolution’ investigation using conventional electrical resistivity tomography (ERT) equipment to identify the fissured zones in the embankment. This step is complemented by an additional geophysical technique, electromagnetic, to verify the ERT measurements. The second stage is based on a ‘high-resolution’ investigation using a miniature ERT system previously developed at the laboratory scale for detailed mapping of the fissure patterns. The ‘coarse-resolution’ stage is the major focus of this paper and was validated against two case studies in England and Scotland. Longitudinal ERT survey provided a tomographic picture of the upper desiccated zones of the embankments and fissured areas in 2-D, validating the range of resistivity results obtained previously on a fissured clay model in the laboratory. A transversal embankment resistivity tomography was also completed to show the positions of fissured zones in detail in the field. The electromagnetic technique as a fast screening tool allowed cross checking the ERT results and was also efficient in detecting high and low conductivity zones, indicating areas of potential weakness during flash floods and heavy rain. The southern embankment in England showed more fluctuations in the conductivity and resistivity than the north embankment in Scotland, likely to be due to the differences in climate, vegetation and location characteristics between the two sites. Conclusions were also drawn on the potential weaknesses for both embankments and the effect of vegetation on conductivity measurements.  相似文献   

3.
Desiccation cracking of clay soil is of critical importance in many applications, such as industrial waste containment, hydraulic barriers, road embankments, and agricultural operations. The factors that influence cracking are known qualitatively, but it is not clear how to predict the initiation and propagation of cracks. This study presents a discrete element approach to modeling desiccation cracking in thin clay layers, considering material property changes. First, an aggregate shrinkage model based on the aggregate structure of clay was proposed, and the drying shrinkage of clay soil was modeled by imposing drying shrinkage kinetics for each aggregate at the micro-scale. Second, the clay soil was represented by an assembly of aggregates linked by bonds, and desiccation cracking of the clay layer was modeled using a three-dimensional discrete element code (PFC3D), with the aid of the embedded programming language FISH. When the clay layer is sufficiently thin, the water content gradient along the section can be neglected; thus, the shrinkage kinetics are the same for all of the grains of clay. In the model based on the discrete element method (DEM), the bond strength and contact stiffness changed during drying. Their changes were determined by matching the simulation results with the experimental data. Third, the DEM approach was validated by reproducing experimental desiccation tests performed on a thin clay layer in a disk shape. The geometric parameters of surface cracks were quantified using image analysis techniques and were compared with experimental observations. Fourth, some factors of influence, such as the sample thickness, the properties of the soil–base interface, micro-mechanical parameters, and shrinkage parameters, were investigated using the DEM model. The results obtained from the DEM analyses were compared with the results of prior research in this field of study. The approach used in this study is very promising for simulating desiccation cracking in thin clay soil because the model captures the initiation and propagation mechanism of desiccation cracks. Although this study was carried out on surface cracking in a thin clay layer, the extension of this methodology is of potential benefit not only for predicting three-dimensional desiccation cracking in real clay liners but also for modeling cracking in other materials with properties that vary with water content or temperature, such as concrete and rock.  相似文献   

4.
Laboratory experiments on desiccation cracking of thin soil layers   总被引:3,自引:0,他引:3  
This paper presents some experimental results on desiccation cracking tests conducted on thin layers of clay soils. Observation of the evolution of cracking patterns was examined to clarify the transient mechanisms of the crack formation of clay soils. Laboratory experimentation on desiccation cracking was carried out to examine experimentally the quantitative relationships between the characteristics of soil cracks and the prevailing controlling conditions. Five desiccation cracking tests for slurried clay soils were carried out using shrinkage moulds in a humidity chamber, which was capable of controlling relative humidity and temperature. The soil used in the experimental studies was residual basaltic clay and was classified as a highly reactive soil. In order to provide simple conditions for theoretical modelling, the tests were conducted in perspex and metal moulds with rectangular cross-sections. The lengths of the moulds were considerably larger than their widths so that parallel cracking were generated in thin layers. In each cracking test, several rectangular moulds of different thicknesses and widths were used. Some of these tests were used for observation, crack initiation and evolution, and others for moisture content measurement during desiccation. The test results include evolution of the cracking pattern, influences of speed of desiccation and typical crack spacing to depth ratios for soil layers.  相似文献   

