首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigates the connection between sediment aggradation, erosion and climate in a desert environment of the Majes valley, southern Peru. Luminescence dating of terraces and fans shows that sediment aggradation correlates with wet time intervals on the Altiplano, suggesting a climatic influence on the aggradation–degradation cycles. Major periods of aggradation occurred between ~110–100, ~60–50 and 12–8 ka. More precipitation in the Majes catchment resulted in increased erosion and transportation of sediment from the hillslopes into the trunk river. As a result, the sediment loads exceeded the transport capacity of the Majes River and aggradation started in the lower reaches where the river gradient is less. Depletion of the hillslope sediment reservoirs caused a relative increase in the capacity of the trunk river to entrain and transport sediment, resulting in erosion of the previously deposited sediment. Consequently, although climate change may initiate a phase of sediment accumulation, degradation can be triggered by an autocyclic negative feedback and does not have to be driven by climatic change.  相似文献   

2.
The role of tin mining in the society of prehistoric Dartmoor and its impact on the local landscape have long been discussed despite equivocal evidence for prehistoric mine sites. A fluvial geomorphological approach, using floodplain stratigraphy, combined with sediment geochemistry and mineralogy, was employed to identify prehistoric tin mining at the catchment scale. Waste sediment, released during hydraulic mining of alluvial tin deposits, caused downstream floodplain aggradation of sands with a diagnostic signature of elevated Sn concentration within the silt fraction. At a palaeochannel site in the Erme Valley, sediment aggradation buried datable peat deposits. A period of aggradation postdating cal. A.D. 1288–1389 is consistent with the 13th century peak in tin production identified in the documentary record. An earlier phase of aggradation, however, occurred between the 4th and 7th centuries A.D., providing evidence of late Roman or early Post Roman tin mining activity on Dartmoor. © 2004 Wiley Periodicals, Inc.  相似文献   

3.
The legacy of repeated Pleistocene glaciations has endowed many Welsh river valleys with locally thick successions of glacial and alluvial sediments. Investigations of a well-preserved flight of terraced sediments with good exposures at Capel Bangor, on the Afon Rheidol, mid-Wales, has allowed its Quaternary valley fill stratigraphy to be examined in detail. Study has revealed five terraced fills consisting of seven distinct sedimentary units. These range from Late Devensian ice-contact and ice-marginal deposits, to Holocene high-sinuosity stream sediments with episodes of man-induced accelerated deposition of fine-grained alluvium, and to aggradation and subsequent incision associated with historic metal mining. Examination of general sedimentary properties (e.g., granulometry, sedimentary structures, terrace surface morphology) show both differences in the pattern and controls of deposition and also progressive changes over Late Devensian and Holocene times. The sediments of the Rheidol Valley record the response and subsequent recovery of a drainage basin to glaciation, and the increasing influence of man on sediment yields, channel processes, and sediment quality.  相似文献   

4.
The most recent deglaciation resulted in a global sea‐level rise of some 120 m over ca 12 000 years. A moving boundary numerical model is developed to predict the response of rivers to this rise. The model was motivated by experiments at small scale, which have identified two modes describing the transgression of a river mouth: (i) autoretreat without abandonment of the river delta (no sediment starvation at the topset–foreset break); and (ii) sediment‐starved autoretreat with abandonment of the delta. In the latter case, transgression is far more rapid, and its effects are felt much further upstream of the river mouth. A moving boundary numerical model that captures these features in experimental deltas is adapted to describe the response of the Fly–Strickland River system, Papua New Guinea. In the absence of better information, the model is applied to the case of sea‐level rise without local climate change in New Guinea. The model suggests that: (i) sea‐level rise has forced the river mouth to transgress over 700 km since the last glacial maximum; (ii) sediment‐starved autoretreat has forced enough bed aggradation to block a tributary with a low sediment load and create the present‐day Lake Murray; (iii) the resulting aggradation was sufficient to move the gravel–sand transition on the Strickland River upstream; (iv) the present‐day Fly Estuary may be, in part, a relict river valley drowned by sea‐level rise and partially filled by tidal effects; and (v) the Fly River is presently reforming its bankfull geometry and prograding into the Fly Estuary. A parametric study with the model indicates that sediment concentration during floods plays a key role in determining whether or not, and to what extent, transgression is expressed in terms of sediment‐starved autoretreat. A sufficiently high sediment concentration can prevent sediment‐starved autoretreat during the entire sea‐level cycle. This observation may explain why some present‐day river mouths are expressed in terms of deltas protruding into the sea, and others are wholly contained within embayments or estuaries in which water has invaded landward.  相似文献   

