首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The voluntary carbon market allows participants to go beyond regulatory carbon offsetting. Recent developments have improved the transparency and credibility of voluntary carbon trading, and forest carbon credit transactions constitute more than half of trade volume. Its workings, however, have not been sufficiently explored in the literature. This study analyses the characteristics of forest carbon credit transactions in the voluntary carbon market using frequency analysis and logistic regression analysis. The results reveal that the co-benefits of forest carbon projects are an important factor influencing carbon credit transactions. From the higher transaction ratio of credits from CCB Standards-labelled projects and projects using co-benefit-oriented standards, it can be inferred that credits with potential for co-benefits (e.g. fostered corporate social responsibility, social cohesion of local communities and voluntary leadership, and positive environmental impacts) are preferred to those focusing exclusively on emission reduction in the voluntary carbon market. The findings of this study suggest that developing co-benefits is important for strengthening the market competitiveness of forest carbon credits in the voluntary carbon market. Additionally, unlike the compliance carbon market, in the voluntary carbon market stringent carbon standards do not always guarantee credit transaction performance.

POLICY RELEVANCE

After UNFCCC COP-21, the global society agreed to acknowledge various forms of international carbon crediting mechanisms, and noted the significance of greenhouse gas emissions reduction for sustainable development and environmental integrity through the Paris Agreement. Moreover, the agreement encouraged both REDD+ activities in developing countries and supports from developed countries. Additionally, co-benefits of forest carbon projects are important for credit transaction in the global voluntary carbon market. Under the new climate regime, co-benefits of forest carbon projects are expected to gain attention in the carbon market. To promote the social, economic, and environmental co-benefits of forest carbon projects, the introduction of an objective co-benefit assessment and certification system should be reviewed at the national level.  相似文献   


2.
《Climate Policy》2001,1(1):41-54
One strategy for mitigating the increase in atmospheric carbon dioxide is to expand the size of the terrestrial carbon sink, particularly forests, essentially using trees as biological scrubbers. Within relevant ranges of carbon abatement targets, augmenting carbon sequestration by protecting and expanding biomass sinks can potentially make large contributions at costs that are comparable or lower than for emission source controls. The Kyoto protocol to the framework convention on climate change includes many provisions for forest and land use carbon sequestration projects and activities in its signatories’ overall greenhouse gas mitigation plans. In particular, the protocol provides a joint implementation provision and a clean development mechanism that would allow nations to claim credit for carbon sequestration projects undertaken in cooperation with other countries. However, there are many obstacles for implementing an effective program of land use change and forestry carbon credits, especially measurement challenges. This paper explains the difficulty that even impartial analysts have in assessing the carbon offset benefits of projects. When these measurement challenges are combined with self-interest, asymmetries of information, and large numbers, it prevents to a project-based forest and land use carbon credit program may be insurmountable.  相似文献   

3.
Abstract

The Ninth Conference of the Parties (COP-9) decided to adopt an accounting system based on expiring carbon credits to address the problem of non-permanent carbon storage in forests established under the Clean Development Mechanism (CDM). This article reviews and discusses carbon accounting methods that were under consideration before COP-9 and presents a model which calculates the minimum area that forest plantation projects should reach to be able to compensate CDM transaction costs with the revenues from carbon credits. The model compares different accounting methods under various sets of parameters on project management, transaction costs, and carbon prices. Model results show that under current carbon price and average transaction costs, projects with an area of less than 500 ha are excluded from the CDM, whatever accounting method is used. Temporary crediting appears to be the most favorable approach to account for non-permanent carbon removal in forests and also for the feasibility of smaller projects. However, lower prices for credits with finite lifetimes may prevent the establishment of CDM forestry projects. Also, plantation projects with low risk of unexpected carbon loss and sufficient capacity for insuring or buffering the risk of carbon re-emission would benefit from equivalence-adjusted average carbon storage accounting rather than from temporary crediting.  相似文献   

