首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large mafic–ultramafic layered intrusions may containlayers enriched in platinum-group elements (PGE). In many cases,the PGE are hosted by disseminated sulphides. We have investigatedthe distribution of the sulphides in three dimensions in twooriented samples of the Merensky Reef and the J-M Reef. Theaim of the study was to test the hypothesis that the sulphidescrystallized from a base metal sulphide liquid that percolatedthrough the cumulate pile during compaction. The distributionof sulphides was quantified using: (1) X-ray computed tomography;(2) microstructural analysis of polished thin sections orientedparallel to the paleovertical; (3) measurement of dihedral anglesbetween sulphides and silicates or oxides. In the Merensky Reefand the J-M Reef, sulphides are connected in three dimensionsand fill paleovertical dilatancies formed during compaction,which facilitated the downward migration of sulphide liquidin the cumulate. In the melanorite of the Merensky Reef, thesulphide content increases from top to bottom, reaching a maximumvalue above the underlying chromitite layer. In the chromititelayers sulphide melt connectivity is negligible. Thus, the chromititemay have acted as a filter, preventing extensive migration ofsulphide melt downwards into the footwall. This could partiallyexplain the enrichment in PGE of the chromitite layer and theobserved paucity of sulphide in the footwall. KEY WORDS: X-ray computed tomography; microstructures; sulphides; Merensky Reef; J-M Reef  相似文献   

2.
The Merensky Reef hosts one of the largest PGE resources globally.It has been exploited for nearly 100 years, yet its origin remains unresolved.In the present study, we characterised eight samples of the reef at four localities in the western Bushveld Complex using micro-X-ray fluorescence and field emission scanning electron microscopy.Our results indicate that the Merensky Reef formed through a range of diverse processes.Textures exhibited by chromite grains at the base of the reef are consistent with supercooling and in situ growth.The local thickening of the Merensky chromitite layers within troughs in the floor rocks is most readily explained by granular flow.Annealing and deformation textures in pyroxenes of the Merensky pegmatoid bear testament to recrystallisation and deformation.The footwall rocks to the reef contain disseminations of PGE rich sulphides as well as olivine grains with peritectic reaction rims along their upper margins suggesting reactive downward flow of silicate and sulphide melts.Olivine-hosted melt inclusions containing Cl-rich apatite, sodic plagioclase, and phlogopite suggest the presence of highly evolved, volatile-rich melts.Pervasive reverse zonation of cumulus plagioclase in the footwall of the reef indicates dissolution or partial melting of plagioclase, possibly triggered by flux of heat, acidic fluids, or hydrous melt.Together, these data suggest that the reef formed through a combination of magmatic, hydrodynamic and hydromagmatic processes.  相似文献   

3.
The Merensky Reef of the Bushveld Complex contains one of theworld’s largest concentrations of platinum-group elements(PGE). We have investigated ‘normal’ reef, its footwalland its hanging wall at Impala Platinum Mines. The Reef is 46cm thick and consists from bottom to top of leuconorite, anorthosite,chromitite and a very coarse-grained melanorite. The footwallis leuconorite and the hanging wall is melanorite. The onlyhydrous mineral present is biotite, which amounts to 1%, orless, of the rock. All of the rocks contain 0·1–5%interstitial sulphides (pyrrhotite, pentlandite and chalcopyrite),with the Reef rocks containing the most sulphides (1–5%).Lithophile inter-element ratios suggest that the magma fromwhich the rocks formed was a mixture of the two parental magmasof the Bushveld Complex (a high-Mg basaltic andesite and a tholeiiticbasalt). The Reef rocks have low incompatible element contentsindicating that they contain 10% or less melt fraction. Nickel,Cu, Se, Ag, Au and the PGE show good correlations with S inthe silicate rocks, suggesting control of the abundance of thesemetals by sulphides. The concentration of the chalcophile elementsand PGE in the silicate rocks may be modelled by assuming thatthe rocks contain sulphide liquid formed in equilibrium withthe evolving silicate magma. It is, however, difficult to modelthe Os, Ir, Ru, Rh and Pt concentrations in the chromititesby sulphide liquid collection alone, as the rocks contain 3–4times more Os, Ir, Ru, Rh and Pt than the sulphide-collectionmodel would predict. Two possible solutions to this are: (1)platinum-group minerals (PGM) crystallize from the sulphideliquid in the chromitites; (2) PGM crystallize directly fromthe silicate magma. To model the concentrations of Os, Ir, Ru,Rh and Pt in the chromitites it is necessary to postulate thatin addition to the 1% sulphides in the chromitites there isa small quantity (0·005%) of cumulus PGM (laurite, cooperiteand malanite) present. Sulphide liquids do crystallize PGM atlow fS2. Possibly the sulphide liquid that was trapped betweenthe chromite grains lost some Fe and S by reaction with thechromite and this provoked the crystallization of PGM from thesulphide liquid. Alternatively, the PGM could have crystallizeddirectly from the silicate magma when it became saturated inchromite. A weakness of this model is that at present the exactmechanism of how and why the magma becomes saturated in PGMand chromite synchronously is not understood. A third modelfor the concentration of PGE in the Reef is that the PGE arecollected from the underlying cumulus pile by Cl-rich hydrousfluids and concentrated in the Reef at a reaction front. Althoughthere is ample evidence of compaction and intercumulus meltmigration in the Impala rocks, we do not think that the PGEwere introduced into the Reef from below, because the rocksunderlying the Reef are not depleted in PGE, whereas those overlyingthe Reef are depleted. This distribution pattern is inconsistentwith a model that requires introduction of PGE by intercumulusfluid percolation from below. KEY WORDS: Merensky Reef; platinum-group elements; chalcophile elements; microstructures  相似文献   

