首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zmuda and Armstrong (1974) showed that the field-aligned currents consist of two pairs; one is located in the morning sector and the other in the evening sector. Our analysis of magnetic records from the TRIAD satellite suggests that in each pair the poleward field-aligned current is more intense than the equatorward current, a typical ratio being 2:1. This difference has a fundamental importance in understanding the coupling between the magnetosphere and the ionosphere. We demonstrate this importance by computing the ionospheric current distribution by solving the continuity equation ▽ . I = j using the “observed” distribution of j for several models of the ionosphere with a high conductive annular ring (simulating the auroral oval).It is shown that the actual field-aligned and ionospheric current system is neither a simple Birkeland type, Boström type nor Zmuda-Armstrong type, but is a complicated combination of them. The relative importance among them varies considerably, depending on the conductivity distribution, the location of the peak of the field-aligned currents, etc. Further, it is found that the north-south segment of ionospheric current which connects the pair of the field-aligned currents in the morning sector does not close in the same meridian and has a large westward deflection. Thus, it has an appreciable contribution to the westward electrojet. One of the model calculations shows that the entire north-south closure current contributes to the westward electrojet.  相似文献   

2.
3.
A model is proposed in which a mixture of hot solar wind and cold atmospheric plasma flowing in the dayside equatorial boundary layer towards the dawn-dusk plane generates hydromagnetic waves near the frequency ω = ωBi¦1 ? T¦T¦ where ωBi is the ion gyrofrequency and T, T are the temperatures of the solar wind plasma, parallel and perpendicular respectively to the magnetic field B. The model accounts for the properties of IPRP events, i.e. intervals of geomagnetic pulsations of periods rising on average from about 2 s to about 7 s over an interval of about 5 min. The diagnostic potential of this phenomenon for study of the boundary layer is indicated.  相似文献   

4.
Magnetic-field aligned currents driven by plasma pressure inhomogeneities (plasma clouds) in the distant magnetosphere are analyzed quantitatively. A parallel potential drop is found to be established in the upward current region whenever a spatial scale D0 for the pressure gradient in the equatorial magnetosphere is smaller than ≈ 3g0BiB0, where g0 is a hot electron gyroradius in the equatorial magnetic field B0 (Bi denotes the magnetic induction in the ionosphere). A theoretical derivation is given for the experimentally observed linear relation T = AEp + T0 between the characteristic energy T of precipitating magnetospheric electrons and the peak energy Ep in inverted-V electron spectra. Three-dimensional potential structures accelerating electrons earthward are shown to be established beneath some model clouds which could correspond to a large scale inverted-V structure and to a thin (~ 1 km) auroral arc.  相似文献   

5.
Impulsive penetration of a solar wind filament into the magnetosphere is possible when the plasma element has an excess momentum density with respect to the background medium. This first condition is satisfied when the density is larger inside than outside the plasma inhomogeneity. In this paper we discuss the second condition which must be satisfied for such a plasma element to be captured by the magnetosphere: the magnetization vector (M) carried by this plasma must have a positive component along the direction of B0, the magnetic field where the element penetrates through the magnetopause. On the contrary, when M · B0 < 0, the filament is stopped at the surface of the magnetopause. Thus the outcome of the interaction of the filament with the magnetosphere depends upon the orientation of the Interplanetary Magnetic Field. For instance, penetration and capture in the frontside magnetosphere implies that Bsw, the Interplanetary Magnetic Field, has a southward, or a small northward, component. Penetration and capture in the northern lobe of the magnetotail is favoured for an IMF pointing away from the Sun; in the southern lobe Bsw must be directed towards the Sun for capture. Finally, for capture in the vicinity of the polar cusps the magnetospheric field (B0) assumes a wider range of orientations. Therefore, near the neutral points, it is easier to find a place where the condition M · B0 > 0 is satisfied than elsewhere. As a consequence, the penetration and capture of solar wind irregularities in the cleft regions is possible for almost any orientation of the interplanetary magnetic field direction. All observations made to date support these theoretical conclusions.  相似文献   