5.
The ability to model and predict the formation of desiccation cracks is potentially beneficial in many applications such as clay liner design, earth dam construction, and crop science, etc. However, most studies have focused on statistical analysis of crack patterns and qualitative study of contributing factors to crack development rather than prediction. Because it is exceedingly difficult to capture the nonlinear processes during desiccation in analytical modelling, most such models handle crack formation without considering variation of material properties with time, and are unattractive to use in realistic modelling. The data obtained from laboratory experiments on clay soil desiccating in moulds were used as a basis to develop a more refined model of desiccation cracking. In this study, the properties, such as matric suction, stiffness and tensile strength of soil, and base adhesion, could be expressed approximately as functions of moisture content. The initial conditions and the development of suction due to desiccation and the varying material properties were inputted to UDEC, a distinct element code, using its internal programming language FISH. The model was able to capture some essential physical aspects of crack evolution in soil contained in moulds with varying lengths, heights, and materials of construction. Extension of this methodology is potentially beneficial not only for modelling desiccation cracking in clay, but also in other systems with evolving material properties such as concrete structures and road pavements. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Summary The Lower Lias Clay at Blockley, 20 km due south of Stratford-upon-Avon, UK, is thought to be representative of this clay formation over much of the Severn Basin. As far as the mineralogy of the clay is concerned, illite is the dominant clay mineral, kaolinite being subsidiary, with quartz, calcite, pyrite and chlorite/vermiculite present in subsidiary or accessory amounts. Weathering changes the mineralogy, with illite being degraded and calcite and pyrite being removed. Furthermore free iron oxide coatings become important as a result of weathering, with the maximum concentrations being present in the highly weathered material.The unweathered clay possesses a preferred orientation associated with turbostratic structures. At certain horizons microfolding and remoulding occurs in the unweathered clay and silty layers are displaced. Weathering has progressively destroyed the micro-structures present in the weathered clay horizons.The fissures in the Lower Lias Clay occur in five uniplanar sets. In the unweathered clay the intensity is fairly constant but it increases in a narrow zone just below the weathered horizons. The number of curved fissures also increases at this depth. This intense fissuring continues into the lowest zone of weathered clay where weathering is confined to the fissure surfaces. Fissures become less apparent in the more weathered horizons as more and more degradation has taken place. However, new smaller fissure systems are developed in the weathered clay, as are desiccation cracks.Engineering index properties and values of shear strength are given. Relationships between moisture content and strength, liquid limit and iron (Fe) content were observed, and a relationship between weathering zones and the shear strength-depth curve was established.  相似文献   

7.
The effectiveness of inversion apparent resistivity data to determine accurately the true resistivity distribution over 2D structures has been investigated using a common inversion scheme based on smoothness-constrained nonlinear least-squares optimization with enhancing horizontal resolution (EHR) technique by numerical simulation. The theoretical model generates in RES2DMOD software at specific distance and depth using Wenner, Wenner–Schlumberger, and pole–dipole arrays were inverted. The inversion model was compared with the original 2D model in RES2DINV software. The study model includes horizontal layering, vertical resolution, and horizontal two layers with different resistivity. Also, the response to variations in data density of these arrays was investigated. The study shows the best array suitable to be used in the survey was chosen for real data acquisition at the actual site. Subsequently, the results from borehole were used to verify the results of 2D resistivity imaging method with and without EHR technique. Saturated zone (0–40 Ω-m) was found scattered at the depth of 10–20 m. The borehole is located at 63 m at 2D resistivity imaging survey which shows at depth 10–20 m is sandy silt. Highly weathered sandstone was found at 6 m depth with resistivity value of 800 Ω-m and SPT N value of 20. The bedrock was found at 27 m depth with resistivity value of 3,000 Ω-m and SPT N value of 50. The application of 2D resistivity imaging with EHR technique indicate the ability of the proposed approach in terms of density, depth, and resistivity value of anomalous and layer in a computationally and numerically efficient manner and to exhibit good performance in the data inversion.  相似文献   

