首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
廖少波  黄承忠 《地下水》2009,31(1):132-134
根据三峡库水位调控方案,在分析库水位变化与岸坡稳定性的一般规律的基础上,对兰陵溪场镇库岸边坡稳定性进行定性分析,并采用传递系数法计算四个剖面在不同工况条件下的稳定性系数。结果表明:蓄水时,各实测剖面的稳定性均下降,发生局部岸踏的可能性自北向南逐渐增大;汛期防洪库水位从高程175m降为145m时,稳定性最差,极有可能发生整体性塌岸事故。因此,只有在水位骤降这种极限状态下保持稳定,才能确保兰陵溪场镇库岸边坡的安全,这对边坡防治以及水库安全运营提供了科学依据。  相似文献   

2.
澜沧江上某水电站蓄水运行后,库水位的变动对库岸边坡的稳定性有较大影响。以该电站库区的一个库岸为例,根据库水位调度规划及当地水文资料,运用土体渗流理论以及极限平衡方法对库岸边坡进行稳定性分析,同时在灵敏度分析的基础上,研究库岸渗透系数和库水位变化对库岸边坡稳定性的影响。结果表明:在库水位上升阶段,当库岸边坡渗透系数很大时(k=2.5×10-4m/s),库岸地下水位将和库水位同步上升,将降低边坡的安全系数;当库岸边坡渗透系数很小时(k=2.5×10-6m/s),库岸边坡地下水位的上升将滞后于库水位的上升,导致作用在库岸边坡上,有利于库岸边坡的稳定;在库水位下降阶段,当库水位下降速率小于等于库岸边坡渗透系数时,库岸边坡地下水位随着库水位的下降而降低,库岸边坡的稳定性随着库水位的降低而增加;当库水位下降速率大于库岸边坡渗透系数时,库岸边坡地下水位的下降将滞后于库水位的下降,产生动水压力作用于库岸边坡,不利于库岸边坡的稳定。并提出了水库蓄水阶段应尽量保持在2 m/d内的上升速度,水位下降阶段应将水位下降速度控制在1 m/d之内的建议。该研究对水库安全运行具有一定指导作用。  相似文献   

3.
为深入探究水库水位变化对滑坡稳定的影响,以西南地区某库岸滑坡为例,在探明滑坡工程地质条件和成因机制的基础上,通过建立三维数值模型来分析流固耦合作用下库水位变化对库岸滑坡稳定性及滑动模式的影响。通过数值计算,获得水库天然状态、初期蓄水、水位上升和下降条件下滑坡体内塑性区分布和x方向位移变化情况。结合数值计算结果和滑坡实际变形破坏规律综合分析库水位变化对库岸滑坡稳定性的影响。分析结果显示,水库初期蓄水造成滑坡体变形开裂,使坡体处于不稳定状态;水位上升对滑坡稳定性影响较小,水位下降后滑坡稳定性大幅降低,极可能发生失稳破坏;水库蓄水后坡体滑动模式由推移式向牵引式转变。  相似文献   

4.
《地下水》2021,(4)
水位变化对将对库岸边坡的稳定性产生影响,为了提高水库的安全管理水平,通过BIM及FLAC3D软件对某水库边坡水位变化下边坡稳定分析。结果表明天然工况下,边坡处于稳定状态;暴雨工况下,边坡基本为稳定的,但可能出现局部垮塌,尤其是在其中部陡坎带和北侧的前缘;蓄水条件下,正常蓄水位以上坡体基本不受影响,坡体前缘在长期浸泡作用下,坡体内粉砂质泥岩对堆积体位移具有控制作用。  相似文献   

5.
在分析库水位变化与岸坡稳定性的一般规律的基础上,对某水库泄洪洞进口高边坡变形机理进行分析。然后计算分析不同水位升降条件下,蓄水+暴雨、地震、地震+地下水作用等三种工况的稳定性系数,确定危险警戒水位,并预测未来蓄水及库水位下降情况下泄洪洞进口边坡稳定性与库水位的关系,为蓄水后的边坡防治提供必要的理论依据。  相似文献   

