首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rift zone??s relief, the spreading kinematics, and the experimental modeling of the Knipovich Ridge??s formation were analyzed. Its rift zone is formed in a transtension environment. Faulting is predominant in its northern part, while strike-slip is characteristic for the south. A system of short extension basins connected by deep strike-slip U-shaped troughs is observed in the south. A system of volcanic rises connected by short shallow basins is observed in the north. The rift valley is V-shaped. According to the experimental modeling data, these extension kinematics provide the formation of short extension basins connected by strike-slips and transtension faults. Their length and orientation depend on the spreading obliquity of each segment.  相似文献   

2.
The central part of the northern Labrador Sea is a magnetic quiet zone, and is flanked by regions exhibiting well developed linear magnetic anomalies older than anomaly 24. The quiet zone dies out progressively to the south, where it becomes possible to correlate anomalies between adjacent profiles. A 45 degree change in spreading direction at anomaly 25 time was accompanied by a major jump in ridge position and orientation. As a consequence of this reorganisation, spreading in the northern Labrador Sea next occurred within a rift that was oriented at 45 degrees to the spreading direction, while to the south spreading occurred within in a rift that was orientated at 90 degrees to the spreading direction. Obliquity of spreading changed, between these limits, progressively along the ridge. The quiet zone may be present to the north because the oblique northern geometry resulted in a fragmented ridge composed of many small-offset transform faults joining many short spreading ridge segments. Each magnetic source block produced by magnetisation of sea floor at these small ridge segments will be surrounded by similar small blocks that have opposite polarity, so that none can be resolved at the sea surface. Supporting evidence comes from multi-channel seismic profiles across the Labrador Sea, which show that the basement is more textured within the quiet zone than outside, suggesting the presence of numerous small fracture zones in the quiet zone.A magnetic quiet zone is present in the northern Greenland Sea between margins that are oblique to the spreading direction. In contrast, there are clear lineated magnetic patterns in adjacent areas to north and south where the margins are orthogonal to the spreading direction. This quiet zone may also be due to the geometry of spreading.  相似文献   

3.
The joint analysis of data on the anomalous maganetic field, seismicity, and structures of the Hess deep basalts have allowed us to specify the elongation of zone of spreading and to correct the spatial distribution of the neovolcanic zone. The precise petrogeochemical analysis of various types of basalts composing the uneven-aged oceanic crust of the basin showed that the neovolcanic zone magmatics are related to the primitive type in contrast to rift boards of differential basalts. A model of the Galapagos rift’s deep structure in the area of the western Hess deep has been suggested.  相似文献   

4.
ALVIN investigations have defined the fine-scale structural and volcanic patterns produced by active rift and spreading center propagation and failure near 95.5° W on the Galapagos spreading center. Behind the initial lithospheric rifting, which is propagating nearly due west at about 50 km m.y.–1, a triangular block of preexisting lithosphere is being stretched and fractured, with some recent volcanism along curving fissures. A well-organized seafloor spreading center, an extensively faulted and fissured volcanic ridge, develops ~ 10 km (~ 200,000 years) behind the tectonic rift tip. Regional variations in the chemical compositions of the youngest lavas collected during this program contrast with those encompassing the entire 3 m.y. of propagation history for this region. A maximum in degree of magmatic differentiation occurs about 9 km behind the propagating rift tip, in a region of diffuse rifting. The propagating spreading center shows a gentle gradient in magmatic differentiation culminating at the SW-curving spreading center tip. Except for the doomed rift, which is in a constructional phase, tectonic activity also dominates over volcanic activity along the failing spreading system. In contrast to the propagating rift, failing rift lavas show a highly restricted range of compositions consistent with derivation from a declining upwelling zone accompanying rift failure. The lithosphere transferred from the Cocos to the Nazca plate by this propagator is extensively faulted and characterized by ubiquitous talus in one of the most tectonically disrupted areas of seafloor known. The pseudofault scarps, where the preexisting lithosphere was rifted apart, appear to include both normal and propagator lavas and are thus more lithologically complex than previously thought. Biological communities, probably vestimentiferan tubeworms, occur near the top of the outer pseudofault scarp, although no hydrothermal venting was observed.  相似文献   

