首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
提出对顾北煤矿1243(3)工作面回采上限开采产生影响的主要含水层为新生界承压含水层、基岩风化带及顶板砂岩含水层。根据其水文工程地质、勘探和土工试验资料,分析新生界松散层含(隔)水层、基岩风化带及煤层顶板砂岩含水层的水文工程地质特征以及各含水层之间水力联系,结合《"三下"开采规程》、覆岩类型、含水层富水性特征,确定该工作面水体下开采等级为Ⅱ类,并通过类比、公式法、实测研究冒落带破坏高度,确定防水煤柱高度,收作线上口防水煤柱最小,采后冒落带仅发育在二叠系煤系地层中,符合《"三下"开采规程》Ⅱ类水体的有关规定,工作面回采无水害威胁。  相似文献   

2.
东欢坨矿顶板涌水条件与工作面水量动态预测   总被引:4,自引:0,他引:4  
针对开滦东欢坨矿开采煤8诱发的顶板涌(突)水问题,首先采用五个物理场的多源地学信息复合研究方法对煤8顶板充水含水层进行了富水性综合分区。此外,在充分分析煤8至顶板充水含水层间岩段的岩性特征基础上,将据《煤矿安全规程》计算出的导水裂隙带发育高度进行了全方位的岩性场定性校正,并编制了煤8回采冒落安全性分区图。在此基础上,耦合叠加分析煤8回采冒落安全性分区和其顶板充水含水层的富水性分区结果,对东欢坨矿煤8回采顶板涌(突)水条件进行了综合评价,提出了A、B、C、D、E5个不同涌(突)水特征的分区划分方案。最后运用目前国际上先进的地下水流水质模拟评价的Visual Modflow专业软件系统,建立了三维可视化渗流模型,并对待采的2086、2188B回采工作面涌水量进行了动态实时预测。   相似文献   

3.
在详细分析霍洛湾煤矿水文地质条件基础上,根据2-2煤层上覆不同岩层的岩石力学参数建立了工作面回采过程中覆岩变形与破坏特征的数值模拟模型,研究了工作面回采过程中顶板覆岩在不同来压阶段导水裂隙带和垮落带的发育高度;通过对钻孔冲洗液漏失量的现场观测,进行了“两带”发育高度的探测。将数值模拟结果及现场观测资料对比分析,确定22101工作面的导水裂隙带高度为33.6~37.8m,垮落带高度约9.6m。这为评价研究区水体下开采可行性和水体下开采防水煤柱的设计提供了科学依据。   相似文献   

4.
张小五  陈鑫  芦震 《探矿工程》2019,46(7):64-69
煤矿的开采利用给国民经济发展带来巨大的收益,但也引发了许多环境地质问题,特别在煤层开采过程中,煤层上覆基岩变形破坏形成的裂隙通道极易发生矿井涌(突)水事故,时刻威胁着井下工人的生命安全。本文以灵新煤矿051505工作面为研究对象,利用Flac3D数值模拟软件,对14号主采煤层上覆基岩导水裂隙带高度进行了模拟研究。模拟结果表明:当煤层开采厚度为2.5 m时,导水裂隙带发育最大高度为59.5 m。同时选取经验公式法对导水裂隙带高度进行了计算。最终通过钻孔实测法得到的结果与前两种方法对比分析,数值模拟结果与钻孔实测结果基本吻合,认为数值模拟方法能够高效、简单、合理达到预测导水裂隙带高度的目的,也为同类矿井安全、绿色生产提供一定的借鉴。  相似文献   

5.
张明  战玉宝 《岩土力学》2006,27(Z1):455-458
研究开采上限对煤矿开采具有十分重要的意义,它可以最大程度地开采压滞的煤炭资源,缓解当前大部分煤矿采掘接替紧张的局面。以田庄矿N2601工作面为例,根据已有水文地质资料以及邻近矿井资料,分析了开采区充水条件及底部含水层的赋水特性;采用数值模拟方法,根据上覆岩层的塑性应变情况,分析了冒落带与导水裂隙带的高度范围,最后综合数值模拟结果与“三下”开采规程的要求确定了该矿的开采上限。  相似文献   