6.
The change of energy of a collisionless, two-fluid plasma consists of the adiabatic gain or loss of energy, which is due to the work done by the electromagnetic forces, and of the non-adiabatic change associated with the presence of the “rest” field E1 = E + (1c)V×B. The non-adiabatic gain or loss of energy per unit ti may be expressed by the relation
Q=E·i+ceNB2f?×f
where i is the density of conductive current, N the ion number-density, and f (f?) the sum of inertia and pressure divergence of ions (electrons). Symbols of parallelism refer to the direction of B.A special case of non-adiabatic energization of a slowly convecting plasma sheet plasma is discussed in some detail. Regardless of the value of V, the non-adiabatic energization may significantly exceed any conceivable energization associated with the electric field ?(1c) V × B.  相似文献   

7.
8.
In the recent estimation by Maltsev and Lyatsky (1984) of the group velocity of surface waves on the inner boundary of the plasma sheet, the effect of the curvature of the field lines of the ambient magnetic field of the Earth on the spectrum has been assessed. The authors have not accounted for the fact, however, that the group velocity of the compressional surface magnetohydrodynamic waves itself is nonzero transverse to the magnetic field—a characteristic which has been omitted in the spectrum of Chen and Hasegawa (1974), being used by Maltsev and Lyatsky.This characteristic of compressional surface MHD waves is inherent for the spectrum ω = (k6k)VA(k26 + 2k2)12, obtained by Nenovski (1978) in the cold plasma limit VA ? VS(VA is Alfvén velocity, and VS, sound velocity). A comment has been made on the restrictions, proceeding from the approximation, used by Maltsev and Lyatsky. The estimation of the velocities for movements of auroral riometer absorption bays have been reviewed.  相似文献   

9.
It is shown that the interplanetary quantity ε(t), obtained by Perreault and Akasofu (1978), for intense geomagnetic storms, also correlates well with individual magnetospheric substonns. This quantity is given by ε(t) = VB2sin4 (θ2)lo2, where V and B denote the solar wind speed and the magnitude of the interplanetary magnetic field (IMF), respectively, and θ denotes the polar angle of the IMF; lo is a constant ? 7 Earth radii. The AE index is used in this correlation study. The correlation is good enough to predict both the occurrence and intensity of magnetospheric substonns observed in the auroral zone, by monitoring the quantity ε(t) upstream of the solar wind.  相似文献   

10.
The timing of the plasma-sheet thinning relative to the onset of the expansion phase of substorms is examined by the analysis of the OGO 5 electron (79 ± 23 keV) and proton (100~150 keV) data with the aid of simultaneous magnetic field observations. It is found that the timing of the thinning is significantly dependent on the distance. At x2 + y2 ? 15 RE the thinning often starts before the onset, while at x2 + y2 ? 15 RE it tends to occur after the onset, where x and y refer to solar magnetospheric coordinates. The thinning that precedes the expansion-phase onset has been found to reduce the thickness to ~1 RE, and further thinning may occur in a spatially limited region. Hence it is conceivable that the formation of the neutral line characterizing the substorm expansion phase is the consequence of the thinning of the plasma sheet in the near-Earth region.  相似文献   

11.
VLF-emissions with subharmonic cyclotron frequency from magnetospheric electrons have been detected by the S3-A satellite (Explorer 45) whose orbit is close to the magnetic equatorial plane where the wave-particle interaction is most efficient. These emissions are observed during the main phase of a geomagnetic storm in the nightside of the magnetosphere outside of the plasmasphere around L = 3–5. The emissions consist essentially of two frequency regimes, one below the equatorial electron gyro-frequency, ?H0, and the other above ?H0. The emissions below ?H0 are whistler mode and there is a sharp band of “missing emissions” along ?= ?H02. The emissions above ?H0 are electrostatic mode and the frequency ranges up to 3?H02. It is concluded that these emissions are generated by the enhanced relativity low energy (1–5 keV) ring current electrons, penetrating into the nightside magnetosphere during the main phase of a magneto storm. Although the high energy (50–350 keV) electrons showed remarkable changes of pitch angle distribution, their associations with VLF-emissions are not so significant as those of low energy electrons.  相似文献   