6.
库水位变化对库岸边坡稳定性的影响   总被引:3,自引:0,他引:3  
在假定坡体孔隙水水位为水平线且不考虑渗透作用影响的基础上,基于极限平衡法考察了水位上升及下降的快慢对边坡安全系数的影响。对比计算表明:在水位缓慢变化即坡体内外水位线等高的条件下,边坡的安全系数随着水位坡高比的增大先略减小后急剧增大,且在水位坡高比为0.3处取得最小值,在边坡完全淹没于水中时取得最大值。当边坡完全淹没于水中后,水位高于坡顶的多少对边坡安全系数没有影响;在水位骤降或陡升条件下,相同库水位对应的边坡安全系数基本上均小于水位缓慢变化情况下的安全系数,故工程实际中无论是排水还是蓄水,都应尽量保持水位缓慢变化,这样才能使边坡处于较安全的状态。  相似文献   

7.
水库蓄水后库岸边坡的稳定性一直是研究的热点,库水位周期性涨落使得坡体内部渗流场发生变化进而影响其应力场,应力场作用于岩土体产生变形,其中水库水位升降速率对滑坡稳定性的影响尤为显著。本文以瀑布沟水电站库区双家坪滑坡为研究对象,在调查分析的基础上,基于非饱和土力学理论,考虑水—土特征曲线与渗透特性,对库水作用下的双家坪堆积体滑坡稳态—瞬态进行渗流场—稳定性数值计算。运用GeoStudio软件中的seep模块模拟库水作用下滑坡体地下水变化,计算出不同库水位升降速率条件下堆积体滑坡内部渗流场的变化并将结果耦合至slope模块中进行稳定性计算,研究结果表明:水位抬升阶段,滑坡的稳定性表现为先升高再降低,且水位抬升速率越大,滑坡稳定性升高后衰减的程度越大;水位下降阶段,滑坡的稳定性表现为先降低再逐渐回升的趋势,且水位下降速率越大,滑坡稳定性下降后再回升的程度越低。该研究结果对于库区地质灾害防灾减灾、监测预警以及水库合理调蓄具有重要的意义。  相似文献   

8.
分析溪洛渡水库蓄水后,岸坡岩土体遇水饱和,物理力学强度降低.水位下降过程中,在渗透压力及库岸涌浪的冲刷淘蚀作用下,容易引起库岸再造.水位的升降引起库岸坡稳定性的变化、浸没及泥石流对库岸再造有直接的影响.文中分析了岸坡岩土体水库蓄水后水岩作用下的变化及破坏机理,通过对重点影响区内的地灾点进行详细勘察,计算分析其变化发展趋...  相似文献   

9.
库水位升降会对边坡稳定性产生重要影响。研究库水位升降这一边界条件改变对岸坡稳定性的影响,具有实际工程意义。本文总结了涉及库岸边坡研究范畴的国内外研究现状:库水位升降条件下坡内渗流场、库水位升降条件下边坡稳定性、库岸边坡的破坏失稳机理,三者之间关系为:库水作用改变渗流场-渗流场改变边坡稳定性-渗流场改变边坡破坏失稳模式及机理。着重评论了传统的分析稳定性方法或其他新方法在分析库岸边坡应用上的优缺点,在此基础上,指出当前研究的主要问题并对今后研究的发展方向提出自己的看法。  相似文献   

10.
库水位涨落对库岸滑坡稳定性的影响   总被引:9,自引:0,他引:9  
三峡水库正常蓄水后, 库水位在175~145m之间周期性波动, 滑坡地下水渗流状态将会发生较大的改变, 可能导致滑坡失稳.因此, 研究库水位周期性波动下滑坡的稳定性具有十分重要的意义.提出了土水特征曲线的多项式约束优化模型和采用饱和-非饱和渗流数值模型.以赵树岭滑坡为例, 利用有限元数值计算了库水位在175~145m之间波动下地下水渗流场, 将计算得到的孔隙水压力用于滑坡的极限平衡分析, 探讨了库水位上升和下降对库岸滑坡稳定性的影响.研究表明: 多项式优化模型可以很好地拟合非饱和土的土水特征曲线; 库水位上升时滑坡稳定性系数总体逐渐增大, 库水位下降时滑坡稳定性系数总体逐渐减小; 无论是库水位上升还是下降到库水位155m时, 其稳定性系数最小; 同一库水位下, 库水位上升时的稳定性系数比下降时的稳定性系数大.   相似文献   