8.
The use of wastewater for irrigation in sandy soil increases the pollution risk of the soil and may infiltrate to the shallow groundwater aquifer. In such environment, some important parameters need to be obtained for monitoring the wastewater in the unsaturated zone over the aquifer. These parameters include clay content, heterogeneities of the upper soils, depth to the aquifer and the variations of groundwater quality. In the present work, the efficiency of DC resistivity method in forms of 1-D and 2-D measurements was studied for wastewater monitoring in the Gabal el Asfar farm, northeast of Cairo, Egypt. Forty-one Schlumberger soundings (VES) were performed then followed by three pole-dipole 2-D profiles along some considered regions within the area. The resistivity measurements were integrated with the boreholes, hydrogeological and hydrochemical (surface and groundwater samples) information to draw a clear picture for the subsurface conditions. The obtained results were presented as cross sections and 3-D visualization to trace the clay intercalations within the unsaturated zone. In addition, a vulnerability map was created using the obtained results from 1-D Schlumberger survey and confirmed with the 2-D resistivity profiling. The obtained results have shown that the 2-D resistivity imaging technique is a powerful tool for mapping the small-scale variability within the unsaturated zone and the wastewater infiltration. However, limitations of resistivity techniques were observed in the area with limited resistivity contrast such as thin clay layers with brackish water background. Under that condition, the measured pattern of resistivity distributions depends on the applied electrode array, electrode spacing and using the available geological information during the inversion process.  相似文献   

9.
土体在气候作用下发育干缩裂隙是一种常见的自然现象,裂隙的存在会极大弱化土体的工程性质,诱发许多岩土与地质工程问题。为了实时掌握黏性土中干缩裂隙网络的发展状态,提出了一套基于高密度电阻率层析成像技术(ERT)的土体干缩裂隙动态发展过程精细监测方法。分别开展模型试验及原位试验,利用自行研制的测定系统持续采集电流-电位差数据,随后利用自行开发的有限元法电阻率层析成像(FemERT)系统进行数据处理,获取了裂隙网络在不同发育阶段的空间分布特征。结果表明:(1)ERT可以实现土体裂隙发育过程的精细监测,具备监测三维裂隙网络几何形态的能力,裂隙宽度的识别精度达到毫米级,裂隙深度的识别精度达到厘米级;(2)ERT的感度分布特征解释了裂隙发育对于土体电阻率的影响规律,测定电阻值时程曲线因裂隙产生位置的不同而呈现不同的变化规律;(3)反演电阻率及其相对变化率(Rev)可以直观表征裂隙网络在不同阶段的空间几何形态,凸显裂隙动态发育过程对于土体导电性的影响。  相似文献   

10.
垃圾填埋场传统封顶和ET封顶的比较研究   总被引:3,自引:0,他引:3  
针对传统压实黏土封顶系统存在易干燥开裂的问题,提出了一种新型的ET(蒸发传输)封顶系统。分析了压实黏土封顶系统和新型ET封顶系统的工作机制。在降水和蒸发循环补给的条件下,建立了水分在两种封顶系统中迁移的一维数学模型。以9次降水和蒸发循环补给为边界条件,分别模拟了576 h的水分在两种封顶系统中迁移变化规律。计算结果表明,距补给边界越近,含水率受降水、蒸发的影响越显著,且随着深度的增加出现明显的峰值滞后现象。传统封顶中的压实黏土层由于具有低渗透性,致使整层不能得到有效的水分补给。ET封顶中整个土层可以有效地从边界降水中得到补给,同时在蒸发的条件下,把土层中的储水释放。数值计算结果与试验数据的对比表明,计算值和试验数据基本吻合。这些研究成果有助于垃圾填埋场封顶系统的设计作进一步的改进。  相似文献   