12.
The paper gives the results of detailed studies of the frequency spectra Ss(?) of the chain of the wave packets Fs(t) of geomagnetic pulsations PC-1 recorded at the Novolazarevskaya station. The bulk of the energy of Fs(t) is concentrated in the vicinity of the central frequencies ?s0 of spectra—the carrier frequencies of the signals. The velocity V0 ≌ 6.103km s?1 of the flux of protons generating these signals correspond to them. The spectra of the signals have oscillations—“satellites” irregularly distributed in frequency. These satellites, as the authors believe, testify to the presence of the individual groups of protons of low concentration whose velocities vary within 103–104 km s?1.Their energy is only of the order of 10?2–10?3 of the energy of the main proton flux. Clearly pronounced maxima on double and triple frequencies ? = 2?s0and 3?s0 are detected. They show that the generation of pulsations PC-1 is accompanied by the generation on the overtones of wave packets called in this paper “two-fold” and “three-fold” pulsations PC-1. Intensive symmetrical satellites of a modulation character have been discovered on frequencies ?±sK. Frequency differences Δ?sK± = ¦?s0 ? ?sK±¦ = (0.011,0.022 and 0.035) Hz correspond to them. The authors believe that the values of Δ?±sK are resonance frequencies of the magnetospheric cavity in which geomagnetic pulsations PC-1 are generated. It is established that the values of Δ?±sK coincide closely with the carrier frequencies of geomagnetic pulsations PC-3 and PC-4 generated in the magnetosphere. This leads to the conclusion that the resonance oscillations of the magnetospheric cavity are their source. Thus, the generation of geomagnetic pulsations of different types and resonance oscillations in the magnetosphere are integrated into a unified process. The importance of the results obtained and the necessity to check further their trustworthiness and universality, using experimental data gathered in different conditions, is stressed.  相似文献   

13.
Whistlers recorded at Eights (L ? 4) and Byrd (f ? 7), Antarctica have been used to study large-scale structure in equatorial plasma density at geocentric distances ?3–6 RE. The observations were made during conditions of magnetic quieting following moderate disturbance. The structures were detected by a “scanning” process involving relative motion, at about one tenth of the Earth's angular velocity or greater, between the observed density features and the observing whistler station or stations. Three case studies are described, from 26 March 1965, 11 May 1965 and 29 August 1966. The cases support satellite results by showing outlying high density regions at ?4–6 RE that are separated from the main plasmasphere by trough-like depressions ranging in width from ?0.2 to 1 RE. The structures evidently endured for periods of 12 hr or more. In the cases of deepest quieting their slow east-west motions with respect to the Earth are probably of dynamo origin. The cases observed during deep quieting (11 May 1965 and 29 August 1966) suggest the approximate rotation with the Earth of structure formed during previous moderate disturbance activity in the dusk sector. The third case, from 26 March 1965, may represent a structure formed near local midnight. The reported structures appear to be closely related to the bulge phenomenon. The present work supports other experimental and theoretical evidence that the dusk sector is one of major importance in the generation of outlying density structure. It is inferred that irregularities of the type reported here regularly develop near 4–5 RE during moderate substorm activity. This research suggests that at least a major class of the density structures that develop near 4 RE are tail-like in nature, joined to the main body of the plasmasphere. The apparent disagreement with Chappell's results from OGO 5, which are interpreted as showing regions of “detached” plasma beyond 5 RE, may be related to the pronounced spatial structure of electric fields observed in high-latitude ionospheric regions that are conjugate to the magnetospheric regions in which the OGO-5 observations were made.  相似文献   