5.
The Tinto and Odiel rivers drain 100 km from the Rio Tinto sulphide mining district, and join at a 20-km long estuary entering the Atlantic Ocean. A reconnaissance study of heavy metal anomalies in channel sand and overbank mud of the river and estuary by semi-quantitative emission dc-arc spectrographic analysis shows the following upstream to downstream ranges in ppm (μg g?1): As 3,000 to <200, Cd 30 to <0.1, Cu 1,500 to 10, Pb 2,000 to <10, Sb 3000 to <150, and Zn 3,000 to <200. Organic-rich (1.3–2.6% total organic carbon, TOC), sandysilty overbank clay has been analyzed to represent suspended load materials. The high content of heavy metals in the overbank clay throughout the river and estuary systems indicates the importance of suspended sediment transport for dispersing heavy metals from natural erosion and anthropogenic mining activities of the sulfide deposit. The organic-poor (0.21–0.37% TOC) river bed sand has been analyzed to represent bedload transport of naturally-occurring sulfide minerals. The sand has high concentrations of metals upstream but these decrease an order of magnitude in the lower estuary. Although heavy metal contamination of estuary mouth beach sand has been diluted to background levels estuary mud exhibits increased contamination apparently related to finer grain size, higher organic carbon content, precipitation of river-borne dissolved solids, and input of anthropogenic heavy metals from industrial sources. The contaminated estuary mud disperses to the inner shelf mud belt and offshore suspended sediment, which exhibit metal anomalies from natural erosion and mining of upstream Rio Tinto sulphide lode sources (Pb, Cu, Zn) and industrial activities within the estuary (Fe, Cr, Ti). Because heavy metal contamination of Tinto-Odiel river sediment reaches or exceeds the highest levels encountered in other river sediments of Spain and Europe, a detailed analysis of metals in water and suspended sediment throughout the system, and epidemiological analysis of heavy metal effects in humans is appropriate.  相似文献   

6.
 The historic processing of precious metal ores mined from the Comstock Lode of west-central Nevada resulted in the release of substantial, but unquantified amounts of mercury-contaminated mill tailings to the Carson River basin. Geomorphic and stratigraphic studies indicate that the introduction of these waste materials led to a period of valley-floor aggradation that was accompanied by lateral channel instability. The combined result of these geomorphic responses was the storage of large volumes of mercury-enriched sediment within a complexly structured alluvial sequence located along the Carson River valley. Much of the contaminated sediment is associated with filled paleochannels produced by the cutoff and abandonment of meander loops, and their subsequent infilling with contaminated particles. Geochemically, these deposits are characterized by variations in mercury levels that exceed three orders of magnitude. Continued lateral instability, coupled with an episode of channel-bed incision, followed the decline of Comstock mining, and has reexposed contaminated debris within the banks of the river. Erosion of bank sediments reintroduces mercury-enriched particles to the modern channel bed. It is suggested on the basis of geochemical and sedimentological data that during the bank erosion process, much of the mercury associated with fine (<63 μ) valley-fill deposits are carried downstream without being incorporated to any appreciable extent within the channel-bed sediments. In contrast, mercury associated with larger and denser particles, particularly mercury-gold-silver amalgam grains, are accumulated in the channel-bed sediments as the river traverses polluted reaches of the Carson River valley. Concentration patterns developed along the modern channel indicate that the valley fill is the primary source of mercury to the river today. Thus, these data imply that efforts to reduce the influx of mercury to the aquatic environment should examine methods for reducing bank erosion rates. Received: 13 December 1996 · Accepted: 15 April 1997  相似文献   