11.
The objective of this study is to evaluate the effectiveness of DC resistivity surveys for imaging the wastewater percolation around the stabilization ponds in the Tenth of Ramadan City, the desert fringes of East Nile Delta, Egypt. Detailed resistivity surveys, including DC soundings and electrical resistivity tomography (ERT), were carried out along several profiles. Furthermore, synthetic modeling of ERT was designed to optimize the survey configurations and interpretation of the results. A 2D modeling of smoothness-constrained least-squares inversion scheme was applied to delineate the possible wastewater infiltration zones from oxidation ponds. Because the geoelectrical interpretation has a degree of non-uniqueness, the resistivity inversion was constrained using borehole lithological information and soil sample laboratory measurements. The DC inversion results indicate decreasing resistivity down to a depth of 15 m around waste disposal sites. The inferred soil zone close to the oxidation ponds was a mixture of sand, silt and clay. Moreover, the clay minerals were characterized by moderate swelling that could have reduced the vertical infiltration speed, causing wastewater seepage, especially around unlined disposal sites and open surface drains. Accordingly, the medium-to-low resistivity values can be attributed to wastewater leakage in clayey sand soil. Because the area slopes generally toward the northeast, the surface seepage was dominant in the shallow impermeable sandy clay subsoil. Therefore, measuring soil parameters is a complementary method to optimize resistivity interpretation, with potential for mitigating environmental hazards from wastewater leakage around disposal ponds.  相似文献   

12.
新近系三趾马红土黏粒含量高,失水干燥易开裂形成干缩裂纹。为研究干密度对三趾马红土干燥开裂行为影响,利用自制干燥装置开展压实三趾马红土脱湿试验,并采用数字图像相关(DIC)方法分析其表面干缩裂纹扩展与自愈规律。结果表明:(1)不同初始干密度试样干燥过程中均出现开裂现象,其表面干缩裂纹演化过程可分裂纹萌生、裂纹扩展、裂纹自愈、裂纹稳定4个阶段;小干密度试样表面干缩裂纹网络展布密集均匀,而大干密度试样表面开裂以“宽大稀疏”裂纹为主;(2)试样表面应变场变化能够较好反映试样表面干缩裂纹演化过程,蓝色压应变区代表试样失水整体产生的体积收缩,红色应变条带代表试样表面受拉而产生的干缩裂隙;试样干燥过程表面蓝色压应变区不断扩大,红色拉应变条带区逐渐变小,表明表面裂纹受到试样整体收缩牵拉而产生“自愈”收缩。且干密度越小,试样干缩过程表面红色拉应变网络越密集,干缩裂纹自愈程度越高;(3)试样表面应变场变化表明各等级干缩裂纹均出现自愈现象,但主裂纹的主应变减少量最大,自愈程度最高,对试样整体裂纹自愈起主导作用;试样初始干密度越小,各等级裂纹的峰值应变越大,自愈时的应变缩减量越高,表明试样失水收缩特征越显著。...  相似文献   

13.
This paper presents a numerical study on the desiccation cracking process of clayey soil. The initiation and propagation of cracks were investigated using finite element code, including the damage-elastic cohesive fracture law to describe the behaviour of cracks. The coupling between the hydraulic behaviour (moisture transfer in the soil matrix and in the cracks) and the mechanical behaviour (volume change of the soil matrix and development of cracks) were also considered. The results of a laboratory experiment performed on clay soil, taken from a literature review, were used to evaluate the numerical modelling. The results show that the code can reproduce the main trends observed in the experiment (e.g., shrinkage related to drying, crack development). In addition, the numerical simulation enables the identification of other phenomena, such as the evolution of suction and stress related to drying and the development of a single crack. These phenomena are difficult to observe experimentally.  相似文献   

