首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to understand and simulate site effects on strong ground motion records of recent earthquakes in Mexico City, it is fundamental to determine the in situ elastic and anelastic properties of the shallow stratigraphy of the basin. The main properties of interest are the shear wave velocities and Q-quality factors and their correlation with similar parameters in zones of the city. Despite population density and paved surfaces, it is feasible to gather shallow refraction data to obtain laterally homogeneous subsoil structures at some locations. We focused our analysis in the Texcoco Lake region of the northeastern Mexico City basin. This area consists of unconsolidated clay sediments, similar to those of the lake bed zone in Mexico City, where ground motion amplification and long duration disturbances are commonly observed. We recorded Rayleigh and Love waves using explosive and sledgehammer sources and 4.5 Hz vertical and horizontal geophones, respectively. Additionally, for the explosive source, we recorded three-component seismograms using 1 Hz seismometers. We obtained phase velocity dispersion curves from ray parameter-frequency domain analyses and inverted them for vertical distribution of S wave velocity. The initial model was obtained from a standard first-break refraction analysis. We also obtained an estimation of the QS shear wave quality factor for the uppermost stratigraphy. Results compare well with tilt and cone penetrometer resistance measurements at the same test site, emphasizing the importance of these studies for engineering purposes.  相似文献   

2.
Predicting the shear‐wave (S‐wave) velocity is important in seismic modelling, amplitude analysis with offset, and other exploration and engineering applications. Under the low‐frequency approximation, the classical Biot–Gassmann theory relates the Biot coefficient to the bulk modulus of water‐saturated sediments. If the Biot coefficient under in situ conditions can be estimated, the shear modulus or the S‐wave velocity can be calculated. The Biot coefficient derived from the compressional‐wave (P‐wave) velocity of water‐saturated sediments often differs from and is less than that estimated from the S‐wave velocity, owing to the interactions between the pore fluid and the grain contacts. By correcting the Biot coefficients derived from P‐wave velocities of water‐saturated sediments measured at various differential pressures, an accurate method of predicting S‐wave velocities is proposed. Numerical results indicate that the predicted S‐wave velocities for consolidated and unconsolidated sediments agree well with measured velocities.  相似文献   

3.
To determine the shear wave velocity structure and predominant period features of T?naztepe in ?zmir, Turkey, where new building sites have been planned, active–passive surface wave methods and single-station microtremor measurements are used, as well as surface acquisition techniques, including the multichannel analysis of surface waves (MASW), refraction microtremor (ReMi), and the spatial autocorrelation method (SPAC), to pinpoint shallow and deep shear wave velocity. For engineering bedrock (V s > 760 m/s) conditions at a depth of 30 m, an average seismic shear wave velocity in the upper 30 m of soil (AVs30) is not only accepted as an important parameter for defining ground behavior during earthquakes, but a primary parameter in the geotechnical analysis for areas to be classified by V s30 according to the National Earthquake Hazards Reduction Program (NEHRP). It is also determined that Z1.0, which represents a depth to V s = 1000 m/s, is used for ground motion prediction and changed from 0 to 54 m. The sediment–engineering bedrock structure for T?naztepe that was obtained shows engineering bedrock no deeper than 30 m. When compared, the depth of engineering bedrock and dominant period map and geology are generally compatible.  相似文献   

4.
Deep unconsolidated sediments in the Mississippi embayment will influence ground motions from earthquakes in the New Madrid seismic zone. Shear wave velocity profiles of these sediments are important input parameters for modeling wave propagation and site response in this region. Low-frequency, active-source surface wave velocity measurements were performed to develop small-strain shear wave velocity (VS) profiles at eleven deep soil sites in the Mississippi embayment, from north of New Madrid, Missouri to Memphis, Tennessee. A servo-hydraulic, low-frequency source was used to excite surface wave energy to wavelengths of 600 m, resulting in VS profiles to depths of over 200 m. The average VS profile calculated from the eleven sites is in good agreement with common reference VS profiles that have been used in seismic hazard studies of this region. The variability in VS profiles is shown to be associated with changes in formation depth and thickness from site-to-site. Using lithologic information at each site, average formation velocities were developed and compared to previous studies. We found average VS values of about 193 m/s for alluvial deposits, 400 m/s for the Upper Claiborne formations, and 685 m/s for the Memphis Sand formation.  相似文献   