5.
The Kane Transform offsets spreading-center segments of the Mid-Atlantic Ridge by about 150 km at 24° N latitude. In terms of its first-order morphological, geological, and geophysical characteristics it appears to be typical of long-offset (>100 km), slow-slipping (2 cm yr-1) ridge-ridge transform faults. High-resolution geological observations were made from deep-towed ANGUS photographs and the manned submersible ALVIN at the ridge-transform intersections and indicate similar relationships in these two regions. These data indicate that over a distance of about 20 km as the spreading axes approach the fracture zone, the two flanks of each ridge axis behave in very different ways. Along the flanks that intersect the active transform zone the rift valley floor deepens and the surface expression of volcanism becomes increasingly narrow and eventually absent at the intersection where only a sediment-covered ‘nodal basin’ exists. The adjacent median valley walls have structural trends that are oblique to both the ridge and the transform and have as much as 4 km of relief. These are tectonically active regions that have only a thin (<200 m), highly fractured, and discontinuous carapace of volcanic rocks overlying a variably deformed and metamorphosed assemblage of gabbroic rocks. Overprinting relationships reveal a complex history of crustal extension and rapid vertical uplift. In contrast, the opposing flanks of the ridge axes, that intersect the non-transform zones appear to be similar in many respects to those examined elsewhere along slow-spreading ridges. In general, a near-axial horst and graben terrain floored by relatively young volcanics passes laterally into median valley walls with a simple block-faulted character where only volcanic rocks have been found. Along strike toward the fracture zone, the youngest volcanics form linear constructional volcanic ridges that transect the entire width of the fracture zone valley. These volcanics are continuous with the older-looking, slightly faulted volcanic terrain that floors the non-transform fracture zone valleys. These observations document the asymmetric nature of seafloor spreading near ridge-transform intersections. An important implication is that the crust and lithosphere across different portions of the fracture zone will have different geological characteristics. Across the active transform zone two lithosphere plate edges formed at ridge-transform corners are faulted against one another. In the non-transform zones a relatively younger section of lithosphere that formed at a ridge-non-transform corner is welded to an older, deformed section that initially formed at a ridge-transform corner.  相似文献   

6.
Specific features of variations in the bottom topography of the mid-ocean rift zones with intermediate spreading rates are considered in this work. The rift zones with a transition morphology are analyzed, and the main features of the transition topography are distinguished. Several successive stages of topographic variations, each of which is characterized by a specific relative position of the topographic features of the rift zone cross section, have been distinguished based on an analysis of the character of rift zone topographic variations in going from axial rises to rift valleys. The specific features of variations in the structural segmentation of rift zones with intermediate spreading rates, depending on the morphological changes, have been established. The thermal models of the structure of the rift zone magmatic formations have been considered, and the geodynamic relations of the magmatic systems with the specific features of the morphology and the structural segmentation of the mid-ocean axial zones with the intermediate spreading rates have been discussed.  相似文献   