14.
张晓宇  许强  刘春  施斌 《工程地质学报》2017,25(6):1430-1437
黏性土在失水过程中逐渐变形开裂,裂隙相互交错形成网络,这一过程涉及水热力等多场耦合的作用。本文基于南京大学自主研发的三维离散元软件MatDEM,采用紧密堆积离散元模型对土体开裂进行模拟。在此模型中,每个离散元单元代表一定体积的土颗粒、孔隙和孔隙水的集合体。单元具有含水量属性,并采用有限差分思想计算水分运移量,实现了水分场模拟。同时,考虑水分场对土体抗拉强度等力学性质的影响,建立水分场和应力场的耦合。在数值模拟中,假定土体表面水分以一定速率蒸发,根据试验数据由含水量计算单元直径和力学参数,从而实现黏土蒸发失水、收缩和开裂变形过程模拟。数值模拟与前人室内试验结果基本一致,能较好地再现开裂过程中的各个阶段。本文为研究多场作用下土体变形破坏模拟提供了一个新的思路。  相似文献   

15.
The problem of desiccation cracks in soils has received increasing attention in the last few years, in both experimental investigations and modeling. Experimental research has been mainly focused on the behavior of slurries subjected to drying in plates of different shapes, sizes and thickness. The main objectives of these studies were to learn about the process of crack formation under controlled environmental conditions, and also to understand better the impact of different factors (e.g. soil type, boundary conditions, soil thickness) on the morphology of the crack network. As for the numerical modeling, different approaches have been proposed to describe the behavior of drying cracks in soils. One aspect that it is still difficult to simulate properly is the 3-D crack pattern typically observed in desiccated soils. In this work we present a numerical technique to model the behavior of drying soils. The proposed approach inserts high aspect ratio elements in-between standard elements of a finite element mesh. This mesh fragmentation technique can be easily adapted to standard finite element programs. We used this technique to analyze multiple case studies related to soil desiccation cracks developed under laboratory and field conditions. We focused our attention in some key factors that control the 3-D morphology of the drying cracks network in soils. We show that the proposed technique is able to simulate very satisfactorily the main patterns typically observed in cracked soils.  相似文献   

16.
The principal aim of this study is to assess the scope of monitoring diesel plume migration in a scaled aquifer model with a miniaturised electrical resistivity array. Respectively 1000 and 500 ml of diesel were injected in both the unsaturated and water-saturated zones of a sand body overlying a clay aquitard, and diesel migration was monitored with a miniature electrode array and an off-the-shelf resistivity meter. Inverted time-lapse electrical resistivity tomography (ERT) data reflect downward and lateral spreading of the diesel plume away from the injection point in the unsaturated zone. Diesel was also imaged to spread upwards and laterally away from the injection point in the saturated zone, as controlled by capillary rise. In both cases later-time ERT images reflected preferential pooling of diesel on the water table, as well as vertical smearing of pooled diesel in response to simulated water-table fluctuations. Repeat fluid electrical conductivity (EC) and dissolved oxygen (DO) measurements validate the observed changes in bulk resistivity caused by both diesel injections. Artefacts introduced by 2D inversion of 3D contaminant transport were abound. Time-lapse ERT imaging of diesel transport is therefore inferred to be feasible and well-suited to complementing conventional techniques of intrusive site investigation, although time-lapse 3D or 4D ERT imaging is strongly advocated.  相似文献   

17.
This research is an attempt to accomplish a 3-D resistivity imaging survey, which was carried out near a water well contaminated with hydrocarbon materials in Karbala governorate. Two-dimensional resistivity imaging measurements were collected along four parallel profiles, using a Wenner array with electrode spacing of 1 m. The RES3DINV program was used to invert the apparent resistivity data. The results displayed a resistivity distribution of the subsurface in a three-dimensional volume. Thus, both the horizontal and vertical extents of the contaminated zone were displayed. This technique revealed a low resistivity zone at depth ranges from 3 to 6 m in the investigation area, but the seepage starts at depth ranges between 2 and 3 m and continues down depth (may be to the groundwater level). This low resistivity zone is the most likely location for a subsurface seepage of contaminated water. It is clear that the sufficient measurement points along 2-D lines in a small area can increase the 3-D imaging resolution, and nearly real 3-D imaging can be achieved, when the size of subsurface anomaly compared with the electrode spacing (a) of the Wenner array is taken into consideration.  相似文献   