5.
Filters for migrated offset substacks are designed by partial coherence analysis to predict ‘normal’ amplitude variation with offset (AVO) in an anomaly free area. The same prediction filters generate localized prediction errors when applied in an AVO‐anomalous interval. These prediction errors are quantitatively related to the AVO gradient anomalies in a background that is related to the minimum AVO anomaly detectable from the data. The prediction‐error section is thus used to define a reliability threshold for the identification of AVO anomalies. Coherence analysis also enables quality control of AVO analysis and inversion. For example, predictions that are non‐localized and/or do not show structural conformity may indicate spatial variations in amplitude–offset scaling, seismic wavelet or signal‐to‐noise (S/N) ratio content. Scaling and waveform variations can be identified from inspection of the prediction filters and their frequency responses. S/N ratios can be estimated via multiple coherence analysis. AVO inversion of seismic data is unstable if not constrained. However, the use of a constraint on the estimated parameters has the undesirable effect of introducing biases into the inverted results: an additional bias‐correction step is then needed to retrieve unbiased results. An alternative form of AVO inversion that avoids additional corrections is proposed. This inversion is also fast as it inverts only AVO anomalies. A spectral coherence matching technique is employed to transform a zero‐offset extrapolation or near‐offset substack into P‐wave impedance. The same technique is applied to the prediction‐error section obtained by means of partial coherence, in order to estimate S‐wave velocity to P‐wave velocity (VS/VP) ratios. Both techniques assume that accurate well ties, reliable density measurements and P‐wave and S‐wave velocity logs are available, and that impedance contrasts are not too strong. A full Zoeppritz inversion is required when impedance contrasts that are too high are encountered. An added assumption is made for the inversion to the VS/VP ratio, i.e. the Gassmann fluid‐substitution theory is valid within the reservoir area. One synthetic example and one real North Sea in‐line survey illustrate the application of the two coherence methods.  相似文献   

6.
Shear wave velocity–depth information is required for predicting the ground motion response to earthquakes in areas where significant soil cover exists over firm bedrock. Rather than estimating this critical parameter, it can be reliably measured using a suite of surface (non-invasive) and downhole (invasive) seismic methods. Shear wave velocities from surface measurements can be obtained using SH refraction techniques. Array lengths as large as 1000 m and depth of penetration to 250 m have been achieved in some areas. High resolution shear wave reflection techniques utilizing the common midpoint method can delineate the overburden-bedrock surface as well as reflecting boundaries within the overburden. Reflection data can also be used to obtain direct estimates of fundamental site periods from shear wave reflections without the requirement of measuring average shear wave velocity and total thickness of unconsolidated overburden above the bedrock surface. Accurate measurements of vertical shear wave velocities can be obtained using a seismic cone penetrometer in soft sediments, or with a well-locked geophone array in a borehole. Examples from thick soil sites in Canada demonstrate the type of shear wave velocity information that can be obtained with these geophysical techniques, and show how these data can be used to provide a first look at predicted ground motion response for thick soil sites.  相似文献   

7.
A geophysical survey was conducted over a hydrocarbon prospect in the North Celtic Sea Basin using a small array of ocean‐bottom seismographs (OBSs). The purpose of this study was to determine the ratio of compressional (P)‐ to shear (S)‐wave velocity of consolidated sedimentary rocks in order to constrain possible subsurface variations in pore‐fluid content. The ratio of VP and VS is known to be particularly sensitive to lithology, porosity and pore‐fluid content, making it a useful parameter for evaluating hydrocarbon prospects. OBSs offer a relatively cheap and time‐effective means of acquiring multi‐component data compared with ocean‐bottom cables. In this contribution, we demonstrate the ability of an OBS survey comprising three pairs of two OBSs spaced at 1.6 km to recover lateral variations in the VP/VS ratio. A key requirement of this type of study is that S waves will be generated by mode conversions in the subsurface, since they cannot be generated in nor travel through fluids. In this survey, the contrast in physical properties of the hard seabed of the North Celtic Sea Basin provided a means of generating converted S waves. Two‐dimensional ray‐tracing and forward modelling was used to create both VP and VS models along a profile crossing the Blackrock prospect in the North Celtic Sea Basin. These models comprise four layers and extend to a maximum depth of 1.1 km. The observed northward decrease in the VP/VS ratio at depths of 500–1000 m below the seafloor in the study area is interpreted to represent lateral variation in the amount of gas present in the pore space of Upper Cretaceous chalks and shales overlying the prospective reservoir.  相似文献   