6.
山西省霍州团柏煤矿11-101工作面为带压开采。为预防回采期间底板突水事故,采用弹塑性理论、现场实测、数值模拟验证相结合的方法,对不同工作面长度条件下底板破坏深度发育规律进行研究,进而确定该条件下开采的工作面合理长度。研究表明,随着工作面推进,滞后工作面6 m左右底板首先发生拉伸破坏,底板破坏呈楔形。工作面长度在60~120 m,破坏深度随着工作面长度增加呈线性增长,平均每增加10 m,破坏深度加深1 m。理论计算与数值模拟计算得出80 m工作面底板破坏深度为7~8 m,现场实测底板破坏深度为7.5 m,故工作面合理开采长度为80 m时,能够确保11-101工作面生产安全。   相似文献   

7.
河南芦沟煤矿探采对比   总被引:1,自引:1,他引:0  
芦沟煤矿1972年投产,设计能力60万t/年。区内开采±0以上的山西组二1煤层(大煤,太原组一1煤层待采)。鉴于二1煤层变化大,探采对比目的在于找出该煤层地质储量变化的原因和规律,以便指导生产正常进行以及对比评定回采和勘探中掌握地质条件的程度,从而验证勘探精度的可靠性和勘探方法的适用性。   相似文献   

8.
随着煤矿开采深度的不断增加,带压开采已经成为深部矿井普遍应用的一种采煤方法,而带压水上采煤的关键问题之一是确定采动引起的底板破坏深度。针对董家河煤矿5号煤层开采引起的底板采动破坏深度开展相关研究,以该矿的507综采工作面开采为工程背景,采用理论分析和数值模拟相结合的办法,动态再现了整个底板岩层渐进破坏过程,并得出底板岩层的最大破坏深度为10-11 m,该结果与现场实测结果一致;同时给出了该矿底板岩层破坏深度与工作面斜长和埋深关系的经验公式。该结论为董家河煤矿带压开采工作面煤层底板突水预测与防治提供了科学依据。  相似文献   

9.
随着煤矿开采深度的不断增加,带压开采已经成为深部矿井普遍应用的一种采煤方法,而带压水上采煤的关键问题之一是确定采动引起的底板破坏深度。针对董家河煤矿5号煤层开采引起的底板采动破坏深度开展相关研究,以该矿的507综采工作面开采为工程背景,采用理论分析和数值模拟相结合的办法,动态再现了整个底板岩层渐进破坏过程,并得出底板岩层的最大破坏深度为10~11 m,该结果与现场实测结果一致;同时给出了该矿底板岩层破坏深度与工作面斜长和埋深关系的经验公式。该结论为董家河煤矿带压开采工作面煤层底板突水预测与防治提供了科学依据。   相似文献   

10.
“四含”水体下留设防砂煤岩柱开采可行性研究   总被引:1,自引:1,他引:1  
通过对童亭煤矿水文地质条件分析,证实“四含”属弱含水层,以静储量为主,补给水源不足,而矿井为防止“四含”水进入矿坑,留设了厚层防水煤岩柱,使大量的煤炭资源被压,造成资源的浪费。为解放防水煤柱,提高回采上限,达到提高资源的回采率,根据童亭煤矿开采的地质条件与水文地质条件,计算出冒落带高度、保护层厚度、防砂煤岩柱厚度、以及工作面回采时的最大涌水量,从而确定回采上限标高为-235m,将回采上限提高了30m。340工作面留设防砂煤岩柱开采的实验成功,为工作面上提开采提供了可靠的地质依据。  相似文献   

11.
为最大限度回收煤炭资源,安全缩小防水煤柱,针对淮北矿区煤层普遍上覆巨厚第四系松散含水层,煤层顶板不稳定情况,淮北刘东煤矿把提高开采上限工作分为防水、防砂两个阶段推进。首先通过研究分析西三采区第四系底部含水层和黏土隔水层等水文地质资料,确定西31000工作面第四系底部含水层为弱富水性,水体采动等级为Ⅱ级;然后通过数值模拟、物理模拟和对比分析等方法研究开采后的覆岩破坏高度,并与井下实际观测值进行对比,确定西31000工作面采后导水裂缝带的发育高度为41.3 m;据此提出了安全、合理的防水开采上限高度。安全回采后,成功解放呆滞储量22万t,为下一步进行防砂安全开采打下了良好的基础。   相似文献   