7.
The Abrud–Arieş river system, western Romania, is subject to ongoing mining activity associated with Cu, Pb and Zn ore extraction. The catchment contains what is believed to be Europe's largest unutilized Au deposit at Roşia Montană that is planned to be exploited by open-cast mining techniques. The magnitude and environmental significance of metal (Cd, Cu, Pb, and Zn) concentrations in surface water and river channel sediment have been investigated along a 140 km reach of the Rivers Abrud and Arieş and 9 tributaries affected by mining. The speciation of sediment-bound metals was established using a 4-stage sequential extraction procedure (SEP) that identified four chemical phases: (1) exchangeable, (2) Fe/Mn oxides, (3) organic matter/sulphides and (4) residual. Peak solute and sediment-bound metal concentrations were found to occur in the River Abrud downstream of the EM Bucium mine and in mining-affected tributaries, with up to 71% of sites containing sediment metal concentrations in excess of Dutch intervention values. The River Arieş was found to be much less polluted than the River Abrud, with only Cu showing concentrations above guideline values, as a consequence of porphyry Cu mineralization in the catchment. The magnitude and spatial extent of metal pollution is influenced by local physico-chemical conditions and hydrological linkages between mining and local river systems. Sediment-bound Cd and Zn were found to be predominantly associated with the exchangeable phase of the sediment (9–74% and 6–65%, respectively), whilst Fe/Mn oxides (5–76%) and organic matter/sulphides (1–45%) generally accounted for a majority of Pb and Cu partitioning, respectively. Sites of environmentally significant sediment-metal pollution were identified in the Rivers Abrud and Arieş where exchangeable metal concentrations exceeded Dutch intervention values. The implications of metal contamination in the Arieş river basin to the proposed mining development at Roşia Montana are discussed in relation to other contaminated Romanian catchments and with the EU Water Framework Directive.  相似文献   

8.
《Applied Geochemistry》2003,18(2):283-309
International agreements (e.g. OSPAR) on the release of hazardous substances into the marine environment and environmental assessments of shelf seas require that concentrations and bioavailability of metals from anthropogenic sources can be distinguished from those originating as a result of natural geological processes. The development of a methodology for distinguishing between anthropogenic and natural sources of metals entering the Irish Sea through river inputs is described. The geochemistry of stream, river and estuarine sediments has been used to identify background geochemical signatures, related to geology, and modifications to these signatures by anthropogenic activities. The British Geological Survey (BGS) geochemical database, based on stream sediments from 1 to 2 km2 catchments, was used to derive the background signatures. Where mining activity was present, the impact on the signature was estimated by comparison with the geochemistry of sediments from a geologically similar, but mining free, area. River sediment samples taken upstream and downstream of major towns were used respectively to test the validity of using stream sediments to estimate the chemistry of the major river sediment and to provide an indication of the anthropogenic impact related to urban and industrial development. The geochemistry of estuarine sediments from surface samples and cores was then compared with river and offshore sediment chemistry to assess the importance of riverine inputs to the Irish Sea. Studies were undertaken in the Solway, Ribble, Wyre and Mersey estuaries. The results verify that catchment averages of stream sediments and major river samples have comparable chemistry where anthropogenic influences are small. Major urban and industrial (including mining) development causes easily recognised departures from the natural multi-element geochemical signature in river sediment samples downstream of the development and enhanced metal levels are observed in sediments from estuaries with industrial catchments. Stream sediment chemistry coupled with limited river and estuarine sampling provides a cost-effective means of identifying anthropogenic metal inputs to the marine environment. Investigations of field and laboratory protocols to characterise biological impact (bioaccumulation) of metals in sediments of the Irish Sea and its estuaries show that useful assessments can be made by a combination of surveys with bioindicator species such as clams Scrobicularia plana, selective sediment measurements that mimic the ‘biologically available’ fractions, and laboratory (mesocosm) studies.  相似文献   

9.
Blocked‐valley lakes are formed when tributaries are impounded by the relatively rapid aggradation of a large river and its floodplain. These features are common in the landscape, and have been identified in the floodplains of the Solimões‐Amazon (Brazil) and Fly‐Strickland Rivers (Papua New Guinea), for example, but their inaccessibility has resulted in studies being limited to remotely sensed image analysis. This paper documents the sedimentology and geomorphic evolution of a blocked‐valley lake, Lake Futululu on the Mfolozi River floodplain margin, in South Africa, while also offering a context for the formation of lakes and wetlands at tributary junctions. The study combines aerial photography, elevation data from orthophotographs and field survey, and longitudinal sedimentology determined from a series of cores, which were sub‐sampled for organic content and particle size analysis. Radiocarbon dating was used to gauge the rate and timing of peat accumulation. Results indicate that following the last glacial maximum, rising sea‐levels caused aggradation of the Mfolozi River floodplain. By 3980 years bp , aggradation on the floodplain had impounded the Futululu drainage line, creating conditions suitable for peat formation, which has since occurred at a constant average rate of 0·13 cm year?1. Continued aggradation on the Mfolozi River floodplain has raised the base level of the Futululu drainage line, resulting in a series of back‐stepping sedimentary facies with fluvially derived sand and silt episodically prograding over lacustrine peat deposits. Blocked‐valley lakes form where the trunk river has a much larger sediment load and catchment than the tributary stream. Similarly, when the relative difference in sediment loads is less, palustrine wetlands, rather than lakes, may be the result. In contrast, where tributaries drain a steep, well‐connected catchment, they may impound much larger trunk rivers, creating lakes or wetlands upstream.  相似文献   