8.
Velocities of compressional and shear waves in limestones   总被引:2,自引:1,他引:2  
Carbonate rocks are important hydrocarbon reservoir rocks with complex textures and petrophysical properties (porosity and permeability) mainly resulting from various diagenetic processes (compaction, dissolution, precipitation, cementation, etc.). These complexities make prediction of reservoir characteristics (e.g. porosity and permeability) from their seismic properties very difficult. To explore the relationship between the seismic, petrophysical and geological properties, ultrasonic compressional‐ and shear‐wave velocity measurements were made under a simulated in situ condition of pressure (50 MPa hydrostatic effective pressure) at frequencies of approximately 0.85 MHz and 0.7 MHz, respectively, using a pulse‐echo method. The measurements were made both in vacuum‐dry and fully saturated conditions in oolitic limestones of the Great Oolite Formation of southern England. Some of the rocks were fully saturated with oil. The acoustic measurements were supplemented by porosity and permeability measurements, petrological and pore geometry studies of resin‐impregnated polished thin sections, X‐ray diffraction analyses and scanning electron microscope studies to investigate submicroscopic textures and micropores. It is shown that the compressional‐ and shear‐wave velocities (Vp and Vs, respectively) decrease with increasing porosity and that Vp decreases approximately twice as fast as Vs. The systematic differences in pore structures (e.g. the aspect ratio) of the limestones produce large residuals in the velocity versus porosity relationship. It is demonstrated that the velocity versus porosity relationship can be improved by removing the pore‐structure‐dependent variations from the residuals. The introduction of water into the pore space decreases the shear moduli of the rocks by about 2 GPa, suggesting that there exists a fluid/matrix interaction at grain contacts, which reduces the rigidity. The predicted Biot–Gassmann velocity values are greater than the measured velocity values due to the rock–fluid interaction. This is not accounted for in the Biot–Gassmann velocity models and velocity dispersion due to a local flow mechanism. The velocities predicted by the Raymer and time‐average relationships overestimated the measured velocities even more than the Biot model.  相似文献   

9.
The performance of refraction inversion methods that employ the principle of refraction migration, whereby traveltimes are laterally migrated by the offset distance (which is the horizontal separation between the point of refraction and the point of detection on the surface), can be adversely affected by very near‐surface inhomogeneities. Even inhomogeneities at single receivers can limit the lateral resolution of detailed seismic velocities in the refractor. The generalized reciprocal method ‘statics’ smoothing method (GRM SSM) is a smoothing rather than a deterministic method for correcting very near‐surface inhomogeneities of limited lateral extent. It is based on the observation that there are only relatively minor differences in the time‐depths to the target refractor computed for a range of XY distances, which is the separation between the reverse and forward traveltimes used to compute the time‐depth. However, any traveltime anomalies, which originate in the near‐surface, migrate laterally with increasing XY distance. Therefore, an average of the time‐depths over a range of XY values preserves the architecture of the refractor, but significantly minimizes the traveltime anomalies originating in the near‐surface. The GRM statics smoothing corrections are obtained by subtracting the average time‐depth values from those computed with a zero XY value. In turn, the corrections are subtracted from the traveltimes, and the GRM algorithms are then re‐applied to the corrected data. Although a single application is generally adequate for most sets of field data, model studies have indicated that several applications of the GRM SSM can be required with severe topographic features, such as escarpments. In addition, very near‐surface inhomogeneities produce anomalous head‐wave amplitudes. An analogous process, using geometric means, can largely correct amplitude anomalies. Furthermore, the coincidence of traveltime and amplitude anomalies indicates that variations in the near‐surface geology, rather than variations in the coupling of the receivers, are a more likely source of the anomalies. The application of the GRM SSM, together with the averaging of the refractor velocity analysis function over a range of XY values, significantly minimizes the generation of artefacts, and facilitates the computation of detailed seismic velocities in the refractor at each receiver. These detailed seismic velocities, together with the GRM SSM‐corrected amplitude products, can facilitate the computation of the ratio of the density in the bedrock to that in the weathered layer. The accuracy of the computed density ratio improves where lateral variations in the seismic velocities in the weathered layer are known.  相似文献   

