首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
One of the rules of thumb of structural geology is that drag folds, or minor asymmetric folds, reflect the sense of layer-parallel shear during folding of an area. According to this rule, right-lateral, layer-parallel shear is accompanied by clockwise rotation of marker surfaces and left-lateral by counterclockwise rotation. By using this rule of thumb, one is supposed to be able to examine small asymmetric folds in an outcrop and to infer the direction of axes of major folds relative to the position of the outcrop. Such inferences, however, can be misleading. Theoretical and experimental analyses of elastic multilayers show that symmetric sinusoidal folds first develop in the multilayers, if the rheological and dimensional properties favor the development of sinusoidal folds rather than kink folds, and that the folded layers will then behave much as passive markers during layerparallel shear and thus will follow the rule of thumb of drag folding. The analyses indicate, however, that multilayers whose properties favor the development of kink folds can produce monoclinal kink folds with a sense of asymmetry opposite to that predicted by the rule of thumb. Therefore, the asymmetry of folds can be an ambiguous indicator of the sense of shear.The reason for the ambiguity is that asymmetry is a result of two processes that can produce diametrically opposed results. The deformation of foliation surfaces and axial planes in a passive manner is the pure or end-member form of one process. The result of the passive deformation of fold forms is the drag fold in which the steepness of limbs and the tilt of axial planes relative to nonfolded layering are in accord with the rule of thumb.The end-member form of a second process, however, produces the opposite geometric relationships. This process involves yielding and buckling instabilities of layers with contact strength and can result in monoclinal kink bands. Right-lateral, layer-parallel shear stress produces left-lateral monoclinal kink bands and left-lateral shear stress produces right-lateral monoclinal kink bands. Actual folds do not behave as either of these ideal end members, and it is for this reason that the interpretation of the sense of layer-parallel shear stress relative to the asymmetry of folds can be ambiguous.Kink folding of a multilayer with contact strength theoretically is a result of both buckling and yielding instabilities. The theory indicates that inclination of the direction of maximum compression to layering favors either left-lateral or right-lateral kinking, and that one can predict conditions under which monoclinal kink bands will develop in elastic or elastic—plastic layers. Further, the first criterion of kink and sinusoidal folding developed in Part IV remains valid if we replace the contact shear strength with the difference between the shear strength and the initial layer-parallel shear stress.Kink folds theoretically can initiate only in layers inclined at angles less than to the direction of maximum compression. Here φ is the angle of internal friction of contacts. For higher angles of layering, slippage is stable so that the result is layer-parallel slippage rather than kink folding.The theory also provides estimates of locking angles of kink bands relative to the direction of maximum compression. The maximum locking angle between layering in a nondilating kink band and the direction of maximum compression is . The theory indicates that the inclination of the boundaries of kink bands is determined by many factors, including the contact strength between layers, the ratio of principal stresses, the thickening or thinning of layers, that is, the dilitation, within the kink band, and the orientation of the principal stresses relative to layering. If there is no dilitation within the kink band, the minimum inclination of the boundaries of the band is to the direction of maximum compression, or to the direction of nonfolded layers. Here α is the angle between the direction of maximum compression and the nonfolded layers. It is positive if clockwise.Analysis of processes in terminal regions of propagating kink bands in multilayers with frictional contact strength indicates that an essential process is dilitation, which decreases the normal stress, thereby allowing slippage and buckling even though slopes of layers are low there.  相似文献   

2.
Most folds in stratified rock are similar in form to ideal kink, concentric or chevron folds, in which there are discontinuities in slope or curvature of bedding planes. In this respect most folds appear to be closely related to faults, traces of which can be considered to be lines across which there are discontinuities of displacement of layers. Further, the close association of reverse faults and folds or monoclinal flexures seems to indicate that theories of faulting and folding should be closely related.The theory of characteristics is a mathematical tool with which we can obtain insights into processes involving discontinuities. Theoretical characteristic lines are directions across which certain variables might be discontinuous and they are directions along which discontinuities propagate. The theory has been widely applied in plasticity theory and in fluid mechanics and theoretical studies of faulting have suggested that faults are analogous to the lines of discontinuity predicted by plasticity theory. Elasticity and viscosity theories, on which theories of folding have been founded, exclude the existence of characteristic lines in the materials unless the equilibrium equations, rheological properties or strains are nonlinear. However, all folding theories are nonlinear to some extent and the theories can be modified so that they predict lines of discontinuity for some conditions of loading and deformation.Theories of folding will be developed in subsequent papers of this series in order to predict conditions under which characteristic lines can exist in multilayered materials and in order to determine the conditions that must be satisfied across and along the characteristic lines. The theory should help us to recognize lines of apparent discontinuity in natural and experimental folds and study of these lines should provide further understanding of mechanisms of folding.Experimental studies of folding of a wide variety of materials, including alternating layers of rubber and gelatin, modeling clay and grease or graphite, and potter's clay and rubber or cardboard, suggest that the patterns of folding in these materials begin with sinusoidal forms, transform into concentric or kink forms and then into chevron forms as the multilayers are shortened axially. A suitable theory of folding of multilayers should account for these observations.  相似文献   