10.
Open-cast mining generates sediment in river systems at globally significant scales. One of the challenges in attributing measured sediment loads to upstream mining activities is establishing the source of sediments that are a mixture of natural and mining-based materials. The environmental magnetic data (mass-specific magnetic susceptibility, anhysteretic remanent magnetisation, isothermal remanent magnetisation and inter-parametric ratios) on 57 samples of suspended sediment from the Bhadra River in the Sahyadri (the Western Ghat) of India have been used in this study. Samples were collected upstream, adjacent to and downstream of Kudremukh, a mountainous and high rainfall site where the largest mechanised open-cast mine in south Asia was located. Graphical and multivariate analyses and modelling of the data show that on average ~29% of the river suspended load downstream of the mine is derived from mining and allied activities at Kudremukh although the mine occupies less than 5% of the catchment. The contribution of primary ore is the maximum (18%), followed by transitional hard weathered ore (7%) and weathered ore (4%). The model has done a fairly good job of unmixing; the sum of errors is <1 for 40 samples, 1–4,254 for five samples and >71,000 for four samples. Modelling of samples with small mass seems to produce large errors. This investigation demonstrates the utility of environmental magnetic data, which can be obtained in a simple and rapid manner, and the unmixing of such data in identifying the contribution of mining activities to the total suspended sediment load.  相似文献   

11.
Anastomosing rivers, systems of multiple interconnected channels that enclose floodbasins, constitute a major category of rivers for which various sedimentary facies models have been developed. While the sedimentary products of anastomosing rivers are relatively well‐known, their genesis is still debated. A rapidly growing number of ancient alluvial successions being interpreted as of anastomosing river origin, including important hydrocarbon reservoirs, urge the development of robust models for the genesis of anastomosis, to facilitate better interpretation of ancient depositional settings and controls. The upper Columbia River, British Columbia, Canada, is the most‐studied anastomosing river and has played a key role in the development of an anastomosing river facies model. Two hypotheses for the origin of upper Columbia River anastomosis include the following: (i) downstream control by aggrading cross‐valley alluvial fans; and (ii) upstream control by excessive bedload input from tributaries. Both upstream and downstream control may force aggradation and avulsions in the upper Columbia River. In order to test both hypotheses, long‐term (millennia‐scale) floodplain sedimentation rates and avulsion frequencies are calculated using 14C‐dated deeply buried organic floodplain material from cross‐valley borehole transects. The results indicate a downstream decrease in floodplain sedimentation rate and avulsion frequency along the anastomosed reach, which is consistent with dominant upstream control by sediment overloading. The data here link recent avulsion activity to increased sediment supply during the Little Ice Age (ca 1100 to 1950 ad ). This link is supported by data showing that sediment supply to the upper Columbia study reach fluctuated in response to Holocene glacial advances and retreats in the hinterland. Upstream control of anastomosis has considerable implications for the reconstruction of the setting of interpreted ancient anastomosing systems. The present research underscores that anastomosing systems typically occur in relatively proximal settings with abundant sediment supplied to low‐gradient floodplains, a situation commonly found in intermontane and foreland basins.  相似文献   