10.
Currently, numerical simulations of seismic channel waves for the advance detection of geological structures in coal mine roadways focus mainly on modeling twodimensional wave fields and therefore cannot accurately simulate three-dimensional (3-D) full-wave fields or seismic records in a full-space observation system. In this study, we use the first-order velocity–stress staggered-grid finite difference algorithm to simulate 3-D full-wave fields with P-wave sources in front of coal mine roadways. We determine the three components of velocity Vx, Vy, and Vz for the same node in 3-D staggered-grid finite difference models by calculating the average value of Vy, and Vz of the nodes around the same node. We ascertain the wave patterns and their propagation characteristics in both symmetrical and asymmetric coal mine roadway models. Our simulation results indicate that the Rayleigh channel wave is stronger than the Love channel wave in front of the roadway face. The reflected Rayleigh waves from the roadway face are concentrated in the coal seam, release less energy to the roof and floor, and propagate for a longer distance. There are surface waves and refraction head waves around the roadway. In the seismic records, the Rayleigh wave energy is stronger than that of the Love channel wave along coal walls of the roadway, and the interference of the head waves and surface waves with the Rayleigh channel wave is weaker than with the Love channel wave. It is thus difficult to identify the Love channel wave in the seismic records. Increasing the depth of the receivers in the coal walls can effectively weaken the interference of surface waves with the Rayleigh channel wave, but cannot weaken the interference of surface waves with the Love channel wave. Our research results also suggest that the Love channel wave, which is often used to detect geological structures in coal mine stopes, is not suitable for detecting geological structures in front of coal mine roadways. Instead, the Rayleigh channel wave can be used for the advance detection of geological structures in coal mine roadways.  相似文献   

11.
Controls on sonic velocity in carbonates   总被引:2,自引:0,他引:2  
Compressional and shear-wave velocities (V p andV s) of 210 minicores of carbonates from different areas and ages were measured under variable confining and pore-fluid pressures. The lithologies of the samples range from unconsolidated carbonate mud to completely lithified limestones. The velocity measurements enable us to relate velocity variations in carbonates to factors such as mineralogy, porosity, pore types and density and to quantify the velocity effects of compaction and other diagenetic alterations.Pure carbonate rocks show, unlike siliciclastic or shaly sediments, little direct correlation between acoustic properties (V p andV s) with age or burial depth of the sediments so that velocity inversions with increasing depth are common. Rather, sonic velocity in carbonates is controlled by the combined effect of depositional lithology and several post-depositional processes, such as cementation or dissolution, which results in fabrics specific to carbonates. These diagenetic fabrics can be directly correlated to the sonic velocity of the rocks.At 8 MPa effective pressureV p ranges from 1700 to 6500 m/s, andV s ranges from 800 to 3400 m/s. This range is mainly caused by variations in the amount and type of porosity and not by variations in mineralogy. In general, the measured velocities show a positive correlation with density and an inverse correlation with porosity, but departures from the general trends of correlation can be as high as 2500 m/s. These deviations can be explained by the occurrence of different pore types that form during specific diagenetic phases. Our data set further suggests that commonly used correlations like Gardner's Law (V p-density) or the time-average-equation (V p-porosity) should be significantly modified towards higher velocities before being applied to carbonates.The velocity measurements of unconsolidated carbonate mud at different stages of experimental compaction show that the velocity increase due to compaction is lower than the observed velocity increase at decreasing porosities in natural rocks. This discrepancy shows that diagenetic changes that accompany compaction influence velocity more than solely compaction at increasing overburden pressure.The susceptibility of carbonates to diagenetic changes, that occur far more quickly than compaction, causes a special velocity distribution in carbonates and complicates velocity estimations. By assigning characteristic velocity patterns to the observed diagenetic processes, we are able to link sonic velocity to the diagenetic stage of the rock.  相似文献   

12.
— Detailed shear-wave velocity profiles versus depth have been obtained in typical lithostratigraphies of Napoli. FTAN and hedgehog methods have been applied to Rayleigh surface waves recorded in refraction seismic surveys. The comparison with literature measurements shows good agreement with nearby down- and cross-hole tests. The pumiceous and lapilli content, and the different welding and alteration degree of the Neapolitan pyroclastic soils cause a strong scattering of the shear wave velocities (VS) from bore-hole measurements, even for the same formation. Surface measurements, based on FTAN-hedgehog methods, determine average VS along travel paths of about 100 m, give results that are comparable with down- and cross-hole velocity profiles, and have the additional advantage of being less scattered, and thus more representative of average properties than bore-hole measurements. The results of surface measurements should be preferred in the computation of realistic seismograms and are particularly suitable in urban areas, as they are not destructive and need just one receiver.  相似文献   