14.
Editorial     
The Galilean satellites Io, Europa, and Ganymede interact through several stable orbital resonances where λ1 ? 2λ2 + ω1 = 0, λ1 ? 2λ2 + ω2 = 180°, λ2 ? 2λ3 + ω2 = 0 and λ1 ? 3λ2 + 2λ3 = 180°, with λi being the mean longitude of the ith satellite and ωi the longitude of the pericenter. The last relation involving all three bodies is known as the Laplace relation. A theory of origin and subsequent evolution of these resonances outlined earlier (C. F. Yoder, 1979b, Nature279, 747–770) is described in detail. From an initially quasi-random distribution of the orbits the resonances are assembled through differential tidal expansion of the orbits. Io is driven out most rapidly and the first two resonance variables above are captured into libration about 0 and 180° respectively with unit probability. The orbits of Io and Europa expand together maintaining the 2:1 orbital commensurability and Europa's mean angular velocity approaches a value which is twice that of Ganymede. The third resonance variable and simultaneously the Laplace angle are captured into libration with probability ~0.9. The tidal dissipation in Io is vital for the rapid damping of the libration amplitudes and for the establishment of a quasi-stationary orbital configuration. Here the eccentricity of Io's orbit is determined by a balance between the effects of tidal dissipation in Io and that in Jupiter, and its measured value leads to the relation k1?1/Q1 ≈ 900kJ/QJ with the k's being Love numbers, the Q's dissipation factors, and f a factor to account for a molten core in Io. This relation and an upper bound on Q1 deduced from Io's observed thermal activity establishes the bounds 6 × 104 < QJ < 2 × 106, where the lower bound follows from the limited expansion of the satellite orbits. The damping time for the Laplace libration and therefore a minimum lifetime of the resonance is 1600 QJ years. Passage of the system through nearby three-body resonances excites free eccentricities. The remnant free eccentricity of Europa leads to the relation Q2/?2 ? 2 × 10?4 QJ for rigidity μ2 = 5 × 1011 dynes/cm2. Probable capture into any of several stable 3:1 two-body resonances implies that the ratio of the orbital mean motions of any adjacent pair of satellites was never this large.A generalized Hamiltonian theory of the resonances in which third-order terms in eccentricity are retained is developed to evaluate the hypothesis that the resonances were of primordial origin. The Laplace relation is unstable for values of Io's eccentricity e1 > 0.012 showing that the theory which retains only the linear terms in e1 is not valid for values of e1 larger than about twice the current value. Processes by which the resonances can be established at the time of satellite formation are undefined, but even if primordial formation is conjectured, the bounds established above for QJ cannot be relaxed. Electromagnetic torques on Io are also not sufficient to relax the bounds on QJ. Some ideas on processes for the dissipation of ideal energy in Jupiter yield values of QJ within the dynamical bounds, but no theory has produced a QJ small enough to be compatible with the measurements of heat flow from Io given the above relation between Q1 and QJ. Tentative observational bounds on the secular acceleration of Io's mean motion are also shown not to be consistent with such low values of QJ. Io's heat flow may therefore be episodic. QJ may actually be determined from improved analysis of 300 years of eclipse data.  相似文献   

15.
The observations of electron inverted ‘V’ structures by the MGS and MEX spacecraft, their resemblance to similar events in the auroral regions of the Earth, and the discovery of strong localized magnetic field sources of the crustal origin on Mars, raised hypotheses on the existence of Martian aurora produced by electron acceleration in parallel electric fields. Following the theory of this type of structures on Earth we perform a scaling analysis to the Martian conditions. Similar to the Earth, upward field-aligned currents necessary for the generation of parallel potential drops and peaked electron distributions can arise, for example, on the boundary between ‘closed’ and ‘open’ crustal field lines due to shears of the flow velocity of the magnetosheath or magnetospheric plasmas. A steady-state configuration assumes a closure of these currents in the Martian ionosphere. Due to much smaller magnetic fields as compared to the Earth case, the ionospheric Pedersen conductivity is much higher on Mars and auroral field tubes with parallel potential drops and relatively small cross scales to be adjusted to the scales of the localized crustal patches may appear only if the magnetosphere and ionosphere are decoupled by a zone with a strong E. Another scenario suggests a periodic short-circuit of the magnetospheric electric fields by a coupling with the conducting ionosphere.  相似文献   

16.
The magnetopause, the boundary layer, or current sheath, which separates the magnetosphere from the solar wind, is the particular interaction considered in this paper.The collision free electron skin depth, ξe = cωpe, where c is the velocity of light and ωpe, is the plasma frequency, gives a classical measure of the penetration depth of a collisionless plasma by an electromagnetic field. This penetration depth is small compared with the dimensions of the magnetosphere and hence the boundary layer may be conveniently considered in one dimension.In General all one dimensional solutions lie within an order of magnitude of the value of ξe, the only exception being the important one, in which the electric field perpendicular to the current sheath plane is not present, either due to a particular trapped particle distribution or due to a short circuiting end effect. For this exception the thickness is increased by the factor (mii/me)12.The current sheath solutions discussed are equilibrium solutions but not necessarily stable equilibrium solutions.The extension of the models to three dimensions has a larger effect than might at first be expected. The effect may be intuitively understood as a consequence of flux conservation in the sheath. The one dimensional solutions then correspond to the current sheath profiles at the thinnest point of the three dimensional sheath.  相似文献   