12.
This study describes changes to the proglacial drainage network of Skaftafellsjökull, Iceland from 1998 to 2011. Proglacial landscapes are highly sensitive to glacier retreat, and the retreat of glaciers around the world has accelerated since the mid‐1990s. Skaftafellsjökull has retreated at an average rate of 53 m per year since 1999. From 1999 to 2003, the river incised and formed a sequence of now abandoned channels and fluvial terraces extending ~1 km downstream from the glacier. Retreat of the glacier from an over‐deepened ice‐contact slope meant that there was a positive correlation between the distance of glacier retreat and the amount of fluvial incision. Incision was episodic, occurring annually in response to drainage reactivation and reorganization. On an annual basis, the rate of retreat is moderately negatively correlated with the rate of incision. This is partly because the ice‐contact slope decreases away from the position of maximum glacier extent, and also because more sediment is released with faster retreat, counteracting the effect of retreat down an ice‐contact slope. From 2003 onwards, proximal terrace formation ceased, as a proglacial lake became established. Downstream of the lake outlet further incision deepened the channel, with most change occurring during a flood in 2006, where incision in the upstream confined reach was accompanied by downstream aggradation and terrace formation. These observations indicate that proglacial changes in response to glacier retreat are a result of the interactions of river channel incision and terrace formation, aggradation, lake development, and flooding, which together control river channel changes, sediment redistribution and sandur stratigraphy.  相似文献   

13.
An intense, but localized rainfall event in February 2003, led to the severe erosion and failure of a tailings disposal impoundment at the Abarόa Antimony Mine in southern Bolivia. The failure released approximately 5,500 m3 of contaminated tailings into the Rio Chilco-Rio Tupiza drainage system. The impacts of the event on sediment quality are examined and compared to contamination resulting from historic mining operations in the headwaters of the basin. Of primary concern are contaminated floodplain soils located along downstream reaches of the Rio Tupiza which were found to contain lead (Pb), zinc (Zn), and antimony (Sb) concentrations that locally exceed Canadian, German, and Dutch guidelines for agricultural use. Spatial patterns in sediment-borne trace metal concentrations, combined with Pb isotopic data, indicate that Pb, Zn, and Sb are derived from three tributary basins draining the Abarόa, Chilcobija, and Tatasi-Portugalete mining districts. Downstream of each tributary, geographical patterns in trace metal concentrations reflect local geomorphic changes throughout the drainage system. Trace metal concentrations within the Rio Chilco decrease rapidly downstream as a result of dilution by uncontaminated sediments and storage of metal enriched particles (e.g., sulfide minerals) in the channel bed as a result of ongoing aggradation. Storage in the floodplains is limited. These processes significantly reduced the dispersal and, thus, the relative environmental affects of tailings eroded from the Abarόa Mine during the 2003 flood. In contrast, storage of Pb, Zn, and Sb in floodplains along the Rio Tupiza is significant, the majority of which is derived from historic mining operations, particularly mining within the Tatasi-Portugalete district.  相似文献   

14.
A three‐dimensional numerical model of sediment transport, erosion and deposition within a network of channel belts and associated floodplain is described. Sediment and water supply are defined at the upstream entry point, and base level is defined at the downstream edge of the model. Sediment and water are transported through a network of channels according to the diffusion equation, and each channel has a channel belt with a width that increases in time. The network of channels evolves as a result of channel bifurcation and abandonment (avulsion). The timing and location of channel bifurcation is controlled stochastically as a function of the cross‐valley slope of the floodplain adjacent to the channel belt relative to the down‐valley slope, and of annual flood discharge. A bifurcation develops into an avulsion when the discharge of one of the distributaries falls below a threshold value. The floodplain aggradation rate decreases with distance from the nearest active channel belt. Channel‐belt degradation results in floodplain incision. Extrinsic (extrabasinal, allogenic) and intrinsic (intrabasinal, autogenic) controls on floodplain dynamics and alluvial architecture were modelled, and sequence stratigraphy models were assessed. Input parameters were chosen based on data from the Rhine–Meuse delta. To examine how the model responds to extrinsic controls, the model was run under conditions of changing base level and increasing sediment supply. Rises and falls in base level and increases in sediment supply occurred over 10 000 years. Rising base level caused a wave of aggradation to move up‐valley, until aggradation occurred over the entire valley. Frequency of bifurcations and avulsions increased with rate of base‐level rise and aggradation rate. Channel‐belt width varied with water discharge and the lifespan of the channel belt. Wide, connected channel belts (and high channel‐deposit proportion) occurred around the upstream inflow point because of their high discharge and longevity. Less connected, smaller channel belts occurred further down‐valley. Such alluvial behaviour and architecture is also found in the Rhine–Meuse delta. During base‐level fall, valley erosion occurred, and the incised valley contained a single wide channel belt. During subsequent base‐level rise, a wave of aggradation moved up‐valley, filling the incised valley. Bifurcation and avulsion sites progressively moved upstream. Relatively thin, narrow channel belts bordered and cut into the valley fill. These results differ substantially from existing sequence stratigraphy models. The increase in sediment supply from upstream resulted in an alluvial fan. Most bifurcations and avulsions occurred at the fan apex (nodal avulsion), and channel belts were the widest and the thickest here (giving high channel‐deposit proportion) due to their high discharge and longevity. The width and thickness of channel belts decreased down‐valley due to decreased discharge, longevity and aggradation rate. This behaviour occurs in modern alluvial fans. Intrinsic controls also affect floodplain dynamics and alluvial architecture. Variation of aggradation rate, bifurcation frequency and number of coexisting channel belts occurred over periods of 500 to 2000 years, compared with 10 000 years for extrinsic controls. This variation is partly related to local aggradation and degradation of channel belts around bifurcation points. Channel belts were preferentially clustered near floodplain margins, because of low floodplain aggradation rate and topography there.  相似文献   