4.
Brazil's Amazon rainforest provides an important environmental service with its storage of carbon, thereby reducing global warming. A growing number of projects and proposals intend to reward carbon storage services. Reducing emissions from deforestation and forest degradation is currently a key issue for negotiations on an international agreement that is to take effect in 2013. Various issues require decisions that will have substantial impacts on both the effectiveness of mitigation and the scale of Amazonia's potential role. These decisions include the effects that money generated from payments can have, the spatial scale of mitigation (e.g. projects or countries and sub-national political units), whether to have voluntary or mandatory markets, and whether these reductions will generate carbon credits to offset emissions elsewhere. It is argued that national-level programmes, combined with a national target under the United Nations Framework Convention on Climate Change, are the best solution for Brazil in terms of both capturing international funding and stimulating the major cuts in global emissions that are needed to minimize climate risk to the Amazon rainforest. The high likelihood of passing a tipping point for maintaining the Amazon rainforest implies the need for urgency in altering current negotiating positions.  相似文献   

5.
This paper presents a new accounting mechanism in the context of the UNFCCC issue on reducing emissions from deforestation in developing countries, including technical options for determining baselines of forest conversions. This proposal builds on the recent scientific achievements related to the estimation of tropical deforestation rates and to the assessment of ‘intact’ forest areas. The distinction between ‘intact’ and ‘non intact’ forests used here arises from experience with satellite-based deforestation measurements and allows accounting for carbon losses from forest degradation. The proposed accounting system would use forest area conversion rates as input data. An optimal technical solution to set baselines would be to use historical average figures during the time period from 1990 to 2005. The system introduces two different schemes to account for preserved carbon: one for countries with high forest conversion rates where the desired outcome would be a reduction in their rates, and another for countries with low rates. A ‘global’ baseline rate would be used to discriminate between these two country categories (high and low rates). For the hypothetical accounting period 2013–2017 and considering 72% of the total tropical forest domain for which data are available, the scenario of a 10% reduction of the high rates and of the preservation of low rates would result in approximately 1.6 billion tCO2 of avoided emissions. The resulting benefits of this reduction would be shared between those high-rate countries which reduced deforestation and those low-rate countries which did not increase their deforestation over an agreed threshold (e.g., half of “global” baseline rate).  相似文献   

6.
Palm oil production has boomed over the last decade, resulting in an expansion of the global oil palm planting area from 10 to 17 Million hectares between 2000 and 2012. Previous studies showed that a significant share of this expansion has come at the expense of tropical forests, notably in Indonesia and Malaysia, the current production centers. Governments of developing and emerging countries in all tropical regions increasingly promote oil palm cultivation as a major contributor to poverty alleviation, as well as food and energy independence. However, being under pressure from several non-governmental environmental organizations and consumers, the main palm oil traders have committed to sourcing sustainable palm oil. Against this backdrop we assess the area of suitable land and what are the limits to future oil palm expansion when several constraints are considered. We find that suitability is mainly determined by climatic conditions resulting in 1.37 billion hectares of suitable land for oil palm cultivation concentrated in twelve tropical countries. However, we estimate that half of the biophysically suitable area is already allocated to other uses, including protected areas which cover 30% of oil palm suitable area. Our results also highlight that the non-conversion of high carbon stock forest (>100 t AGB/ha) would be the most constraining factor for future oil palm expansion as it would exclude two-thirds of global oil palm suitable area. Combining eight criteria which might restrict future land availability for oil palm expansion, we find that 234 million hectares or 17% of worldwide suitable area are left. This might seem that the limits for oil palm expansion are far from being reached but one needs to take into account that some of this area might be hardly accessible currently with only 18% of this remaining area being under 2 h transportation to the closest city and that growing demand for other agricultural commodities which might also compete for this land has not been yet taken into account.  相似文献   