11.
巴东县东壤口新镇址,岸坡高陡且多为顺向坡,在三峡水库蓄水以后,本段库岸产生严重的库岸再造。通过传递系数法(推力传递法)计算滑坡稳定性,水位变化是导致岸坡稳定性恶化的主因。  相似文献   

12.
《岩土力学》2017,(1):197-204
以龚家方、茅坪、神女溪岸坡为例,总结了三峡库区类土质岸坡蓄水解体演化的5个阶段:岸坡形成阶段、节理裂隙发育阶段、泥化夹层及类土质岸坡形成阶段、蓄水作用岸坡解体阶段以及后续解体阶段。根据上述演化过程,从断裂力学角度建立了类土质岸坡解体的物理模型和力学模型,该力学模型考虑了5种蓄水工况下的受力状态,推导了相应的应力表达式和断裂强度因子公式。初步探讨得出以下结论:水库蓄水对类土质岸坡解体影响较为显著,岩块断裂强度因子随着蓄水位的升高而不断递减,蓄水水位升至4.49 m时,岩块断裂趋势由上部断裂转为下部断裂,断裂强度因子随着水位增高而增大。蓄水伊始,岩块重力对断裂起主要作用,而水位抬升起到一定的稳定作用;水位继续抬升,由重力主导的上部断裂逐渐转化为由浮托力决定的下部断裂。岩块的截面尺寸对类土质岸坡解体具有重要的影响。当岩块上部断裂时,断裂强度因子随着宽高比的减小而增加;当岩块下部断裂时,随着宽高比的减小,岩块断裂强度因子随蓄水位的增加而增大。  相似文献   

13.
非饱和-非稳定渗流条件下的边坡临界滑动场   总被引:1,自引:0,他引:1  
受季节性降雨或水库运行的影响,岸坡外水位及坡内孔隙水压力场的变化较大,不利于岸坡的稳定性。在水位变化过程中,利用非饱和-非稳定渗流有限元计算得到孔隙水压力场,基于非饱和土的渗流和抗剪强度理论,对水位变化过程中的边坡临界滑动场法进行改进,提出可考虑水位变化与岸坡非饱和-非稳定渗流过程的边坡临界滑动场数值模拟方法。将改进后的水位变化过程中的边坡临界滑动场法分别应用于黏土、粉土岸坡在水位升降过程中的稳定性分析,研究了水位升降速率及基质吸力对岸坡稳定性的影响,并揭示了边坡在水位变化过程中的稳定性变化历程。研究表明,该方法计算结果合理、可靠,更适用于涉水边坡的稳定性计算,且岸坡稳定性变化历程受水位升降速率、基质吸力等多种因素共同影响,只有在考虑非稳定渗流的基础上同时考虑基质吸力的作用才能正确得出水位变化过程中岸坡稳定性变化规律和实质。  相似文献   

14.
《四川地质学报》2015,(4):589-592
水是影响边坡稳定的重要因素,库区水位下降引起坡体的渗流场变化进而影响坡体稳定性。以三峡库区某坡体为例,针对库水位下降的不同速度,利用二维有限元模拟软件Geo—Studio对坡体渗流场变化进行数值模拟和稳定性分析。研究表明,随着水位下降速度的增加,浸润线前缘总水头值不断减小,水平流速不断增加,滑坡的稳定性系数也随之下降。  相似文献   

15.
冉冉  刘艳锋 《地下水》2011,33(2):162-165
库岸稳定性取决于最大崩塌临界机制的驱动力和抵抗力的平衡,二者的平衡又取决于库岸边坡形态、岩土组成、水流浪涌特征、植被覆盖等.边坡形态是库岸稳定性的基本条件,主要指标有坡度、岸高及坡面形态.以三峡库区忠县石宝镇段为例,利用BSTEM模拟分析库岸边坡形态对其稳定性的影响,从而得到如下结论,研究库岸坡形形态对其稳定性的影响,...  相似文献   

16.
河道水位降落对边坡稳定的影响   总被引:3,自引:2,他引:1       下载免费PDF全文
利用水槽试验和理论分析相结合,研究河道水位降落时岸坡渗流对边坡稳定的影响。考虑渗透力作用,分析岸坡上泥沙颗粒的受力特点,推导出临界稳定坡度与渗流水力梯度的关系。在渗流为向上和向下指向时这一关系和水槽试验数据吻合很好。测量结果表明,向上的渗流使得临界稳定坡度减小,而向下的渗流作用相反。另外,渗流对岸坡稳定的影响大小和渗流方向密切相关。给出了岸坡临界稳定坡度取值最小时的渗流方向。  相似文献   

