共查询到19条相似文献,搜索用时 62 毫秒
1.
基于多视协方差矩阵发展了一种综合选择性去取向和广义体散射的极化sar四分量分解模型 首先引入交叉极化相关系数进行螺旋体散射抑制和非反射对称地物去取向然后采用一种随hh和vv功率比值自适应变化的广义体散射模型来替代原体散射模型最后通过功率限制处理以完全消除分解负功率像素该处理不仅能够保持地物主导散射类型不变而且包含与krogager分解三分量对应的非相干分解 通过机载l波段esar和airsar极化数据实验并与其他分解模型的比较验证了该分解模型的有效性 相似文献
2.
不同于一般分类算法基于像素统计的分类,忽略了地物的散射特性,文中提出了一种保持地物散射特性的分类方法。这种方法将Singh提出的Singh四分量分解与基于复Wishart分布的最大似然分类器相结合,对高分三号全极化影像进行分类。利用Singh四分量分解获得表面散射、体散射、二次散射和螺旋体散射,然后将前3种基础散射分别划分为多个聚类,根据复Wishart距离进行类间合并,直到获得指定类别数,输入复Wishart分类器进行迭代分类,最后进行类别合并获得最终分类结果。试验表明本文算法具有较好的分类效果且验证了利用高分三号全极化卫星数据进行影像分类的可行性。 相似文献
3.
4.
5.
介绍了原始极化SAR三分量分解中存在的问题,如负功率和散射机制模糊,并深入分析了其改进方法中仍然存在的缺陷,提出了一种自适应的三分量分解。该分解采用了更一般化的散射模型,并首次考虑了像素中存在不同旋转角的两个面或偶次散射目标,然后利用散射Alpha角确定除体散射之外的剩余主导散射机制,使面或偶次散射得到了更充分的保持。最后,从散射模型与极化相干矩阵自适应匹配的角度出发,提出了一种对负功率进行自适应优化的措施,使得负功率像素个数大大减少,从而分解更加准确有效。试验结果表明,该分解所得结果更符合实际地物散射过程,能更好地解决基于模型的分解方法中存在的缺陷。 相似文献
6.
7.
8.
针对建筑物结构复杂、形式多样,产生的交叉极化散射现象使得其在极化SAR图像上易与植被混淆,提取困难的问题,该文结合极化散射信息和空间信息进行建筑物的提取研究,主要以AIRSAR全极化数据进行实验。①进行基于极化补偿的Yamaguchi四分量分解,根据偶次散射能量提取出建筑物;②提取总功率Span图像的纹理特征利用支持向量机进行分类;③融合前两步的提取结果得到最终结果。结果表明:方法优于基于极化补偿的Yamaguchi四分量分解的提取方法和SVM方法,对于平行建筑物、小方位角建筑物、大方位角建筑物的提取精度分别达到了99%、94%和56%,有效区分了建筑物与植被。 相似文献
9.
在分析四分量极化散射理论基础上,提出了一种新的极化SAR数据相干斑滤波算法。该算法首先应用四分量散射模型对原始极化SAR数据进行分解,以获得像素的散射类型和总功率值;然后采用极化特征和空间特征的相似性度量,在滤波窗口内选取中心像素的同质区;最后根据同质区的局部统计特性,应用线性最小均方滤波器进行滤波处理。AIRSAR系统L波段极化SAR数据的实验结果表明,该算法不仅可有效抑制相干斑,而且对极化和边缘等细节信息也有较好的保持。 相似文献
10.
特征提取及其选择是SAR海冰分类的重要步骤之一。在众多特征中选取有效特征,进而构建表达地物类型的特征空间是提高分类精度的关键。为此,本文提出一种基于目标分解特征的全极化SAR海冰分类算法。首先,对全极化SAR数据进行多视化处理及滤波操作,生成相干矩阵;其次,对相干矩阵进行目标分解,并针对分解结果提取散射特征参数,进而构建特征空间;再次,通过对所提取的特征进行统计相关性分析,并对高相关特征采用PCA降维,以优化特征组合;最后,设计BP神经网络分类器,并将所得的优化特征矢量作为输入,海冰类别为输出,实现海冰分类。本文以格陵兰中部海域作为研究试验区域,采用L波段ALOS PALSAR全极化数据。通过对本文算法与对比算法的分类结果进行定性定量分析,可以得出本文所选取的特征对海冰识别较好。此外,通过对利用各个不同特征海冰分类结果的性能分析,可以得出基于散射模型的目标分解比基于特征值的H/α/A分解更有助于海冰分类。 相似文献
11.
一种利用Cloude-Pottier分解和极化白化滤波的全极化SAR图像分类算法 总被引:4,自引:2,他引:4
提出了一种新的基于Cloude-Pottier分解和极化白化滤波(PWF)的全极化SAR数据分类算法。该算法利用PWF的结果来代替反熵A对复WishartH/α分类结果进行进一步细化,按PWF的值将复WishartH/α分类结果由8类分为16类,然后再次进行Wishart迭代分类。实验结果表明,该算法能有效地提高分类精度,分类结果明显优于常规的复WishartH/α分类结果和复WishartH/α/A分类结果。 相似文献
12.