13.
The computation of static corrections requires information about subsurface velocities. This information can be obtained by different methods: surface wave analysis, short refraction lines, downhole times, uphole times and first arrivals from seismograms. For pure shear waves generated by SH sources the analysis of first arrivals from seismograms combined, if necessary, with short refraction lines has proved to be most accurate and economic. A comparison of first-arrival plots from P- and S-wave surveys of the same line measured in areas of unconsolidated sediments in northern Germany illustrates the characteristic differences between the two velocity models. P-waves show a marked velocity increase at the water table from about 600 to 1800 m/s. S-wave velocities of the same strata increase gradually from about 100 to 400 m/s. As a consequence, S-wave models are vertically and laterally more complex and, in general, show no significant velocity increase at a defined boundary as P-wave models do. Therefore, other suitable correction levels with specific velocities must be chosen. A comparison of “tgd-corrections” (correction time between geophone position and datum level) for P- and S-waves in areas of unconsolidated sediments shows that their ratio is different from the P-/S-velocity ratio for the respective correction level because of the greater depth of the S-wave refractor. Therefore, P- and S-waves are influenced by different near-surface anomalies, and time corrections calculated for both wave types are largely independent.  相似文献   

14.
A practical method is presented for determining three‐dimensional S‐wave velocity (VS) profile from microtremor measurements. Frequency–wave number (fk) spectral analyses of microtremor array records are combined, for this purpose, with microtremor horizontal‐to‐vertical (H/V) spectral ratio techniques. To demonstrate the effectiveness of the proposed method, microtremor measurements using arrays of sensors were conducted at six sites in the city of Kushiro, Japan. The spectral analyses of the array records yield dispersion characteristics of Rayleigh waves and H/V spectra of surface waves, and joint inversion of these data results in VS profiles down to bedrock at the sites. Conventional microtremor measurements were performed at 230 stations within Kushiro city, resulting in the H/V spectra within the city. Three‐dimensional VS structure is then estimated from inversion of the H/V spectra with the VS values determined from the microtremor array data. This reveals three‐dimensional VS profile of Kushiro city, together with an unknown hidden valley that crosses the central part of the city. The estimated VS profile is consistent with available velocity logs and results of subsequent borings, indicating the effectiveness of the proposed method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Characterization of hydraulic conductivity (K) in aquifers is critical for evaluation, management, and remediation of groundwater resources. While estimates of K have been traditionally obtained using hydraulic tests over discrete intervals in wells, geophysical measurements are emerging as an alternative way to estimate this parameter. Nuclear magnetic resonance (NMR) logging, a technology once largely applied to characterization of deep consolidated rock petroleum reservoirs, is beginning to see use in near‐surface unconsolidated aquifers. Using a well‐known rock physics relationship—the Schlumberger Doll Research (SDR) equation—K and porosity can be estimated from NMR water content and relaxation time. Calibration of SDR parameters is necessary for this transformation because NMR relaxation properties are, in part, a function of magnetic mineralization and pore space geometry, which are locally variable quantities. Here, we present a statistically based method for calibrating SDR parameters that establishes a range for the estimated parameters and simultaneously estimates the uncertainty of the resulting K values. We used co‐located logging NMR and direct K measurements in an unconsolidated fluvial aquifer in Lawrence, Kansas, USA to demonstrate that K can be estimated using logging NMR to a similar level of uncertainty as with traditional direct hydraulic measurements in unconsolidated sediments under field conditions. Results of this study provide a benchmark for future calibrations of NMR to obtain K in unconsolidated sediments and suggest a method for evaluating uncertainty in both K and SDR parameter values.  相似文献   

16.
In many land seismic situations, the complex seismic wave propagation effects in the near‐surface area, due to its unconsolidated character, deteriorate the image quality. Although several methods have been proposed to address this problem, the negative impact of 3D complex near‐surface structures is still unsolved to a large extent. This paper presents a complete 3D data‐driven solution for the near‐surface problem based on 3D one‐way traveltime operators, which extends our previous attempts that were limited to a 2D situation. Our solution is composed of four steps: 1) seismic wave propagation from the surface to a suitable datum reflector is described by parametrized one‐way propagation operators, with all the parameters estimated by a new genetic algorithm, the self‐adjustable input genetic algorithm, in an automatic and purely data‐driven way; 2) surface‐consistent residual static corrections are estimated to accommodate the fast variations in the near‐surface area; 3) a replacement velocity model based on the traveltime operators in the good data area (without the near‐surface problem) is estimated; 4) data interpolation and surface layer replacement based on the estimated traveltime operators and the replacement velocity model are carried out in an interweaved manner in order to both remove the near‐surface imprints in the original data and keep the valuable geological information above the datum. Our method is demonstrated on a subset of a 3D field data set from the Middle East yielding encouraging results.  相似文献   