17.
陈磊  张强  贾朝军  雷明锋  黄娟  胡晶 《岩土力学》2024,(5):1423-1434
堆积体广泛分布于我国西南大江大河的河谷地带,在降雨条件下其稳定性直接关系到大坝的安全稳定。设计了水库库岸堆积体边坡强降雨离心模型试验系统,开展了强降雨诱发库岸堆积体边坡失稳离心模型试验,对降雨作用下滑坡地质演化及灾变过程进行研究。基于试验结果,进一步开展数值模拟研究,分析了满库容不同降雨强度下强降雨对不同库水位及堆积体渗透性的边坡稳定性影响。结果表明:水库蓄水阶段堆积体边坡前缘在浮托力和泡水软化作用下造成抗滑力下降。但指向坡体内的渗透压力对坡体起到加固作用。两种竞争机制作用下产生的后缘细微裂缝对降雨阶段边坡变形发展产生重要影响。降雨主要造成坡表侵蚀及径流,少部分从裂缝入渗造成后缘浅层下沉。若不加处理,则边坡有可能发生推移式整体破坏。因此,库岸堆积体边坡后缘裂缝的处置是地质灾害防治的关键。  相似文献   

18.
以某库区路基边坡为研究对象,建立库区边坡二维饱和-非饱和渗流模型,模拟水库不同工况下边坡渗流场演变规律并进行库岸路基的非饱和沉降计算,分析库水位变化对路基沉降或隆起的影响。分析表明,库岸路基边坡变形与库水位升降及其速率有关。当库水位上升时,库岸路基和边坡发生了隆起变形;当库水位下降时,库岸路基和边坡发生了沉降变形。且近库岸边坡和路基的沉降或隆起受库水位升降影响较大,远离库岸的边坡和路基的沉降或隆起受库水位升降影响较小,库岸路基沉降与库水位下降速率快慢成正相关关系。  相似文献   

19.
水位升降条件下库岸边坡变形失稳问题是水库建设中必须考虑的重要安全性问题。二元结构是库岸岩土体的一种特有结构,其变形破坏失稳有特殊的力学机制及规律。为揭示库岸边坡处于不同坡角及不同土岩界面倾角条件下的失稳机制,尤其是水位变化条件下库岸岩土体浸润线的分布及演化特征,文章通过构建水位升降条件下的二元结构库岸边坡物理实验模型,借助监测及摄影的技术手段观测边坡土体内浸润线及岩土体变形破坏特征,揭示二元结构库岸边坡的变形失稳机制。研究结果表明:二元结构库岸边坡在水位升降条件下整体坡角的改变会引发不同的变形破坏模式:55°边坡以垮塌失稳为主,35°边坡稳定性较好,45°边坡易发生由坡脚破坏牵引的局部失稳;土岩界面倾角对边坡稳定性也产生较大影响,较大的倾角易于引发坡体沿土岩界面发生滑动失稳。本研究结果可为揭示二元结构库岸边坡失稳致灾机制及有效防治提供借鉴。  相似文献   

20.
库水位上升诱发边坡失稳机理研究   总被引:31,自引:1,他引:30  
库水位上升有可能诱发边坡失稳破坏,湖北省秭归县三峡库区的千将坪高速滑坡即是一例。库水位上升对边坡稳定性的影响主要表现在孔隙水压力作用和滑动面强度参数的弱化上,采用Mohr-Coulomb强度准则描述了孔隙水压力对土体应力状态的影响,土体浸水后,在孔隙水压力作用下Mohr应力圆变小而向左移动并相对远离强度曲线。边坡稳定性分析表明,在库水位由坡脚上升到坡顶的过程中,孔隙水压力作用使边坡的稳定性先降低后增加。指出水库蓄水初期,由于孔隙水压力使边坡的稳定性降低,加上滑动面强度参数的弱化给边坡稳定性带来的不利影响,若边坡的安全储备强度不够,很可能发生滑坡。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号