首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examine the deviation of the solar diurnal anisotropy vector from the 18 LT direction during the positive state of the solar cycle by assuming two anisotropies in free space. We use two detectors characterized by two linearly independent coupling functions. The median primary rigidity of response of these detectors covers the range 16 GV R m 331 GV. Amplitude, direction, spectrum exponent, and the upper cut-off rigidity of each anisotropy have been calculated using the least-squares method over the time interval 1968–1988. This period covers a complete solar magnetic cycle. Only one anisotropy is dominant during each magnetic state of the solar cycle. The upper cut-off rigidity at which the dominant anisotropy vanishes varies between 50–250 GV. The direction of the dominant anisotropy vector points toward the 18 LT direction during the negative state of the solar cycle and toward earlier hours than 18 LT during the positive state. The non-dominant anisotropy is characterized by very high upper cut-off rigidity and sharper energy spectral.  相似文献   

2.
Sabbah  I. 《Solar physics》1999,186(1-2):413-419
We have bounded the upper cut-off rigidity (Rc) of the cosmic-ray diurnal anisotropy during the period 1968–1995. This period covers almost three solar cycles and includes three epochs of the solar polar field reversals. The diurnal variation observed by two detectors characterized by linearly independent kernels has been inverted in order to estimate the greatest lower bound (GLB) of Rc. We obtain a step function solution for the cosmic-ray anisotropy in free space which vanishes at the GLB of Rc. The greatest lower bound shows a magnetic cycle variation. The highest value of the amplitude of the anisotropy in free space at the GLB have been estimated as well.  相似文献   

3.
The pressure-corrected hourly counting rate data of four neutron monitor stations have been employed to study the variation of cosmic ray diurnal anisotropy for a period of about 50 years (1955–2003). These neutron monitors, at Oulu ( R c = 0.78 GV), Deep River ( R c = 1.07 GV), Climax ( R c = 2.99 GV), and Huancayo ( R c = 12.91 GV) are well distributed on the earth over different latitudes and their data have been analyzed. The amplitude of the diurnal anisotropy varies with a period of one solar cycle (∼11 years), while the phase varies with a period of two solar cycles (∼22 years). In addition to its variation on year-to-year basis, the average diurnal amplitude and phase has also been calculated by grouping the days for each solar cycle, viz. 19, 20, 21, 22, and 23. As a result of these groupings over solar cycles, no significant change in the diurnal vectors (amplitude as well as phase) from one cycle to other has been observed. Data were analyzed by arranging them into groups on the basis of the polarity of the solar polar magnetic field and consequently on the basis of polarity states of the heliosphere ( A > 0 and A < 0). Difference in time of maximum of diurnal anisotropy (shift to earlier hours) is observed during A < 0 (1970s, 1990s) polarity states as compared to anisotropy observed during A > 0 (1960s, 1980s). This shift in phase of diurnal anisotropy appears to be related to change in preferential entry of cosmic ray particles (via the helioequatorial plane or via solar poles) into the heliosphere due to switch of the heliosphere from one physical/magnetic state to another following the solar polar field reversal.  相似文献   

4.
Galactic cosmic rays (GCRs) encounter an outward-moving solar wind with cyclic magnetic-field fluctuation and turbulence. This causes convection and diffusion in the heliosphere. The GCR counts from the ground-based neutron monitor stations show intensity changes that are anti-correlated with the sunspot numbers with a lag of a few months. GCRs experience various types of modulation from different solar activity features and influence space weather and the terrestrial climate. In this work, we investigate certain aspects of the GCR modulation at low cut-off rigidity (R c≈1 GV) in relation to some solar and geomagnetic indices for the entire solar cycle 23 (1996?–?2008). We separately study the GCR modulation during the ascending phase of cycle 23 including its maximum (1996?–?2002) and the descending phase including its minimum (2003?–?2008). We find that during the descending phase, the GCR recoveries are much faster than those of the solar parameters with negative time-lag. The results are discussed in light of modulation models, including drift effects and previous results.  相似文献   

5.
Using data from ground-based observations of cosmic rays (CRs) on the worldwide network of stations and spacecraft, we have investigated the proton spectra and the CR anisotropy during the ground level enhancements of CRs on May 17, 2012 (GLE71) and January 6, 2014 (GLE72) occurred in solar cycle 24 by the spectrographic global survey method. We provide the CR rigidity spectra and the relative changes in the intensity of CRs with a rigidity of 2 GV in the solar–ecliptic geocentric coordinate system in specific periods of these events. We show that the proton acceleration during GLE71 and GLE72 occurred up to rigidities R ~ 2.3?2.5 GV, while the differential rigidity spectra of solar CRs are described neither by a power nor by an exponential function of particle rigidity. At the times of the events considered the Earth was in a loop-like structure of the interplanetary magnetic field.  相似文献   