18.
The objective of this paper is to investigate the applicability of artificial neural networks in inverting quasi-3D DC resistivity imaging data. An electrical resistivity imaging survey was carried out along seven parallel lines using a dipole-dipole array to confirm the validation of the results of an inversion using an artificial neural network technique. The model used to produce synthetic data to train the artificial neural network was a homogeneous medium of 100Ωm resistivity with an embedded anomalous body of 1000Ωm resistivity. The network was trained using 21 datasets (comprising 12159 data points) and tested on another 11 synthetic datasets (comprising 6369 data points) and on real field data. Another 24 test datasets (comprising 13896 data points) consisting of different resistivities for the background and the anomalous bodies were used in order to test the interpolation and extrapolation of network properties. Different learning paradigms were tried in the training process of the neural network, with the resilient propagation paradigm being the most efficient. The number of nodes, hidden layers, and efficient values for learning rate and momentum coefficient have been studied. Although a significant correlation between results of the neural network and the conventional robust inversion technique was found, the ANN results show more details of the subsurface structure, and the RMS misfits for the results of the neural network are less than seen with conventional methods. The interpreted results show that the trained network was able to invert quasi-3D electrical resistivity imaging data obtained by dipole-dipole configuration both rapidly and accurately.  相似文献   

19.
A large number of valleys and basin systems are present in the northwestern part of the Himalayas in Pakistan which form significant aquifers in the region. Hydrogeophysical investigations in the western part of Nowshera District, a part of the intermontane Peshawar basin, were undertaken to help to determine the availability of groundwater resources in the region. Thirty vertical electrical resistivity soundings (VES) were acquired using a Schlumberger expanding array configuration with a maximum current electrode spacing (AB/2) of 150 m in delineating the groundwater potential in the study area. The results of the interpreted VES data using a combination of curve matching technique and computer iterative modeling methods suggest that the area is underlain by 3 to 5 geo-electric layers. The interpretation results showed that the geo-electrical succession consists of alluvium comprising of alternating layers of clay, silty clay, fine to coarse sands, sand with gravels and gravels of variable thickness. High subsurface resistivity values are correlated with gravel–sand units and low resistivity values with the presence of clays and silts. The modeled VES results were correlated with the pumping tests results and lithological logs of the existing wells. The pumping test suggests the transmissivity of the aquifer sediments is variable corresponding to different sediments within the area. The gravel–sand intervals having high resistivity value show high transmissivity values, whereas clay–silt sediments show low transmissivities. It is concluded that majority of the high resistive gravel–sand sediments belong to an alluvial fan environment. These gravel–sand zones are promising zones for groundwater abstraction which are concentrated in the central part of the study area.  相似文献   

20.
This article presents the developments of an ongoing research aimed at modelling the influence of fissuring on the behaviour of clays. In particular, it recalls the main results of an extensive laboratory investigation on a fissured bentonite clay from the south of Italy and presents the data of a new investigation on the evolution with shearing of the strain fields developing within the clay, resulting from Digital Image Correlation (DIC). Element test results are analysed in the framework of continuum mechanics and linked to the clay fissuring features, once characterised using the Fissuring IDentity (F‐ID) chart. This article compares the bentonite behaviour with that of other fissured clays of different F‐IDs, highlighting the common behavioural features. Thereafter, the soil response at the macro level is related to the DIC‐derived strain fields evolving within the clay with loading. For this purpose, DIC was successfully used to investigate the deformation processes active in the fissured clay and the sources of the localisation phenomena. DIC is shown to provide indications of the extent to which highly to medium fissured clays element test results can be of use to model the clay behaviour according to continuum mechanics. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号