7.
South America’s tropical dry forests and savannas are under increasing pressure from agricultural expansion. Cattle ranching and soybean production both drive these forest losses, but their relative importance remains unclear. Also unclear is how soybean expansion elsewhere affects deforestation via pushing cattle ranching to deforestation frontiers. To assess these questions, we focused on the Chaco, a 110 million ha ecoregion extending into Argentina, Bolivia, and Paraguay, with about 8 million ha of deforestation in 2000–2012. We used panel regressions at the district level to quantify the role of soybean expansion in driving these forest losses using a wide range of environmental and socio-economic control variables. Our models suggest that soybean production was a direct driver of deforestation in the Argentine Chaco only (0.08 ha new soybean area per ha forest lost), whereas cattle ranching was significantly associated with deforestation in all three countries (0.02 additional cattle per hectare forest loss). However, our models also suggested Argentine soybean cultivation may indirectly be linked to deforestation in the Bolivian and Paraguayan Chaco. We furthermore found substantial time-delayed effects in the relationship of soybean expansion in Argentina and Paraguay (i.e., soybean expansion in one year resulted in deforestation several years later) and deforestation in the Chaco, further suggesting that possible displacement effects within and between Chaco countries may at least partly drive forest loss. Altogether, our study showed that deforestation in the Chaco appears to be mainly driven by the globally surging demand for soybean, although regionally other proximate drivers are sometimes important. Steering agricultural production in the Chaco and other tropical dry forests onto sustainable pathways will thus require policies that consider these scale effects and that account for the regional variation in deforestation drivers within and across countries.  相似文献   

8.
中国森林乔木林碳储量及其固碳潜力预测   总被引:5,自引:0,他引:5  
加强对我国森林碳储量和固碳潜力的研究,是制定中国增汇减排政策的重要依据,对我国国际气候谈判和全面了解森林碳汇潜力具有重要作用。利用我国第七次和第八次森林资源清查中各优势树种的面积和蓄积量数据,采用IPCC材积源生物量法(volume-biomass method),估算了我国森林(乔木林)碳储量和碳密度及其分布,分析我国不同省份天然乔木林和人工乔木林碳储量龄组结构特征;建立分区域、分起源主要优势树种的单位面积蓄积-林龄Logistic生长方程,结合我国森林2020年和2030年面积蓄积增长目标,预测我国乔木林2010—2050年间碳汇潜力。结果表明:第八次清查期间中国乔木林总碳储量为6135.68 Tg,碳密度为37.28 Mg/hm 2;天然乔木林和人工乔木林的碳储量分别为5246.07 Tg和889.61 Tg,分别占总碳储量的85.50%和14.50%。到2050年,中国乔木林和新造林的总碳储量和平均碳密度将分别达到11125.76 Tg和52.52 Mg/hm 2,与2010年相比分别增加81%和41%。分析结果表明中国乔木林有很大的碳汇潜力,将在应对和减缓全球气候变化中发挥重要作用。  相似文献   

9.
《Climate Policy》2013,13(1):41-54
Abstract

One strategy for mitigating the increase in atmospheric carbon dioxide is to expand the size of the terrestrial carbon sink, particularly forests, essentially using trees as biological scrubbers. Within relevant ranges of carbon abatement targets, augmenting carbon sequestration by protecting and expanding biomass sinks can potentially make large contributions at costs that are comparable or lower than for emission source controls. The Kyoto protocol to the framework convention on climate change includes many provisions for forest and land use carbon sequestration projects and activities in its signatories' overall greenhouse gas mitigation plans. In particular, the protocol provides a joint implementation provision and a clean development mechanism that would allow nations to claim credit for carbon sequestration projects undertaken in cooperation with other countries. However, there are many obstacles for implementing an effective program of land use change and forestry carbon credits, especially measurement challenges. This paper explains the difficulty that even impartial analysts have in assessing the carbon offset benefits of projects. When these measurement challenges are combined with self-interest, asymmetries of information, and large numbers, it prevents to a project-based forest and land use carbon credit program may be insurmountable.  相似文献   