6.
The pressure corrected hourly data from the global network of cosmic ray detectors, measurements of the interplanetary magnetic field (IMF) intensity (B) at Earth’s orbit and its components B x , B y , B z (in the geocentric solar ecliptic coordinates) are used to conduct a comprehensive study of the galactic cosmic ray (GCR) intensity fluctuations caused by the halo coronal mass ejection of 13 May 2005. Distinct differences exist in GCR timelines recorded by neutron monitors (NMs) and multidirectional muon telescopes (MTs), the latter respond to the high rigidity portion of the GCR differential rigidity spectrum. The Forbush decrease (FD) onset in MTs is delayed (~5 h) with respect to the onset of a geomagnetic storm sudden commencement (SSC) and a large pre-increase is present in MT data before, during, and after the SSC onset, of unknown origin. The rigidity spectrum, for a range of GCR rigidities (≤200 GV), is a power law in rigidity (R) with a negative exponent (γ=?1.05) at GCR minimum intensity, leading us to infer that the quasi-linear theory of modulation is inconsistent with observations at high rigidities (>1 GV); the results support the force field theory of modulation. At present, we do not have a comprehensive model for the FD explaining quantitatively all the observational features but we present a preliminary model listing physical processes that may contribute to a FD timeline. We explored the connections between different phases of the FD and the power spectra of IMF components but did not find a sustained relationship.  相似文献   

7.
Total electron content (Nt) variations in the ionosphere above the magnetic equator (Thumba dip 0.6°S) obtained by the Faraday rotation measurements of beacon signals from S66 satellites are described for the period December 1965–August 1968. The Nt value reaches a minimum around 05 hr and a broad maximum between 14–18 hr, the diurnal ratio being more than 20. During no-echo condition at pre-sunrise hours, Nt is found to be abnormally low. The equivalent slab-thickness at Thumba is between 150 and 250 km except around 14 hr when it reaches a high value around 500 km. The electrons are almost equally distributed above and below the peak for the daytime hours, but in the latter part of the night the ratio of top-side to the bottom-side electron content exceeds the value of 5. This high ratio is suggested as being due to very low value of maximum electron density which during the pre-sunrise period becomes comparable to the electron density at great heights where there is no diurnal change of electron density. Combining the data of Thumba and Ahmedabad, the diurnal development of the equatorial anomaly in Nt is described.  相似文献   

8.
We consider the process of flux tubes straightening in the Venus magnetotail on the basis of MHD model. We estimate the distance x t, where flux tubes are fully straightened due to the magnetic tension and the magnetotail with the characteristic geometry of field lines (“slingshot” geometry) ends. We investigate the influence of the transversal current sheet scale on the process of flux tubes straightening. The assumption of a thin current sheet allows to obtain a lower estimate of the magnetotail length, x t > 31R V (R V is the Venus radius), while the assumption of a broad current sheet allows to obtain an upper estimate, x t < 44R V. We show that kinetic effects associated with the losses of particles with small pitch angles from the flux tube and the influx of magnetosheath plasma into the flux tube do not significantly affect the estimate of the magnetotail length. The model predicts the existence of energetic fluxes of protons H+ (2–5 keV) and oxygen ions O+ (35–80 keV) in the distant tail. We discuss the magnetotail structure at x > x t.  相似文献   

9.
Variations of the cosmic ray cut-off rigidities have been observed at mid latitudes during the magnetic storm period 16–18 December 1971. In the present paper the cut-off changes over Europe are determined on an hourly basis from the registrations of 10 European neutron monitor stations. As a first order approximation it is assumed that the observed cut-off variations originate from a spherical current sheet concentric with the Earth and with a current density proportional to the cosine of the geomagnetic latitude. Applying results obtained by Treiman (1953), the radii of the current sphere can then be deduced from the dependences of the relative cut-off rigidity variations on geomagnetic latitude. The sphere is found to be located between 4 and 6 Earth radii during the main phase of the magnetic storm on 17 December 1971. A comparison of these results with in situ measurements carried out in the equatorial plane by Explorer 45 shows good agreement.  相似文献   