3.
This part concerns folding of elastic multilayers subjected to principal initial stresses parallel or normal to layering and to confinement by stiff or rigid boundaries. Both sinusoidal and reverse-kink folds can be produced in multilayers subjected to these conditions, depending primarily upon the conditions of contacts between layers. The initial fold pattern is always sinusoidal under these ideal conditions, but subsequent growth of the initial folds can change the pattern. For example, if contacts between layers cannot resist shear stress or if soft elastic interbeds provide uniform resistance to shear between stiff layers, sinusoidal folds of the Biot wavelength grow most rapidly with increased shortening. Further, the Biot waves become unstable as the folds grow and are transformed into concentric-like folds and finally into chevron folds. Comparison of results of the elementary and the linearized theories of elastic folding indicates that the elementary theory can accurately predict the Biot wavelength if the multilayers contain at least ten layers and if either the soft interbeds are at most about one-fifth as stiff as the stiff layers, or there is zero contact shear strength between layers.Multilayers subjected to the same conditions of loading and confinement as discussed above, can develop kink folds also. The kink fold can be explained in terms of a theory based on three assumptions: each stiff layer folds into the same form; kinking is a buckling phenomenon, and shear stress is required to overcome contact shear strength between layers and to produce slippage locally. The theory indicates that kink forms will tend to develop in multilayers with low but finite contact shear strength relative to the average shear modulus of the multilayer. Also, the larger the initial slopes and number of layers with contact shear strength, the more is the tendency for kink folds rather than sinusoidal folds to develop. The theoretical displacement form of a layer in a kink band is the superposition of a full sine wave, with a wavelength equal to the width of the kink band, and of a linear displacement profile. The resultant form resembles a one-half sine curve but it is significantly different from this curve. The width of the kink band may be greater or less than the Biot wavelength of sinusoidal folding in the multilayer, depending upon the magnitude of the contact shear strength relative to the average shear modulus. For example, in multilayers of homogeneous layers with contact strength, the Biot wavelength is zero so that the width of the kink band in such materials is always greater than the Biot wavelength. In general, the higher the contact strength, the narrower the kink band; for simple frictional contacts, the widths of kink bands decrease with increasing confinement normal to layers. Widths of kink bands theoretically depend upon a host of parameters — initial amplitude of Biot waves, number of layers, shear strength of contacts between layers, and thickness and modulus ratios of stiff-to-soft layers — therefore, widths of kink bands probably cannot be used readily to estimate properties of rocks containing kink bands. All these theoretical predictions are consistent with observations of natural and experimental kink folds of the reverse variety.Chevron folding and kink folding can be distinctly different phenomena according to the theory. Chevron folds typically form at cores of concentric-like folds; they rarely form at intersections of kink bands. In either case, they are similar folds that develop at a late stage in the folding process. Kink folds are more nearly akin to concentric-like folds than to chevron folds because kink folds form early, commonly before the sinusoidal folds are visible. Whereas concentric-like folds develop in response to higher-order effects near boundaries of a multilayer, kink folds typically initiate in response to higher-order shear, as at inflection points near mid-depth in low-amplitude, sinusoidal fold patterns. Chevron folding and kink folding are similar in elastic multilayers in that elastic “yielding” at hinges can produce rather sharp, angular forms.  相似文献   