7.
At 11°N latitude, the Mid-Atlantic ridge is offset 300 km by the Vema fracture zone. Between the ridge offset, the fracture consists of an elongate, parallelogram-shaped trough bordered on the north and south by narrow, high walls. The W-E trending valley floor is segmented by basement ridges and troughs which trend W10°N and are deeply buried by sediment. Uniform high heat flow characterizes the valley area. Seismically inactive valleys south of the Vema fracture, also trending W10°N, are interpreted as relict fracture zones. We explain the high heat flow and the shape of the Vema fracture as the results of secondary sea-floor spreading produced by a reorientation of the direction of sea-floor spreading from W10°N to west-east. This reorientation probably began approximately 10 million years ago. Rapid filling of the fracture valley by turbidites from the Demerara Abyssal plain took place during the last million years.The large amount of differential uplift in the Vema fracture is not explained by the reorientation model. Since the spreading rate across the valley is small compared to that across the ridge crest, we suggest that it takes place by intrusion of very thin dikes that cool rapidly and hence have high viscosity. Upwelling in the fracture valley will thus result in cosiderable loss of hydraulic head, according to models by Sleep and Biehler (1970), and recovery of the lost head could produce valley walls higher than the adjacent ridge crest. We further postulate that the spreading takes place along the edges of the fracture zone rather than in the center. This would account for the uniform distribution of heat flow along the fracture valley and for the lack of disturbance of the valley fill. As a consequence, a median ridge should form in the center, where head loss is compensated in the older crust; such a median ridge may be present. The width of the valley should be a function of the angle and time of reorientation, and of the spreading rate; the width so obtained for the Vema fracture is in accordance with the observed width. If this model is correct, the narrowness of the valley walls implies a thin lithosphere of very limited horizontal strength.  相似文献   

8.
High inside corners at ridge-transform intersections   总被引:1,自引:0,他引:1  
A large topographic high commonly occurs near the intersection of a rifted spreading center and a transform fault. The high occurs at the inside of the 90° bend in the plate boundary, and is called the high inside corner, while the area across the spreading center, the outside corner, is often anomalously low. To better understand the origin of this topographic asymmetry, we examine topographic maps of 53 ridge-transform intersections. We conclude the following: (1) High inside corners occur at 41 out of 42 ridge-transform intersections at slow spreading ridges, and thus should be considered characteristic and persistent features of rifted slow spreading ridges. They are conspicuously absent at fast spreading ridges or at spreading centers that lack a rift valley. (2) High inside corners occur wherever an axial rift valley is present, and an approximate 1:1 correlation exists between the relief of the rift valley and the magnitude of the asymmetry. (3) Large high inside corners occur at both long and short transform offsets. (4) High inside corners at long offsets decay off-axis faster than predicted by the square root of age cooling model, precluding a thermalisostatic origin, but consistent with dynamic or flexural uplift models.These observations support the existing hypothesis that the asymmetry is due to the contrast in lithospheric coupling that occurs in the active transform versus the inactive fracture zone. Active faulting in the transform breaks the lithosphere along a high angle fault, permitting vertical movement of the inside corner block, whereas the inactive fracture zone forms a weld that couples the outside corner to the adjacent block, preventing it from rising. Large asymmetry at very short transform offsets appears to be caused by the added effect of a second uplift mechanism. Young lithosphere in the rift valley couples to the older plate, and when it leaves the rift valley it lifts the older plate with it. At very short offsets, this coupled uplift acts upon the high inside corner; at long offsets, it may upwarp the older plate or its expression may be muted.  相似文献   

9.
A survey across the western intersection of the mid-Atlantic ridge with Oceanographer fracture zone near 35°N shows this intersection to be different in character from its more typical eastern counterpart. At the western junction the transform valley broadens into a parallelogram shaped deep some 46 by 24 km, which extends well across the trace of the active transform. Within 30 km south of the fracture zone the median valley becomes oblique forming a NE trending ridge which is the SE edge of the deep. Magnetic mapping shows the current spreading centre to be adjacent to this ridge.A sequence of evolution for this intersection over the past 0.7 Ma is proposed to explain the features mapped. We suggest that the oblique ridge crest trends extended across the transform trace to form the elongated graben-like deep with its associated faults and sediment slumps. Such complex patterns may occur as plate-wide changes in spreading direction become modified by localised shear stress fields at ridge crest-transform intersections, as have been observed in a number of other cases. The absence of significant tranverse ridges across from the spreading centre at this particular fracture zone intersection, may have temporarily allowed these stress patterns to propagate across the fracture zone.  相似文献   