10.
Recently, the estimation of coronal magnetic field using new methods, such as standoff distance method or density compression ratio method has been reported. In the present work, we utilized the density compression ratio of CME-driven shocks for 10 events at 29 different locations in the upper solar corona (10–26R ) and determined the coronal magnetic field for two different adiabatic indices (γ=4/3 and 5/3). In addition, radial dependence of shock parameters in the corona is studied. It is found that the magnetic field estimated in the above range agree with the general trend. In addition, we obtained a radial profile of magnetic field [B(R)=623R ?1.4] in the entire upper corona (3–30R ) by combining the magnetic field estimated by Kim et al. (Astrophys. J. 746:118, 2012) in the range 3–15R and that estimated in the present study in the range (10–26R ). The power-law indices are nearly in agreement with recent results of CME-driven shocks reported in the literature. The results are discussed with the comparison of newly reported coronal magnetic field values obtained by different techniques and found that the power-law relation closely follow the literature values.  相似文献   

11.
J. Javaraiah 《Solar physics》2013,287(1-2):197-214
Using the Solar Optical Observing Network (SOON) sunspot-group data for the period 1985?–?2010, the variations in the annual mean equatorial-rotation rates of the sunspot groups are determined and compared with the known variations in the solar equatorial-rotation rates determined from the following data: i) the plasma rotation rates at 0.94R,0.95R,…,1.0R measured by the Global Oscillation Network Group (GONG) during the period 1995?–?2010, ii) the data on the soft-X-ray corona determined from Yohkoh/SXT full-disk images for the years 1992?–?2001, iii) the data on small bright coronal structures (SBCS) that were traced in Solar and Heliospheric Observatory (SOHO)/EIT images during the period 1998?–?2006, and iv) the Mount Wilson Doppler-velocity measurements during the period 1986?–?2007. A large portion (up to ≈?30° latitude) of the mean differential-rotation profile of the sunspot groups lies between those of the internal differential-rotation rates at 0.94R and 0.98R. The variation in the yearly mean equatorial-rotation rate of the sunspot groups seems to be lagging behind that of the equatorial-rotation rate determined from the GONG measurements by one to two years. The amplitude of the GONG measurements is very small. The solar-cycle variation in the equatorial-rotation rate of the solar corona closely matches that determined from the sunspot-group data. The variation in the equatorial-rotation rate determined from the Mount Wilson Doppler-velocity data closely resembles the corresponding variation in the equatorial-rotation rate determined from the sunspot-group data that included the values of the abnormal angular motions (>?|3°|?day?1) of the sunspot groups. Implications of these results are pointed out.  相似文献   

12.
Intensity variation of cosmic rays near the heliospheric current sheet   总被引:1,自引:0,他引:1  
Cosmic ray intensity variations near the heliospheric current sheet—both above and below it—have been studied during 1964–1976. Superposed epoch analysis of the cosmic ray neutron monitor data with respect to sector boundaries (i.e., heliospheric current sheet crossings) has been performed. In this analysis we have used the data from neutron monitors well distributed in latitude over the Earth's surface. First, this study has been made during the two solar activity minimum periods 1964–1965 and 1975–1976, using the data from Thule (cut-off rigidity 0 GV), Deep River (cut-off rigidity 1.02 GV), Rome (cut-off rigidity 6.32 GV) and Huancayo (cut-off rigidity 13.45 GV) neutron monitors. We have also analyzed the data from Deep River, Rome and Huancayo neutron monitors, for whom we have the data for full period (1964–1976), by dividing the periods according to the changes in solar activity, interplanetary magnetic field polarity and coronal holes. All these studies have shown a negative gradient with respect to heliomagnetic latitude (current sheet). These results have been discussed in the light of theoretical and observational evidences. Suggestions have been given to overcome the discrepancy between the observational and theoretical results. Further, possible explanations for these observational results have been suggested.  相似文献   

13.
We suggest geoeffective independent parameters that can be calculated on the basis of conventional measurements of the solar wind, which allows them to be used to forecast space weather. We present the results of our analysis of the ground variations in planetary geomagnetic activity (K p ) and geoeffective parameters calculated on the basis of solar wind and interplanetary magnetic field measurements in the Earth’s orbit for the period 1964–1996 by taking into account the change in the orientation of the geomagnetic moment during the Earth’s diurnal and annual motions.  相似文献   