极化雷达目标分解方法用于岩性分类 总被引:10,自引:0,他引:10
雷达遥感中地表不同岩石类别的后向散射一般判别不大,因此以散射幅度为主要探测因子常规雷达遥感数据不利于岩性分类。极化雷达以散射矩阵或Stokes短阵的形式,记录了更多的地物回波信息。信息源的增多,有利于提高岩性分类的精度。但是,由于不同极化状态回波信号之间的关性,极化数据不可避免地产生数据冗余,反而增大了岩性分类的误差。 相似文献
13.
极化合成孔径雷达数据蕴含了丰富的地物极化散射信息,已广泛应用于海上舰船目标检测研究。针对极化相干矩阵无法直接用于分析特定散射体物理特性的缺陷,利用Yamaguchi极化分解改进了极化Notch滤波器。将基于模型的极化分解方法引入Notch滤波器,利用表面散射、二次散射、体散射和螺旋体散射等散射机制的能量构造散射矢量代替极化相干散射矢量,并加入功率能量因子,构造新的极化SAR图像Notch滤波器。Radarsat-2全极化SAR图像实验结果表明,改进算法有效增强了舰船目标与海杂波背景间的对比度,检测性能优越。 相似文献
14.
应用分水岭变换与支持向量机的极化SAR图像分类 总被引:1,自引:0,他引:1
结合分水岭变换与支持向量机的特性,提出一种新的极化SAR图像分类算法。其基本思想是先通过分水岭变换及区域合并处理,将极化SAR图像分割成一系列同质区;再以同质区为基本单元,进行特征提取及样本选择后采用支持向量机分类。实验结果表明,该算法可有效降低相干斑对分类的影响,与传统基于像素的SVM算法相比,其分类精度有显著的提高,且结果也更易于理解。 相似文献
15.
利用极化目标分解和WMRF的全极化SAR图像分类方法 总被引:2,自引:1,他引:2
提出了一种新的全极化SAR图像非监督分类方法,该方法将H/Alpha/A分解与马尔科夫随机场(Morkov rondom field,MRF)相结合。首先,根据地物的散射机制进行H/Alpha/A分解得到初始分类;然后,由基于Wishart分布的最大似然法迭代聚类更新分类结果;最后,结合WMRF(Wishart Markov randomfield)方法,由迭代条件模型法求取最大后验准则下的分割结果。NASA/JPL实验室的数据结果表明,该算法具有较好的分类效果,并获得了较高的分类精度。 相似文献
16.
基于Freeman散射熵和各向异性度的极化SAR影像分类算法研究 总被引:1,自引:0,他引:1
极化SAR影像中阴影、水体和裸露的耕地3种地物类型有非常相似的极化散射特性,常规基于非相干分解的分类方法难以将其有效地区分。对此,本文引入基于Freeman分解的散射熵Hf和各向异性度Af两个特征参数,并将其用于极化SAR影像分类。首先利用Hf和Af参数将阴影和水体提取出来,然后将其他地物按散射机制分为3大类,并对每一类再次利用Hf和Af参数进行细分,最后通过基于Wishart分布的聚类和迭代分类,得到最终的分类结果。通过利用Radarsat-2在河南登封获取的全极化SAR数据进行试验,表明该算法执行效率高,能够有效地区分阴影、水体和裸露的耕地,并且对其他地物类型也有很好的分类效果。 相似文献
17.
航天飞机极化干涉雷达数据反演地表植被参数 总被引:11,自引:0,他引:11
利用基于极化干涉测量的基本原理和相干散射模型。提出了基于模拟加温-退火算法的极化干涉雷达数据地表植被参数的反演算法,首先,对极化干涉测量的基本原理和一个考虑了地表和植被散射的二层相干散射模型进行了阐述。接着,对模拟退火算法的基本理论和基于模拟加温-退火算法的地表植被参数反演模型进行了论述,最后,利用和田地区1994年10月9日和10日的航天飞机SIR-CL波段单视散射短阵复数据进行了地表植被参数反演的计算,将反演结果与实测数据比较,表明该反演算法能以较好的精度获取地表植被的高度。 相似文献
18.
基于四分量散射模型的多极化SAR图像分类 总被引:2,自引:2,他引:2
基于四分量散射模型提出了一种多极化SAR(synthetic aperture radar)图像非监督分类算法。与Freeman三分量散射模型不同,四分量散射模型在Freeman三分量的基础上增加了螺旋散射分量(helix),该分量反映了复杂地貌和不规则城市建筑的散射机理,可以用来处理复杂的场景图像。算法强调了初始分类的重要性,在初始分类中考虑了混合散射机制像素的存在,从而提高了分类结果的精确度。聚类过程中,采用由四个散射分量组成的特征向量进行迭代聚类。为了实现算法的完全非监督,利用特征向量给出了一种新的聚类终止准则。NASA/JPL实验室AIRSAR全极化数据分类实验结果表明,该算法具有较好的分类效果,并获得了较高的分类精度。 相似文献
19.
针对极化SAR定标算法中一些分布式目标并不满足互易性的问题,提出一种对分布式目标互易性进行判断的方法。通过计算选取分布式目标的极化散射矩阵与互易子空间的夹角,来进行互易目标的初步选择,并利用相干性来实现最终分布式目标定标样本的选择。实现了对中电38所海南X波段全极化SAR数据的极化定标,实验证明了该方法的优越性。 相似文献