10.
Over the last decades there have been a considerable number of deforestation studies in Latin America reporting lower rates compared with other regions; although these studies are either regional or local and do not allow the comparison of the intraregional variability present among countries or forest types. Here, we present the results obtained from a systematic review of 369 articles (published from 1990 to 2014) about deforestation rates for 17 countries and forest types (tropical lowland, tropical montane, tropical and subtropical dry, subtropical temperate and mixed, and Atlantic forests). Drivers identified as direct or indirect causes of deforestation in the literature were also analysed. With an overall annual deforestation rate of −1.14 (±0.092 SE) in the region, we compared the rates per forest type and country. The results indicate that there is a high variability of forest loss rates among countries and forest types. In general, Chile and Argentina presented the highest deforestation rates (−3.28 and −2.31 yearly average, respectively), followed by Ecuador and Paraguay (−2.19 and −1.89 yearly average, respectively). Atlantic forests (−1.62) and tropical montane forests (−1.55) presented the highest deforestation rates for the region. In particular, tropical lowland forests in Ecuador (−2.42) and tropical dry forests in Mexico (−2.88) and Argentina (−2.20) were the most affected. In most countries, the access to markets and agricultural and forest activities are the main causes of deforestation; however, the causes vary according to the forest types. Deforestation measurements focused at different scales and on different forest types will help governments to improve their reports for international initiatives, such as reducing emissions from deforestation and forest degradation (REDD+) but, more importantly, for developing local policies for the sustainable management of forests and for reducing the deforestation in Latin America.  相似文献   

11.
Increases in the number of large-scale land transactions (LSLTs), commonly known as ‘land grabbing’ or ‘global land rush,’ have occurred throughout the lower- and middle-income world over the past two decades. Despite substantial and continuing concerns about the negative socio-environmental impacts of LSLTs, trade-off analysis on boosting crop yield and minimizing climate-related effects remains limited. Our study makes use of a global dataset on LSLTs for agricultural production to estimate potential carbon emissions based on different scenarios of land cover change and fertilizer use, as well as potential value of agricultural production on transacted land. We show that, if fully implemented on ∼ 38 M ha of transacted land, 2.51 GtC will be emitted during land conversion, with another 24.2 MtC/year emitted from fertilizer use, assuming farming technology of investors’ origin is adopted on transacted land. Comparison of different combinations of forest protection policies and agricultural intensification levels reveals that enforcing strict deforestation regulation while promoting fertilizer use rate improves the carbon efficiency of agricultural production. Additionally, positive spillovers of investors’ farming technology on existing arable lands of host countries can potentially double their crop yield. Our analyses thus suggest that fostering agricultural intensification and technology spillovers under strict regulation on land allocation to investors to protect forests would allow for boosting agricultural yield while minimizing carbon emissions.  相似文献   

12.
Estimates of carbon emissions from the forest sector in Mexico are derived for the year 1985 and for two contrasting scenarios in 2025. The analysis covers both tropical and temperate closed forests. In the mid-1980s, approximately 804,000 ha/year of closed forests suffered major perturbations, of which 668,000 ha was deforestation. Seventy-five percent of total deforestation is concentrated in tropical forests. The resulting annual carbon balance from land-use change is estimated at 67.0 × 106 tons/year, which lead to net emissions of 52.3 × 106 tons/year accounting for the carbon uptake in restoration plantations and degraded forest lands. This last figure represents approximately 40% of the country's estimated annual total carbon emissions for 1985–1987. The annual carbon balance from the forest sector in 2025 is expected to decline to 28.0 × 106 t in the reference scenario and to become negative (i.e., a carbon sink), 62.0 × 106 t in the policy scenario. A number of policy changes are identified that would help achieve the carbon sequestration potential identified in this last scenario.  相似文献   

13.
Tropical forests are responsible for a large proportion of the global terrestrial C flux annually for natural ecosystems. Increased atmospheric CO2 and changes in climate are likely to affect the distribution of C pools in the tropics and the rate of cycling through vegetation and soils. In this paper, I review the literature on the pools and fluxes of carbon in tropical forests, and the relationship of these to nutrient cycling and climate. Tropical moist and humid forests have the highest rates of annual net primary productivity and the greatest carbon flux from soil respiration globally. Tropical dry forests have lower rates of carbon circulation, but may have greater soil organic carbon storage, especially at depths below 1 meter. Data from tropical elevation gradients were used to examine the sensitivity of biogeochemical cycling to incremental changes in temperature and rainfall. These data show significant positive correlations of litterfall N concentrations with temperature and decomposition rates. Increased atmospheric CO2 and changes in climate are expected to alter carbon and nutrient allocation patterns and storage in tropical forest. Modeling and experimental studies suggest that even a small increase in temperature and CO2 concentrations results in more rapid decomposition rates, and a large initial CO2 efflux from moist tropical soils. Soil P limitation or reductions in C:N and C:P ratios of litterfall could eventually limit the size of this flux. Increased frequency of fires in dry forest and hurricanes in moist and humid forests are expected to reduce the ecosystem carbon storage capacity over longer time periods.  相似文献   