14.
S. O. Ifedili 《Solar physics》1996,168(1):195-203
The Forbush decrease in the cosmic radiation has been measured by a charged-particle monitor (E p )> 50 MeV) on board the OGO-6 satellite. For the events of June 7–10, September 27–30, and November 21–December 6, 1969, the Forbush decrease totalled 4.6, 6, and 6% in amplitude, respectively, for the Mt. Washington neutron monitor (P c = 1.24 GV), and 5.2, 13, and 16%, respectively, for the OGO-6 charged-particle monitor in the polar region (P c < 0.3 GB). The depression in the OGO-6 charged-particle monitor was larger at higher geomagnetic latitudes than at lower latitudes. However, for the events of June 7–10 and November 21–December 6, 1969, the Forbush decrease totalled 20 and 15% in amplitude respectively for the Pioneer 8 cosmic-ray telescope (P c > 0.4 GV), which was at the respective distances of 1.08 AU and 1 AU from the Sun. These results indicate that the Forbush decrease has greater effects on lower-energy charged particles, the magnitude of the effect also depending on the location of the detector with respect to the modulating region.The spacecraft data near Earth also showed that, for vertical cut-off rigidities P c 1.8 GV, the total percentage decrease in the amplitudes of the Forbush decreases can be represented by –mP c + k, where m and k are each constant for the particular Forbush decrease but which increase with increasing Mt. Washington neutron monitor monthly average rates, an indication of a flattening of the rigidity dependence of Forbush decreases towards maximum solar modulation.  相似文献   

15.
The first recorded and analysed cosmic ray event since the Athens 3 NM-64 came into operation, that of 7 November 1970, is presented. The relative amplitude of the Forbush Decrease reached a value of (4.5 ± 0.3)% peak to peak which is comparatively large at a cut-off rigidity of 8.7 GV (Shea et al., 1968).According to the differential method (Amaldi et al., 1963 ; Bachelet et al, 1972) it has been computed that the slope of the primary differential rigidity spectrum varied at the Athens cut-off rigidity during the above mentioned F.D. by (6.3 ± 0.8)%.This information repairs the omission which was in the threshold rigidity region (8 ± 2) GV, which is quite important because the latitude curves change the algebraic sign of their curvatures (Geranios, 1971).  相似文献   

16.
The type II solar radio burst recorded on 13 June 2010 by the Hiraiso Solar Observatory Radio Spectrograph was employed to estimate the magnetic-field strength in the solar corona. The burst was characterized by a well-pronounced band splitting, which we used to estimate the density jump at the shock and Alfvén Mach number using the Rankine–Hugoniot relation. We convert the plasma frequency of the type II burst into height [R] in solar radii using an appropriate density model, and then we estimated the shock speed [V s], coronal Alfvén velocity [V A], and the magnetic-field strength at different heights. The relative bandwidth of the band splitting was found to be in the range 0.2?–?0.25, corresponding to a density jump of X=1.44?–?1.56, and an Alfvén Mach number of M A=1.35?–?1.45. The inferred mean shock speed was on the order of V≈667 km?s?1. From the dependencies V(R) and M A(R) we found that the Alfvén speed slightly decreases at R≈1.3?–?1.5 R. The magnetic-field strength decreases from a value between 2.7 and 1.7 G at R≈1.3?–?1.5 R, depending on the coronal-density model employed. Our results are in good agreement with the empirical scaling by Dulk and McLean (Solar Phys. 57, 279, 1978) and Gopalswamy et al. (Astrophys. J. 744, 72, 2012). Our results show that the type II band-splitting method is an important tool for inferring the coronal magnetic field, especially when independent measurements are made from white-light observations.  相似文献   

17.
《New Astronomy》2007,12(7):597-604
We investigate the effect on the U, B, V, RC and RJ magnitudes of the removal of emission lines from a spectrum. We determined Δm corrections from the ratio of fluxes with and without emission lines, transmitted from the object through a photometric filter. An exact and simplified approach for operative use was applied. The effect was demonstrated for classical symbiotic stars, symbiotic novae and the classical nova V1974 Cyg. It was found that about 20–30%, 30–40%, 10% and 26/20% of the observed flux in the U, B, V and RC/RJ filters, respectively, are radiated in the emission lines of the investigated classical symbiotic stars. The largest effect was found for symbiotic novae (RR Tel and V1016 Cyg) and the classical nova V1974 Cyg at 210 days (an average of 74%, 79%, 56% and 66/60%), because of their very strong emission line spectrum. In all cases, the line corrected flux points fit the theoretical continuum well. The difference between Δm corrections obtained by the accurate calculation and that given by our approximate formula is less than 10%. Deviations up to 30% can exist only in the U passband. Examples for practical applications are suggested.  相似文献   