12.
新郑矿区位于新郑县城西北部,勘探区面积约120公里2。本矿区主要可采煤层为二1煤、一1煤。太原群中发育的G3L7-8和C3L1-4两层段灰岩,分别为二1煤的底板和一1煤的顶板,是这两层煤的直接与间接充水含水层。因此,搞清这两层灰岩的岩溶发育特征,将会为今后建井、开采选用有效的防治水方案提供依据。   相似文献   

13.
近松散层开采覆岩导水裂隙带沟通上覆含水层导致了顶板水害事故的发生。在其他开采因素相似时,工作面顶板覆岩结构的不同会致使导水裂隙带发育高度出现较大差异。为此,通过收集淮北煤田17例近松散层开采覆岩导水裂隙带发育高度实测数据作为训练样本,利用一行两列向量对近松散层工作面顶板覆岩结构进行量化,并联合煤层采厚、煤层倾角、工作面斜长、开采深度、松散层厚度共计6个影响因素作为输入数据,实测导水裂隙带发育高度作为输出数据,依据径向基函数神经网络建立了考虑覆岩结构影响的近松散层开采导水裂隙带发育高度预测模型。并将该预测模型应用于淮北煤田中的青东煤矿,经钻孔冲洗液漏失量与钻孔彩色电视观测验证,获得预测结果相对误差为3.3%,低于《“三下”开采规范》中经验公式计算误差19.2%。该方法为近松散层开采导水裂隙带发育高度的合理确定提供了理论支持。  相似文献   

14.
针对复杂地质条件下,尤其是软弱性覆岩的两带高度计算不准问题,基于现有计算公式,以安徽五沟煤矿为例,通过深入了解五沟煤矿10号煤层含水层沟通状况,获取实测数据,对不同工作面的两带高度实测值与现有理论公式计算值进行比较,得出其差值较大,且二者与采深均呈线性关系。而后将埋深作为影响因素,通过线性分析,对原理论计算公式的第二项系数进行修正,获得适应于研究区的两带高度计算公式。结果表明,修正后的计算公式可较准确预测五沟煤矿导水裂隙带高度,提高防水煤柱上限,可防治矿井水灾害。研究成果可保证研究区安全开采,提高五沟煤矿的综合效益。  相似文献   

15.
工作面回采过程中,覆岩破坏特征对于煤矿水灾害和瓦斯防治具有重要意义,为了进一步研究综放开采覆岩破坏特征。以山西某矿5.82m大采高工作面为试验面,采用分段注水、钻孔电视、地质雷达、微震监测探测覆岩破坏高度,对破坏过程进行了数值模拟研究,并对裂隙演化进行了相似模拟试验,同时对传统经验公式进行了修正,研究结果表明:综放开采垮落带发育高度为43.1m,断裂带发育高度为86.7m;垮落带、断裂带、导水断裂带各测试方法之间相差分别小于4.5%、7.1%、9.0%;工作面采动前,裂隙发育度低,而采动后,裂隙数量明显增多,发育度增加;近煤壁区域为裂隙聚集区,密度曲线呈“蛇”型分布;得到新的适合该矿地质条件下的覆岩导水断裂带发育高度经验公式。  相似文献   

16.
煤层顶板导水裂缝带发育高度是煤矿设计部门在留设防、隔水煤柱时必须考虑的一个重要参数,对煤矿水体下采煤、顶板防治水具有重要意义。基于双阳煤矿水文地质补充勘探项目,在8#煤层采空区上方施工两个地面钻孔,采用地面钻孔钻井液漏失量实测法、钻孔电视摄像技术及传统经验公式法相结合的方法,综合确定8#煤层顶板导水裂缝带发育高度为43.7~45.7m,为地质条件相似矿区在合理确定开采上限、留设防(隔)水煤柱等问题提供方法和数据支持。  相似文献   