10.
The Rodriguez Triple Junction (RTJ) corresponds to the junction of the three Indian Ocean spreading ridges. A detailed survey of an area of 90 km by 85 km, centered at 25°30 S and 70° E, allows detailed mapping (at a scale of 1/100 000) of the bathymetry (Seabeam) and the magnetic anomalies. The Southeast Indian Ridge, close to the triple junction, is a typical intermediate spreading rate ridge (2.99 cm a-1 half rate), trending N140°. The Central Indian Ridge rift valley prolongs the Southeast Indian Ridge rift valley with a slight change of orientation (12°). The half spreading rate and trend of this ridge are 2.73 cm a-1 and N152° respectively. In contrast, the Southwest Indian Ridge close to the triple junction is expressed by two deep-valleys (4300 and 5000 m deep) which abut the southwestcrn flanks of the two other ridges, and appears to be a stretched area without axial neovolcanic zone. The evolution of the RTJ is analysed for the past one million years. The instantaneous velocity triangle formed by the three ridges cannot be closed indicating that the RTJ is unstable. A model is proposed to explain the evolution of the unstable RRF Rodriguez Triple Junction. The model shows that the axis of the Central Indian Ridge is propressively offset from the axis of the Southeast Indian Ridge at a velocity of 0.14 cm a-1, the RTJ being restored by small jumps. This unstable RRF model explains the directions and offsets which are observed in the vicinity of the triple junction. The structure and evolution of the RTJ is similar to that of the Galapagos Triple Junction located in the East Pacific Ocean and the Azores Triple Junction located in the Central Atlantic Ocean.  相似文献   

11.
A Seabeam reconnaissance of the 400 km-long fast-slipping (88 mm yr-1) Heezen transform fault zone and the 55 km-long spreading center that links it to Tharp transform defined and bathymetrically described several types of ridges built by tectonic uplift and volcanic construction. Most prominent is an asymmetric transverse ridge, at which abyssal hills adjacent to the fault zone have been raised 2–3 km above normal rise-flank depths. Topographic and petrologic evidence suggests that this uplift, which has produced a 5400 m scarp from the crest of the ridge to the floor of a 10 km-wide transform valley, is caused by rapid serpentinization of upper mantle which has been exposed to hydrothermal circulation by fault-zone fracturing of an unusually thin crust. Transverse ridges have been thought atypical of fast-slipping transforms. One class of volcanic ridge more common at these sites is the overshot ridge, formed by prolongation of spreading-center rift zones obliquely across the transform. Overshot ridges are well developed at Heezen transform, especially at the eastern end where an eruptive rift zone extending 60 km from the southern tip of the East Pacific Rise has built a transform-parallel ridge that fills the eastern transform valley. Obliteration of fault-zone structure by ridges overshooting from the spreading center intersections means that the topography of the aseismic fracture zones is not just inherited from that of the active transform fault zone. The latter has several en echelon and overlapping fault traces, linked by short oblique spreading axes that generally form pull-apart basins rather than volcanic ridges. Interpretation of the origin and pattern of the fault zone's tectonic and volcanic relief requires refinement of the plate geography and history of this part of the Pacific-Antarctic boundary, using new Seabeam and magnetic traverses to supplement and adjust the existing geophysical data base.  相似文献   