18.
In this study we present a semi-analytical Maxwell-viscoelastic model of the variable tidal stress field acting on Europa’s surface. In our analysis, we take into account surface stresses induced by the small eccentricity of Europa’s orbit, the non-zero obliquity of Europa’s spin axis - both acting on a diurnal 3.55-days timescale - and the reorientation of the ice shell as a result of non-synchronous rotation (NSR). We assume that Europa’s putative ocean is covered by an ice shell, which we subdivide in a low-viscous and warm lower ice layer (asthenosphere, viscosity 1012-1017 Pa s), and a high-viscous and cold upper ice layer (lithosphere, viscosity 1021 Pa s).Viscoelastic relaxation influences surface stresses in two ways: (1) through viscoelastic relaxation in the lithosphere and (2) through the viscoelastic tidal response of Europa’s interior. The amount of relaxation in the lithosphere is proportional to the ratio between the period of the forcing mechanism and the Maxwell time of the high-viscous lithosphere. As a result, this effect is only relevant to surface stresses caused by the slow NSR mechanism. On the other hand, the importance of the viscoelastic response on surface stresses is proportional to the ratio between the relaxation time (τj) of a given viscoelastic mode j and the period of the forcing function. On a diurnal timescale the fast relaxation of transient modes related to the low viscosity of the asthenosphere can alter the magnitude and phase shift of the diurnal stress field at Europa’s surface. The effects are largest, up to 20% in magnitude and 7° in phase for ice rigidities lower than 3.487 GPa, when the relaxation time of the aforementioned transient modes approaches the inverse of the average angular rate of Europa’s orbit. On timescales relevant for NSR (>104 years) the magnitude and phase shift of NSR surface stresses can be affected by viscoelastic relaxation of the ocean-ice boundary. This effect, however, becomes only important when the behavior of the lithosphere w.r.t. NSR approaches the fluid limit, i.e. for strong relaxation in the lithosphere. The combination of NSR and diurnal stresses for different amounts of viscoelastic relaxation of NSR stresses in the lithosphere leads to a large variety of global stress fields that can explain the formation of the large diversity of lineament morphologies observed on Europa’s surface. Variation of the amount of relaxation in the lithosphere is likely due to changes in the spin rate of Europa and/or the rheological properties of the surface.In addition, we show that a small obliquity(<1°) can have a considerable effect on Europa’s diurnal stress field. A non-zero obliquity breaks the symmetric distribution of stress patterns with respect to the equator, thereby affecting the magnitude and orientation of the principal stresses at the surface. As expected, increasing the value of Europa’s obliquity leads to larger diurnal stresses at the surface, especially when Europa is located 90° away from the nodes formed by the intersection of its orbital and equatorial planes.  相似文献   

19.
We study the formation of solar-wind streams in the years of maximum solar activity 2000–2002. We use observations of the scattering of radio emission by solar-wind streams at distances of ~4–60RS from the Sun, data on the magnetic field structure and strength in the source region (R ~ 2.5RS), and observations with the LASCO coronagraph onboard the SOHO spacecraft. Analysis of these data allowed us to investigate the changes in the structure of circumsolar plasma streams during the solar maximum. We constructed radio maps of the solar-wind transition, transonic region in which the heliolatitudinal stream structure is compared with the structure of the white-light corona. We show that the heliolatitudinal structure of the white-light corona largely determines the structure of the solar-wind transition region. We analyze the correlation between the location of the inner boundary of the transition region Rin and the magnetic field strength on the source surface |BR|. We discuss the peculiarities of the Rin = F(|BR|) correlation diagrams that distinguish them from similar diagrams at previous phases of the solar cycle.  相似文献   

20.
A statistical study of the cusp plasma has been performed using mainly electron data from the LPS, Rome, plasma experiment flown onboard HEOS-2. We have located the cusp by means of 35–50 eV electrons, from 1.5 to 2.5RE (south pole) and from 3RE up to 11RE (north pole) at 60–70° SM latitude within ±60° of SM longitude from the noon meridan plane. The average cusp thickness is 4.2° of invariant latitude. The location of the cusp in invariant latitude around the noon meridian plane depends on the IMF component BzGSM according to the linear best fit: Λ = 78.7° + 0.48BzGSM(γ). Away from the noon meridian plane the invariant latitude of the cusp decreases from 79–84° to 70–74° (at ±50° SM Longitude). At the equatorward edge of the north pole cusp, at all radial distances and at all SM longitudes, we have found a population of electrons with a harder energy spectrum than in the cusp itself. These electrons show a peak at 170–280 eV in our data. They are not the cusp (35–50 eV) electrons and are easily distinguishable from the 1 keV magnetospheric electrons. In the south pole auroral oval they are found at any SM longitude mainly poleward of the 1 keV electrons. The cusp electrons (35–50 eV) and protons have anisotropies that vary with radial distance and SM latitude, both flowing earthward more or less along the magnetic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号