14.
Field measurement programs in Brazil during the dry seasons in August and September 1979 and 1980 have demonstrated the large importance of the continental tropics in global air chemistry. Many important trace gases are produced in large amounts over the continents. During the dry season, much biomass burning takes place, especially in the cerrado regions, leading to a substantial emission of air pollutants, such as CO, NO x , N2O, CH4 and other hydrocarbons. Ozone concentrations are enhanced due to photochemical reactions. The large biogenic organic emissions from tropical forests play an important role in the photochemistry of the atmosphere and explain why CO is present in such high concentrations in the boundary layer of the tropical forest. Carbon monoxide production may represent more than 3% of the net primary productivity of the tropical forests. Ozone concentrations in the boundary layer of the tropical forests indicate strong removal processes. Due to atmospheric supply of NO x by lightning, there is probably a large production of O3 in the free troposphere over the Amazon tropical forests. This is transported to the marine-free troposphere and to the forest boundary layer.  相似文献   

15.
REDD+ has been evolving since 2005, yet its outcomes and effectiveness in reducing deforestation and/or achieving co-benefits are still unclear. The academic literature has focused a great deal on the politics and performance of REDD+ recipient countries and on-the-ground implementation, but less so on REDD+ donor countries and not on the question of how REDD+ donor countries learn in the process of implementing REDD+. We examine the three major REDD+ donors Norway, Germany and the UK and find that their funding objectives and approaches have broadened from the original simple and focused idea of financially rewarding tropical forest countries to keep forests standing and carbon stored to land-use, co-benefits and global efforts of transformation. Modalities of learning have not kept up with the rapid changes in terms of problem definition and characterization (as ‘super wicked’), let alone the transformative organizational or even paradigmatic changes identified as needed. The experience with REDD+ is demonstrating that merely adjusting the system in incremental ways will likely not solve the problems at hand. Instead, novel modes of learning to facilitate such a transition are needed.  相似文献   

16.
《Climate Policy》2013,13(3):293-304
One problem in international climate policy is the refusal of large developing countries to accept emission reduction targets. Brazil, China and India together account for about 20% of today's CO2 emissions. We analyse the case in which there is no international agreement on emission reduction targets, but countries do have domestic targets, and trade permits across borders. We contrast two scenarios. In one scenario, Brazil, China and India adopt their business as usual emissions as their target. In this scenario, there are substantial exports of emission permits from developing to developed countries, and substantial economic gains for all. In the second scenario, Brazil, China and India reduce their emissions target so that they have no net economic gain from permit trade. Here, developing countries do not accept responsibility for climate change (as they bear no net costs), but they do contribute to an emission reduction policy by refusing to make money out of it. Adopting such break-even targets can be done at minor cost to developed and developing countries (roughly $2 bn/year each in extra costs and forgone benefits), while developing countries are still slightly better off than in the case without international emissions trade. This result is robust to variations in scenarios and parameters. It contrasts with Stewart and Wiener (2003) who propose granting ‘hot air’ to developing countries to seduce them to accept targets. In 2020, China and India could reduce their emissions by some 10% from the baseline without net economic costs.  相似文献   

17.
Forest management is regarded as one possible approach to reducing greenhouse gases by absorbing carbon at a relatively low cost. In Korea, the forest comprises 64% of the total land area, so forests are expected to play a key role in mitigating climate change on the one hand. On the other hand, since 70% of the forest area is owned by the private sector, there is considerable uncertainty about managing forests for the national carbon sink strategy. The objective of this study is to examine the levels of carbon incentives to private forest management for the purpose of maximizing forests’ carbon absorption. First, in the context of present forest management policies, this study discusses applicable measures for the promotion of carbon sequestration in private forests. Next, considering the implications of policies related to forestry, the study develops a hypothetical carbon incentive scheme to compensate for economic revenue loss derived from accepting a rotation period that maximizes carbon sequestration. Carbon incentive levels are estimated by assessing the difference of financial revenue between a financially optimal rotation plan and a carbon-sink maximizing rotation plan. This study found that for red pine forests, the levels of the carbon incentives vary US$2–6 at 5% discount rate and US$ 34–88 at 7% discount rate while the values for oak forests are differing US$2–22 at 5% discount rate and US$ 20–52 at 7% discount rate. The study concludes that the carbon incentive scheme could be effective for increasing the carbon sink. However, given related governmental policies, it may not be desirable to employ the scheme without considering changes in government policy toward land use and regional development.  相似文献   