15.
金顶矿区长期的矿业活动造成矿区水系沉积物严重污染.通过沉积物中Cd的化学形态分析发现:矿区沉积物中Cd元素形态主要以可还原态为主,其次为可氧化态Cd、残渣态Cd和弱酸提取态Cd.沉积物中Cd的形态特征受污染源的控制.当沉积物受氧化矿为主体的污染源控制时,镉的弱酸提取态和可还原态相对较高(占总金属量的90%以上),而当沉积物受硫化矿为主体污染源控制时.镉的弱酸提取态和可还原态相对较低(仅占总金属量的20%左右).池江水系沉积物中Cd的弱酸提取态占相当大比例(占金属总量的18.8%),在表生环境中极易释放出来并污染水体,对矿区乃至矿区下游流域生态环境构成直接的危害.  相似文献   

16.
Bristow  Skelly  & Ethridge 《Sedimentology》1999,46(6):1029-1047
Base-level rise of ≈2·35 m on the Niobrara River has resulted in aggradation of the channel belt and a recent avulsion. Overbank areas have become flooded by rising groundwaters, and more than eight crevasse splays have formed between 1993 and 1997. Two crevasse splays, situated on the west and east sides of the Niobrara, have been studied using ground-penetrating radar (GPR), shallow boreholes and topographic surveys. The vibracores and GPR profiles provide a nearly three-dimensional view of the architecture of crevasse splay deposits. The east splay was initiated in the winter of 1993/94 and has expanded to cover an area ≈200 m by 1000 m, with sediment up to 2·5 m thick. The west splay, which was initiated by the opening of a crevasse channel through a levee in the autumn of 1995, covers an area ≈150 m by 250 m, with up to 1·2 m of sand deposited in a single year. The Niobrara splays are sand dominated and characterized by bedload deposition within channels, 5–30 m wide and 0·5–2 m deep, with the development of slipfaces where splays prograde into standing bodies of water. Sedimentary structures in cores include horizontal lamination, ripple lamination and sets of cross-stratification. There is a slight tendency for splays to coarsen up, but individual beds within the splays often fine up. The abundance of crevasse splays on the Niobrara River contrasts with other braided river floodplains. In the Niobrara, crevasse splay formation followed aggradation within the channel belt, which occurred in response to base-level rise. The link between crevasse splays, channel aggradation and base-level rise has important implications for the interpretation of ancient braided river and floodplain sequences. It is suggested that crevasse splay deposits should be an important component of aggrading fluvial sediments and, hence, should be preserved within the rock record. In this case, the aggradation and crevassing have been tied to a rise in base-level elevation, and it is suggested that similar deposits should be preserved where braided rivers are affected by base-level rise, for instance during transgression and filling of palaeovalleys.  相似文献   