4.
A basic, sinusoidal solution to the linearized equations of equilibrium for compressible, elastic materials provides solutions to several problems of folding of multilayers. Theoretical wavelengths are comparable to those predicted by Ramberg, using viscosity theory, and to those predicted by elementary folding theory. The linearized analysis of buckling of a single, stiff, elastic layer, either isolated or within a soft medium, suggests that wavelengths computed with elementary beam theory are remarkably similar to those computed with the linearized theory for wavelength-to-thickness ratios greater than about five. This is half the limit of ten normally assumed for use of the elementary theory.The theory and experiments with deep beams of rubber or gelatin indicate that thick, homogeneous layers folded with short wavelengths assume internal forms strikingly similar to those of the ideal concentric fold. Thus, mechanical layering clearly is not required to produce concentric-like forms.Further, the theory suggests that “arc and cusp” structure, or “pinches”, at edges of deep beams as well as chevron-like forms in single or multiple stiff layers are a result of a peculiar, plastic-like behavior of elastic materials subjected to high normal stresses parallel to layering. In a sense, the elastic material “yields” to form the hinge of the chevron fold, although the strain vanishes if the stresses are released. Accordingly, it may be impossible to distinguish chevron forms produced in elastic-plastic materials, such as cardboard or aluminum and perhaps some rock, from chevron forms produced in purely elastic materials, such as rubber.Analysis of the theory shows that, just as high axial stresses make straight, shortened multilayers the unstable form and sinusoidal waves the stable form, stresses induced by sinusoidal displacements of the multilayer make the sinusoidal waveform unstable and concentric-like waves the stable form. Thus, concentric-like folds appear to be typical of folded multilayers according to our analysis. Further, where the layers have short wavelengths in the cores of the concentric-like folds, the stiff layers “yield” elastically at hinges and straighten in limbs. Thus the concentric-like pattern is replaced by chevron folds as the multilayer is shortened. In this way we can understand the sequence of events from uniform shortening, to sinusoidal folding, to concentric-like folding, to chevron folding in multilayers composed of elastic materials.  相似文献   

5.
6.
The origin of tight, asymmetric, kink-like or chevron-like folds in interbedded shales and radiolarian cherts of the Franciscan Complex in the San Francisco Bay area has been somewhat of a mystery for many years. Stephenson Ellen provided many clues as to the origin and indicated that the folds became asymmetric as a result of layer-parallel shear. He believed that the original folds were conjugate kink folds.As a result of reexamination of most of the folds studied by Ellen, of experimentation with elastic multilayers and of the theories developed in Parts III and IV of this series of papers, we believe that the original folds were mostly chevron rather than kink folds. Thus, we suggest that the folds formed by a combination of layer-parallel shortening and layer-parallel shear when the rocks were soft and pore pressures were high.Several lines of evidence suggest that typical folds in the Franciscan are asymmetric chevron folds. A combination of theory of finite simple shear and of experimentation with elastic multilayers indicates that the tight folds of the Franciscan could have been produced by smaller angles of simple shear if the original folds were typical chevron folds rather than typical kink folds. Several field observations, including thickening of shales but not of cherts in hinges of folds and lack of deformation of radiolaria in the cherts, indicate that the cherts were soft and the shales very soft at the time of folding. The pore-water pressures in the shales probably were high. Such conditions theoretically favor concentric-like and chevron folding, not kink folding. Finally, most of the asymmetric folds in a quarry exposure can be reconstructed geometrically as typical chevron folds but not as typical kink folds subjected to simple shear.  相似文献   

7.
Geomorphological evidence and historical wind records indicate that eolian processes have heavily influenced San Miguel Island environments for much of the Late Quaternary. The island is almost constantly bombarded by prevailing northwesterly winds, with peak velocities exceeding 75 km/h and wind gusts reaching over 100 km/h. These strong winds played an important role in the location, formation, and preservation of the island's more than 600 archaeological sites. Excavation and surface collection at a stratified Middle and Late Holocene archaeological site on the island's north coast suggest that wind related disturbances result in significant displacement of light fish bones, produce concentrations of shellfish and heavy mammal bones, and cause significant abrasion, etching, and polishing of bones, shells, and artifacts. These data illustrate that wind not only alters surface materials but can significantly disturb subsurface deposits to a depth of at least 20 cm. Working in concert with a variety of taphonomic processes, wind can play a fundamental role in the preservation of archaeological sites and careful scrutiny during excavation and laboratory analysis is required to delineate its effects. © 2002 Wiley Periodicals, Inc.  相似文献   

8.
9.
准确掌握煤岩力学性质对储层改造及煤层气开发具有重要意义,以郑庄区块3号煤层为研究层位,建立以多测井参数为基础的煤储层横波时差预测模型和以动静态力学参数转换为依据的脆性指数评价模型;利用弹性参数法对研究区内煤储层脆性指数进行了综合评价,发现单井中煤层脆性指数受“边界效应”影响明显且分布具有区域性;脆性指数与煤体结构指数存在正相关关系,并据此提出以脆性指数为依据的煤体结构划分标准;脆性指数与抗压强度、抗拉强度均为负相关关系;四维地震裂缝监测结果显示碎裂结构煤压裂效果最好,原生结构煤次之,碎粒结构煤最差;最后,以含气量与脆性指数为主要评价参数,预测了区块内煤层气开发地质有利区,为煤储层压裂设计提供了依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号