12.
High-resolution Sea Beam bathymetry and Sea MARC I side scan sonar data have been obtained in the MARK area, a 100-km-long portion of the Mid-Atlantic Ridge rift valley south of the Kane Fracture Zone. These data reveal a surprisingly complex rift valley structure that is composed of two distinct spreading cells which overlap to create a small, zero-offset transform or discordant zone. The northern spreading cell consists of a magmatically robust, active ridge segment 40–50 km in length that extends from the eastern Kane ridge-transform intersection south to about 23°12′ N. The rift valley in this area is dominated by a large constructional volcanic ridge that creates 200–500 m of relief and is associated with high-temperature hydrothermal activity. The southern spreading cell is characterized by a NNE-trending band of small (50–200 m high), conical volcanos that are built upon relatively old, fissured and sediment-covered lavas, and which in some cases are themselves fissured and faulted. This cell appears to be in a predominantly extensional phase with only small, isolated eruptions. These two spreading cells overlap in an anomalous zone between 23°05′ N and 23°17′ N that lacks a well-developed rift valley or neovolcanic zone, and may represent a slow-spreading ridge analogue to the overlapping spreading centers found at the East Pacific Rise. Despite the complexity of the MARK area, volcanic and tectonic activity appears to be confined to the 10–17 km wide rift valley floor. Block faulting along near-vertical, small-offset normal faults, accompanied by minor amounts of back-tilting (generally less than 5°), begins within a few km of the ridge axis and is largely completed by the time the crust is transported up into the rift valley walls. Features that appear to be constructional volcanic ridges formed in the median valley are preserved largely intact in the rift mountains. Mass-wasting and gullying of scarp faces, and sedimentation which buries low-relief seafloor features, are the major geological processes occurring outside of the rift valley. The morphological and structural heterogeneity within the MARK rift valley and in the flanking rift mountains documented in this study are largely the product of two spreading cells that evolve independently to the interplay between extensional tectonism and episodic variations in magma production rates.  相似文献   

13.
The geography of the East Pacific Rise (EPR) between 10°N and 6°S, redetermined by new surface ship surveys, is characterized by long spreading axes orthogonal to infrequent transform faults. Near 2°10N the EPR is intersected by the Cocos-Nazca spreading center at the Galapagos triple junction. The present pattern was established 27-5.5 m.y.b.p. by a complex sequence of rise-crest jumps and reorientations from a section of the Pacific-Farallon plate boundary. Transverse profiles of the rise flanks can be matched by thermal contraction curves for aging lithosphere, except between the triple junction and 4°S, where the east flank is anomalously shallow and almost horizontal. Most sections of spreading axis have the 10–30 km wide, 100–400 m high, axial ridge that is characteristic of fast spreading centers. However, within 60 km of the triple junction the rise crest structure is atypical, with an axial rift valley and elevated rift mountains, despite a spreading rate of 140 mm/yr. With the exception of this atypical section, the bathymetric profile along the spreading axis is remarkably even, with continuous, gentle slopes for hundreds of kilometers between major transform faults, where step-like offsets in axial depths occur. Most of the observations can be accommodated by a model in which the long spreading axes are underlain by continuous crustal magma chambers that allow easy longitudinal flow of magma, and whose size controls the style and dimensions of EPR crestal topography.Contribution of the Scripps Institution of Oceanography, new series.  相似文献   

14.
The West O’Gorman Fracture Zone is an unusual feature that lies between the Mathematician Ridge and the East Pacific Rise on crust generated on the East Pacific Rise between 4 and 9 million years ago. We made a reconnaissance gravity, magnetic and Sea Beam study of the zone with particular emphasis on its eastern (youngest) portion. That region is characterized by an elongate main trough, a prominent median ridge and other, smaller ridges and troughs. The structure has the appearance of large-offset fracture zone, possibly in a slow spreading environment. However, magnetic anomalies indicate that the offset, if any, is quite small, and the spreading rate during formation was fast. In addition, the magnetic profiles do not support earlier models for a difference in spreading rate north and south of the fracture. The morphology of the fracture zone suggests that flexure may be responsible for some of the topography; but gravity studies indicate some of the most prominent features of the fracture zone are at least partially compensated. The main trough is underlain by a thin crust (or high density body), similar to large-offset fracture zones in the Atlantic, while the median ridge is underlain by a thickened crust. Sea Beam data does not unambiguously resolve between volcanism or serpentinization of the upper mantle as a mechanism for isostatic compensation. Why the West O’Gorman exists remains enigmatic, but we speculate that the topographic expression of a fracture zone does not require a transform offset during formation. Perhaps the spreading ridge was magma starved for some reason, resulting in a thin crust that allowed water to penetrate and serpentinize portions of the upper mantle.  相似文献   