17.
《Applied Geochemistry》2003,18(2):241-257
In January and March 2000 two tailings dam failures in Maramureş County, northwest Romania, resulted in the release of 200,000 m3 of contaminated water and 40,000 tonnes of tailings into tributaries of the Tisa River, a major tributary of the Danube. The high concentrations of cyanide and contaminant metals released by these dam failures resulted in pollution and fish deaths not only in Romania, but also downstream in the Tisa and Danube rivers within Hungary, Serbia and Bulgaria. Following these accidents, a research programme was initiated in northwest Romania to establish metal levels in rivers affected by the tailings dam failures and to compare these to metal values in river systems contaminated by historic mining and industrial activity. In July 2000, 65 surface water, 65 river sediment and 45 floodplain sediment samples were collected from trunk streams and principal tributaries of the Lapuş/Someş rivers (affected by the January 2000 spill) and the Vişeu/Tisa rivers (affected by the March 2000 Novat spill) down to the Hungarian and Ukrainian borders, respectively. Sample analyses for Pb, Zn Cu and Cd show that metal contamination in surface water and river sediment decreases rapidly downstream away from presently active mines and tailings ponds. Concentrations of heavy metals in water and sediment leaving Romania, and entering Hungary and the Ukraine, generally fall below EC imperative and Dutch intervention values, respectively. However, Zn, Cu and Cd concentrations in river sediments approach or exceed intervention values at the Romanian border. The results of this survey are compared with earlier surveys to ascertain the long-term fate and environmental significance of contaminant metals released by mine tailings dam failures in Maramureş County.  相似文献   

18.
Aggradation and fluvial incision controlled by downstream base-level changes at timescales of 10 to 500 kyr is incorporated in classic sequence stratigraphic models. However, upstream climate control on sediment supply and discharge variability causes fluvial incision and aggradation as well. Orbital forcing often regulates climate change at 10 to 500 kyr timescales while tectonic processes such as flexural (un)loading exert a dominant control at timescales longer than 500 kyr. It remains challenging to attribute fluvial incision and aggradation to upstream or downstream processes or disentangle allogenic from autogenic forcing, because time control is mostly limited in fluvial successions. The Palaeocene outcrops of the fluvial Lebo Shale Member in north-eastern Montana (Williston Basin, USA) constitute an exception. This study uses a distinctive tephra layer and two geomagnetic polarity reversals to create a 15 km long chronostratigraphic framework based on the correlation of twelve sections. Three aggradation–incision sequences are identified with durations of approximately 400 kyr, suggesting a relation with long-eccentricity. This age control further reveals that incision occurred during the approach of – or during – a 405 kyr long-eccentricity minimum. A long-term relaxation of the hydrological cycle related to such an orbital phasing potentially exerts an upstream climate control on river incision. Upstream, an expanding vegetation cover is expected because of an increasingly constant moisture supply to source areas. Entrapping by vegetation led to a significantly reduced sediment supply relative to discharge, especially at times of low evapotranspiration. Hence, high discharges resulted in incision. This study assesses the long-eccentricity regulated climate control on fluvial aggradation and incision in a new aggradation–incision sequence model.  相似文献   

19.
The impact of increasing urbanization on the quality of a river system has been investigated by examining the current concentration of trace metals in the Chattahoochee River south of Atlanta, GA, and comparing these to previously published historical sediment data from reservoirs along the river. The lack of historical data for dissolved metal concentrations prior to 1980 requires an approach using these historic metal data from sediment cores. Core data are combined with current suspended load and dissolved metal data to “backcast” dissolved metal concentrations in the metro-Atlanta portion of the Chattahoochee River. The data suggest that the per capita input of dissolved trace metals have actually decreased since the 1920s, but anthropogenic inputs of metal are still a substantial water quality issue.  相似文献   

20.
Heavy metal distribution patterns in river sediments aid in understanding the exogenic cycling of elements as well as in assessing the effect of anthropogenic influences. In India, the Subernarekha river flows over the Precambrian terrain of the Singhbhum craton in eastern India. The rocks are of an iron ore series and the primary rock types are schist and quartzite. One main tributary, the Kharkhai, flows through granite rocks and subsequently flows through the schist and quartzite layers. The Subernarekha flows through the East Singhbhum district, which is one of India’s industrialised areas known for ore mining, steel production, power generation, cement production and other related activities. Freshly deposited river sediments were collected upstream and downstream the industrial zone. Samples were collected from four locations and analysed in <63-μm sediment fraction for heavy metals including Zn, Pb, Cd and Cu by anodic stripping voltammetry. Enrichment of these elements over and above the local natural concentration level has been calculated and reported. Sediments of the present study are classified by Muller’s geo-accumulation index (I geo) and vary from element to element and with climatic seasons. During pre-monsoon period the maximum I geo value for Zn is moderately to highly polluted and for Cu and Pb is moderately polluted, respectively, based on the Muller’s standard. Anthropogenic, lithogenic or cumulative effects of both components are the main reasons for such variations in I geo values. The basic igneous rock layer through which the river flows or a seasonal rivulet that joins with the main river may be the primary source for lithogenic components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号