17.
百善煤矿64采区超薄基岩区域地质储量210万t,基岩厚度均小于20m,对安全回采造成了巨大影响。在分析煤矿主采煤层赋存、顶板岩石力学地质特征及水文地质条件的基础上,重点分析了超薄风化基岩及松散层内含(隔)水层的岩石特征及强风化岩石泥化对工作面开采的影响。以理论计算、现场实测数据和开采实践为依据,重点研究分析了风化基岩和含(隔)水层的物理特征及强风化岩石泥化对"两带"发育高度的影响,并设计了合理的安全保护煤柱。实践表明:超薄基岩区域强风化岩石软弱、泥化、风化对工作面回采"两带"发育高度有降低作用,有利于工作面的安全回采。  相似文献   

18.
水帘洞煤矿地表水系发育,煤系地层上覆的白垩系洛河组和宜君组巨厚层状砂砾岩含水层,含水丰富,对矿井的安全开采构成了威胁。在详细分析矿区顶板含水层特征、隔水层岩性组合特征及隔水性能基础上,采用比拟法计算了综放条件下顶板导水裂隙带发育高度,并用数值法研究了不同采宽条件下顶板导水裂缝带发育规律,预计了工作面涌水量,为评价煤矿综放条件下工作面安全回采可行性提供了科学的依据。  相似文献   

19.
最大有效力矩准则的理论拓展   总被引:1,自引:0,他引:1  
在分析"导致变形带内先存面理或层理发生转动的最大有效力矩与先存面理或层理方向有关"的基础上, 对最大有效力矩准则(Meff=0.5(σ13) Lsin2αsinα)进行理论上的拓展, 提出了可以判定任意方向先存面理最大有效力矩的准则——泛最大有效力矩准则(MG-eff=0.5(σ13)Lsin2αsin(α-θ)), 其中当先存面理与最大主压应力(σ1)平行时, 则成为最大有效力矩准则。该准则的理论分析表明:①当先存面理与σ1平行时, 在σ1左右两侧±54.7°方向出现2个有效力矩的最大值, 形成共轭的变形带, 钝角(109.4°)对着σ1方向; ②当先存面理与σ1斜交时, 在σ1的另一侧出现1个有效力矩的最大值, 从而只出现一个方向的变形带, 并随着先存面理偏离σ1方向, 变形带与σ1的夹角逐渐减小(从θ=0°时的54.7°, 减小到θ=90°时的35.3°), 而与先存面理之间的夹角逐渐增大(从θ=0°时的54.7°, 增加到θ=90°时的125.3°); ③当先存面理与σ1垂直时, 在σ1左右两侧± 35.3°方向出现2个有效力矩的最大值, 也形成共轭的变形带, 但锐角(70.6°)对着σ1方向。在主应变平面上变形带与先存面理方向及变形带剪切方向(左旋或右旋)已知的情况下, 可以确定最大主压应力方向。泛最大有效力矩准则克服了最大有效力矩准则与滑移线理论不相容的问题, 可以解释大多膝褶带非共轭发育等多种现象, 预期在韧性变形域中具有广阔的应用前景。   相似文献   

20.
近断层煤层开采时,防隔水煤岩柱的正确留设是防止断层突水事故的重要措施。山东济宁三号煤矿12301(南)工作面西邻的F8断层落差较大,可能会沟通底部奥陶系灰岩(简称奥灰)含水层,为确保工作面安全回采,需要进行F8断层防隔水煤岩柱尺寸计算。考虑煤岩层真实产状、断层面与煤层产状的空间关系和底板承压水威胁,对《煤矿防治水细则》中断层导水条件下的防隔水煤岩柱尺寸计算方式进行改进,推导出水位到安全防隔水煤岩柱宽度(Ha)在断层面垂足处的水头高度计算公式及改进后的断层防隔水煤岩柱尺寸计算公式。对比计算结果发现:《煤矿防治水细则》原有计算公式在将煤岩层理想化为水平岩层,且取偏小的煤层底板水压值计算的情况下,计算出的F8断层煤岩柱尺寸为112 m,改进公式的计算结果为128.5 m。因改进公式考虑了实际煤岩层产状及与断层面空间关系,且水压取值位置准确,计算结果更为精确,将为矿井安全回采提供更为科学的参考依据。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号