15.
A deeply-towed instrument package was used in a detailed survey of the crest of the East Pacific Rise (EPR) near 3°25S, where the Pacific and Nazca plates are separating at 152 mm/yr. A single 90 km-long traverse of the rise crest extends near-bottom observations onto the rise flanks. A ridge at the spreading axis is defined by its steep regional slopes, probably caused by rapid crustal contraction as the spreading magma chamber freezes, rather than by outward-facing fault scarps. It can be divided into a marginal horst-and-graben zone with low (<50 m), symmetric fault blocks, and a 2 km-wide elongate axial shield volcano that is unfaulted except for a narrow crestal rift zone. This has a summit graben (10–35 m deep) probably formed by caldera collapse, and narrow pillow basalt walls built over vent fissures. Small, low (<50 m) volcanic peaks occur on the shield volcano and the horst-and-graben zone, and some may have been built away from the spreading axis. Major plate-building lava flows issue from the crestal rift zone and flow an average of 500 m down the sides of the volcano. The marginal horst-and-graben zone results from tensional faulting of a thin crust of lava, and evolves by progressive shearing on inclined fault planes. Crustal extension continues at least as far as 20 km from the axis, and the large, long fault blocks formed in thicker crust beyond the subaxial magma chamber develop into abyssal hills. Pelagic sedimentation, at a maximum rate of 22 m/106 years, gradually infills open fissures and smooths the small-scale roughness of the fault blocks. Off-axis volcanism has also resulted in smoother crust, and built seamounts.Comparison of the EPR at 3°25S with the Famous Rift and Galapagos Rift reveals a similarity in the processes and small-scale landforms at fast, medium and slow-spreading ridges. There are significant differences in the medium-scale landforms, probably because plate-boundary volcanic and tectonic processes act on crust of very different strength, thickness, and age.Contribution of the Scripps Institution of Oceanography, new series.  相似文献   

16.
Morphology and tectonics of the Galapagos Triple Junction   总被引:1,自引:0,他引:1  
We describe the results of GLORIA and SEABEAM surveys, supplemented by other marine geophysical data, of the Galapagos Triple Junction where the Pacific, Cocos and Nazca plates meet. The data allowed detailed topographic and tectonic maps of the area to be produced. We located each spreading axis with a precision of about 1 km. All three plate boundaries change character as the triple junction is approached to take on morphologies typical of slower spreading axes: the fast-spreading East Pacific Rise develops the morphology of a medium-spreading rise, and the medium-spreading Cocos-Nazca Rise takes on the appearance of a slow-spreading ridge. The axis of the East Pacific Rise was found to be completely continuous throughout the survey area, where it runs along the 102°05 W meridian. The Cocos-Nazca axis, however, fails to meet it, leaving a 20-km-wide band of apparently normal East Pacific Rise crust between its tip and the East Pacific Rise axis. As a consequence there must be considerable intra-plate deformation within the Cocos and Nazca plates. A further 40 km of the Cocos-Nazca axis is characterised by oblique faulting that we interpret to be a sign of rifting of pre-existing East Pacific Rise crust. We infer that true sea-floor spreading on the Cocos-Nazca axis does not begin until 60 km east of the East Pacific Rise axis. Other areas of similar oblique faulting occur on the Pacific plate west of the triple junction and along the rough-smooth boundaries of the Galapagos Gore. We present a model involving intermittent rifting, rift propagation, and sea-floor spreading, to explain these observations.  相似文献   