17.
Static shifts from near‐surface inhomogeneities very often represent the key problem in the processing of seismic data from arid regions. In this case study, the deep bottom fill of a wadi strongly degrades the image quality of a 2D seismic data set. The resulting static and dynamic problems are solved by both conventional and common‐reflection‐surface (CRS) processing. A straightforward approach derives conventional refraction statics from picked first breaks and then goes through several iterations of manual velocity picking and residual statics calculation. The surface‐induced static and dynamic inhomogeneities, however, are not completely solved by these conventional methods. In CRS processing, the local adaptation of the CRS stacking parameters results in very detailed dynamic corrections. They resolve the local inhomogeneities that were not detected by manual picking of stacking velocities and largely compensate for the surface‐induced deterioration in the stack. The subsequent CRS residual statics calculations benefit greatly from the large CRS stacking fold which increases the numbers of estimates for single static shifts. This improves the surface‐consistent averaging of static shifts and the convergence of the static solution which removes the remaining static shifts in the 2D seismic data. The large CRS stacking fold also increases the signal‐to‐noise ratio in the final CRS stack.  相似文献   

18.
Modeling shear rigidity of stratified bedrock in site response analysis   总被引:1,自引:0,他引:1  
Where a distinct soil-rock interface exists, the bedrock medium is commonly treated as elastic half-space and the bedrock surface as the lower boundary of the soil-column model for site response analyses (or the lower boundary of the finite element model for soil-structure interaction analyses). While shear wave velocity in bedrock varies with depth, there has been no consensus amongst scientists and practitioners over the value of “effective depth” into bedrock at which the “half-space” shear wave velocity value should be taken for modeling purposes. This paper reports an interesting and important observation that the effective depth into bedrock is sensitive to the shear wave velocity profile of the overlying soil sediments. A simple and heuristic method, namely Resonant Period Equivalence (RPE) Method, is proposed herein for representing a stratified elastic bedrock of inhomogeneous properties by an equivalent homogeneous elastic half-space medium, which is characterized by a single equivalent shear wave velocity (VR) value. The proposed calculation method has been verified by extensive comparative analyses involving the use of programs SHAKE and NERA and employing the complete shear wave velocity models of both the soil sediments and the underlying stratified bedrock.  相似文献   

19.
Geostatistical integration of near-surface geophysical data   总被引:1,自引:0,他引:1  
Accurate statics calculation and near‐surface related noise removal require a detailed knowledge of the near‐surface velocity field. Conventional seismic surveys currently are not designed to provide this information, and 3D high‐resolution reflection/refraction acquisition is not feasible for large survey areas. Satellite images and vibrator plate attributes are dense low‐cost data, which can be used in spatially extrapolating velocities from sparse uphole data by geostatistics. We tested this approach in two different areas of Saudi Arabia and found that the optimal recipe depends on the local geology.  相似文献   

20.
Data provided by accelerometric networks are important for seismic hazard assessment. The correct use of accelerometric signals is conditioned by the station site metadata quality (i.e., soil class, VS30, velocity profiles, and other relevant information that can help to quantify site effects). In France, the permanent accelerometric network consists of about 150 stations. Thirty-three of these stations in the southern half of France have been characterized, using surface-wave-based methods that allow derivation of velocity profiles from dispersion curves of surface waves. The computation of dispersion curves and their subsequent inversion in terms of shear-wave velocity profiles has allowed estimation of VS30 values and designation of soil classes, which include the corresponding uncertainties. From a methodological point of view, this survey leads to the following recommendations: (1) perform both active (multi-analysis surface waves) and passive (ambient vibration arrays) measurements to derive dispersion curves in a broadband frequency range; (2) perform active acquisitions for both vertical (Rayleigh wave) and horizontal (Love wave) polarities. Even when the logistic contexts are sometimes difficult, the use of surface-wave-based methods is suitable for station-site characterization, even on rock sites. In comparison with previous studies that have mainly estimated VS30 indirectly, the new values here are globally lower, but the EC8-A class sites remain numerous. However, even on rock sites, high frequency amplifications may affect accelerometric records, due to the shallow relatively softer layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号