17.
A qualitative model of the negative phase of ionospheric storms is presented. Only stations located within an atmospheric disturbance zone of a low ON2 ratio will observe a depletion of ionization. The extent of this disturbance zone is determined by geomagnetic coordinates. Thus stations located in the North American and Australian sectors are more liable to observe negative storm effects. On the other hand it is determined by the asymmetric energy injection along the auroral oval. It follows that stations located in the early morning sector during enhanced substorm activity have a greater chance of observing negative storm effects than those situated in the daytime sector. Seasonal and magnetic storm induced changes in the ON2 ratio are in phase during summer and out of phase during winter, explaining the seasonal variation of storm effects.  相似文献   

18.
The odd zonal harmonics in the geopotential are the terms independent of longitude and antisymmetric about the Equator: they define the ‘pear-shape’ effect. The coeffecients J3, J5, J7,…of these harmonics have been evaluated by analysing the variations in eccentricity of 27 orbits covering wide range of inclinations. We use again most of the orbits from our previous (1969) evaluations, but we now have the advantage of 3 accurate orbits at inclinations between 60° and 66°, where the variations in eccentricity become very large, and 3 near-equatorial orbits, at inclinations between 3° and 15°, whereas previously there were none at inclinations lower than 28°. The new data lead to much more accurate and reliable values for the coeffecients. Our recommended set, which terminates at J17, is
109J3 = ?2531 ± 7109J11 = 159 ± 16J5 = ?246 ± 9J13 = ?131 ± 22J7 = ?326 ± 11J15 = ?26 ±24J9 = ?94 ± 12J17 = ?258 ± 19
. With this new set of values the pear-shape tendency of the Earth amounts to 44.7 m at the poles, instead of the previous 40 m, though the new geoid is within 1 m of the old at latitudes away from the poles.  相似文献   

19.
We analyze linear resonance oscillations in a non-uniform one-fluid finite-β plasma, which is oversimplified to understand easily fundamental characteristics of the resonance oscillations. A linear resonance oscillation of localized slow magnetosonic mode 2s = ω2A(1 + V2AV2s)], which has the diamagnetic property in a uniform plasma, is newly found to be excited in the radially non-uniform plasma. The localized slow resonance indicates a radially polarized compressional oscillation (δB ? δBH ? δBD). The sense of the Alfvénic polarizations in the H-D plane near the resonant point is a function of both the propagation in the azimuthal direction and the slope of wave amplitude in the radial direction, whereas the sense of the resonant slow magnetosonic polarizations changes in accordance only with the switch in the azimuthal propagation direction. Further multi-satellite studies are necessary to establish the resonant structures of the slow magnetosonic waves in the magnetosphere.  相似文献   

20.
For nighttime auroras, we find that positive ion ratios are only a function of the neutral atmospheric composition and of the pertinent ionic processes if the ions are depleted mainly by ion-molecule reactions. Ionic ratios calculated for [N+][N2+] using the 1976 U.S. Standard Atmosphere and laboratory rate coefficients (with one exception) rise smoothly with altitude: 0.1 (120 km), 0.3 (140 km), 0.6 (160 km), 1.0 (180 km) and 1.5 (200 km). These values compare favorably with experimental ratios from three different auroral experiments. The exception refers to our use of a larger rate coefficient for N2+ + O → NO+ + N than found in the laboratory. We also determine an [N2+][O+] ratio with altitude: 0.36 (120 km), 0.078 (140 km), 0.030 (160 km), 0.014 (180 km) and 0.0075 (200 km). These values compare favorably with results from the same three auroral experiments. However, the match with a fourth auroral experiment is poor. Except for this last case, we conclude that the neutral composition at auroral latitudes in late winter is similar to the U.S. Standard for the altitudes examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号