17.
This paper describes GLORIA sidescan sonar data from a single swath along the Cocos-Nazca Spreading Centre between the 95.5° W propagating rift and the Pacific-Cocos-Nazca triple junction. Almost the whole of the plate boundary was imaged. Five medium sized offsets of the spreading centre, ranging from 10 to 25 km, were seen. Of these, at least one (at 99° W) is a previously unknown propagating rift, propagating westwards away from the Galapagos hotspot at about 40 mm a-1. Two other offsets have some, but not all, of the characteristics of propagating rifts, and may be poorly developed (possibly duelling) propagating rifts or migrating overlapping spreading centres. In each case the apparent propagation rate is between one and two times the half spreading rate. The average length of ridge segments in this region is 70 km, but lengths range from 12 to 135 km. The longest segments are those immediately behind actively propagating ridge offsets. The overall plan shape of the ridge axis is roughly sinusoidal, with a wavelength of 400–500 km and an amplitude of ±20 km. This nonlinear shape has arisen since the spreading centre was created, and may reflect an instability in the mantle plumes that control ridge segmentation.  相似文献   

18.
The development of an anomalously deep rift appears to be a common characteristic of the evolution of microplates along the East Pacific Rise, including the Galapagos, Easter, and Juan Fernandez microplates. We investigate crustal rifting at Endeavor Deep on the Juan Fernandez microplate using bathymetry, gravity and side scan sonar data. An initial phase of lithospheric extension accompanied by extensive subsidence results in the formation of a very deep rift valley (up to 4 km of relief, 70 km long and 20 km wide). Morphological observations and gravity data derived from GEOSAT satellite altimetry show the subsequent initiation of crustal accretion and development of a mature spreading center. Recent models of the kinematics of microplate rotation allow the amount of opening across Endeavor Deep over the past 1 m.y. to be quantified. We develop a simple mechanical model of rifting involving block faulting and flexural response to explain the gravity signature over the rift valley. The Bouguer gravity anomaly is asymmetric with respect to the surface topography and requires that a shallow-dipping fault on the western wall of the valley dominate the extension at Endeavor Deep. Consideration of three similar microplate rift valleys leads us to suggest that asymmetric rifting is the characteristic process forming microplate deeps.  相似文献   

19.
This paper is a report of geological observations made using the submersible ALVIN on the crest of the East Pacific Rise near 21°N. The profile is 6 km long and crosses a 5–10 km wide plateau which rises 100 m±above the rise flanks. At the axis are exposed fresh glassy pillow lavas with no sediment accumulation in a region termed the neovolcanic zone. This zone is about one kilometer wide and includes elongate ridges of pillow lavas and seventeen hydrothermal vent fields in the study area. Outside the neovolcanic zone the seafloor is extensively fissured in another zone which is up to two kilometers wide. The neovolcanic zone and the fissured zone are included within a rift valley or graben about 3 to 5 km wide and 50 m±deep. This rift valley is asymmetrically located on the west side of the axial plateau; the neovolcanic zone in the study area is asymmetrically located on the east side of the rift graben. Fissured crust is not common outside the rift graben or in the neovolcanic zone; similarly, large throw faults such as those which form the edges of the graben are not found outside of it. These observations can be interpreted according to a volcanic-tectonic cycle in which volcanic eruptions and hydrothermal circulation are followed by a tectonic phase which includes fissuring and vertical movements. When a new cycle starts it may involve a lateral shift of the spreading axis. Lavas along the dive profile are suggested to be no older than a few thousand years based on sediment accumulation. In contrast, seafloor spreading rates here predict crust up to 105 yr old. This observation suggests that lavas from the neovolcanic zone can spread laterally about a kilometer or more and overlap on older crust.  相似文献   

20.
Geophysical data collected on three U.S. Naval Oceanographic Office cruises to the Galapagos Rise are presented. These data allow definition of the morphology and structure of the Galapagos Rise.A postulated “hot spot” beneath the Galapagos platform is suggested as the cause of: (1) decreased seismicity along the spreading center for a 400 km E—W distance from the islands; (2) distinctive petro-chemistry of tholeiites from the islands and adjacent oceanic crust generated by the Galapagos Rise; (3) high-amplitude magnetic anomalies in a 1,000 km E—W band including and just north of the Galapagos platform; and (4) morphologic shape and the regionally elevated sea floor of the Galapagos Rise as it approaches the insular platform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号