18.
If a binding agreement can be reached on a post-2012 international climate regime, it is likely to include the phased introduction of a market-linked mechanism for reducing emissions from deforestation and forest degradation in developing countries (REDD). Under such a scheme, countries that reduce net REDD emissions below a pre-set baseline would receive credits that could be sold in carbon markets and used by purchasing nations to meet their international mitigation obligations. This paper draws on the Australian experience with deforestation to identify some of the issues that might obstruct progress on REDD. For the past 20 years, Australia has had the highest rate of deforestation in the developed world; ~416,000 ha of forests were cleared annually between 1990 and 2009, resulting in the emission of almost 80 MtCO2-e/yr. It is also the only developed country that will rely on reduced deforestation emissions as the primary way of meeting its quantified emissions target under the Kyoto Protocol. Australia’s approach to deforestation issues provides valuable insights into the difficulties an international REDD scheme might encounter.  相似文献   

19.
The biomass carbon (C) stock of forests is one of key parameters for the study of regional and global carbon cycles. Literature reviews shows that inventory-based forest C stocks documented for major countries in the middle and high northern latitudes fall within a narrow range of 36–56 Mg C ha−1 with an overall area-weighted mean of 43.6 Mg C ha−1. These estimates are 0.40 to 0.71 times smaller than those (61–108 Mg C ha−1) used in previous analysis of balancing the global carbon budget. A statistical analysis, using the global forest biomass database, implies that aboveground biomass per hectare is proportional to forest mean height [biomass in Mg/ha = 10.63 (height in m)] in closed-canopy forests in the study regions, indicating that forest height can be a proxy of regional biomass C stocks. The narrow range of C stocks is likely a result of similar forest height across the northern regions. The lower biomass C stock obtained in this study strongly suggests that the role of the northern forests in the global carbon cycle needs to be re-evaluated. Our findings also suggest that regional estimates of biomass could be readily made from the use of satellite methods such as lidar that can measure forest canopy height over large regions.  相似文献   

20.
The Reduced Emissions from Deforestation and forest Degradation (REDD+) mechanism of a future post-2012 global climate-change treaty would aim to give incentive to tropical countries to reduce deforestation and thus forest-carbon emissions. It would do so by crediting tropical countries for reducing deforestation relative to a baseline scenario describing carbon emissions and removals from forest-cover change expected in the absence of REDD+. Defining a credible and accurate baseline is both critical and challenging. One approach considered promising is spatial modelling to project forest-cover change on the basis of historical trends; yet few such projections have been validated at a national scale. We develop and validate a novel GEOMOD projection of forest-cover change in Panama over 2000–2008, based on trends over 1990–2000 and 25 drivers of forest-cover change. Compared with the actual landscape of 2008, our projection is 85.2% accurate at a 100-m pixel resolution. More error is attributable to the location of projected forest (8.6%) than to its area (6.2%). Accuracy was least where forest regeneration predominated (80%), and greatest where deforestation predominated (90%). Despite the sophistication of our projection, it is slightly less accurate than if we had assumed no forest-cover change over 2000–2008. We identify factors limiting projection accuracy, including the complexity of forest-cover change, the spatial variability of forest-carbon density, and the relatively small area of change at the national scale. We conclude that, with the exception of contexts where forest-cover change is significant and straightforward and where forest-carbon density relatively uniform (e.g., agricultural frontiers), spatially projected baselines are of limited value for REDD+ – their accuracy is too limited given their relative lack of transparency. Simpler, relatively coarse scale, retrospective baselines are recommended instead.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号