4.
The Merensky Reef and the underlying Upper Group 2 chromitite layer, in the Critical Zone of the Bushveld Complex, host much of the world’s platinum-group element (PGE) mineralization. The genesis is still debated. A number of features of the Merensky Reef are not consistent with the hypotheses involving mixing of magmas. Uniform mixing between two magmas over an area of 150 by 300 km and a thickness of 3–30 km seems implausible. The Merensky Reef occurs at the interval where Main Zone magma is added, but the relative proportions of the PGE in the Merensky Reef are comparable to those of the Critical Zone magma. Mineral and isotopic evidence in certain profiles through the Merensky Unit suggest either mixing of minerals, not magmas, and in one case, the lack of any chemical evidence for the presence of the second magma. The absence of cumulus sulphides immediately above the Merensky Reef is not predicted by this model. An alternative model is proposed here that depends upon pressure changes, not chemical processes, to produce the mineralization in chromite-rich and sulphide-rich reefs. Magma was added at these levels, but did not mix. This addition caused a temporary increase in the pressure in the extant Critical Zone magma. Immiscible sulphide liquid and/or chromite formed. Sinking sulphide liquid and/or chromite scavenged PGE (as clusters, nanoparticles or platinum-group minerals) from the magma and accumulated at the floor. Rupturing of the roof resulted in a pressure decrease and a return to sulphur-undersaturation of the magma.  相似文献   

5.
A petrogenetic model for the Merensky Reef in the Rustenburg section of the Bushveld Complex has been developed based on detailed field and petrographic observations and electron microprobe data. The model maintains that the reef formed by reaction of hydrous melt and a partially molten cumulate assemblage. The model is devised to account for several key observations: (1) Although the dominant rock type in the Rusterburg sections is pegmatoidal feldspathic pyroxenite, there is a continous range of reef lithology from pyroxenite to pegmatoidal harzburgite and dunite, and small amounts of olivine are present in nearly all pegmatoids. (2) The pegmatoid is usually bounded above and below by chromitite seams and the basal chromitite separated from underlying norite by a centimeter-thick layer of anorthosite. The thicknesses of the two layers exhibit a well-defined, positive correlation. (3) Inclusion of pyroxenite identical to the hanging wall and of leuconorite identical to the footwall are present in the pegmatoid. The leuconorite inclusions are surrounded by thin anorthosite and chromitite layers in the same sequence as that at the base of the reef. (4) Chromite in seams adjacent to plagioclase-rich rocks is characterized by higher Mg/Mg+Fe and Al/R3 and lower Cr/R3 than that in seams adjacent to pyroxene-rich rocks. Similar variations in mineral compositions are observed across individual chromitite seams where the underlying and overlying rock types differ. The chromite compositional variations cannot be rationalized in terms of either fractional crystallization or reequilibration with surrounding silicates. It is proposed that the present reef was originally a melt-rich horizon in norite immediately overlain by relatively crystallized pyroxenite. Magmatic vapor generated by crystallization of intercumulus melt migrated upward through fractures in the cumulate pile below the protoreef. The melt-rich protoreef became hydrated because fractures were unable to propagate through it and because the melt itself was water-undersaturated. Hydration of the intercumulus melt was accompanied by melting, and the hydration/melting front migrated downward into the footwall and upward into the hanging wall. In the footwall melting resulted first in the dissolution of orthopyroxene and then of plagioclase. With continued hydration chromite was stabilized as melt alumina content increased. The regular variations in chromite compositions reflect the original gradients in melt composition at the hydration front. The stratigraphic sequence downward through the base of the reef or pegmatoid (melt)-chromitite-anorthosite-norite represents the sequence of stable mineral assemblages across the hydration/melting front. The sequence is shown to be consistent with knowledge gained from experiments on melting of hydrous mafic systems at crustal pressures. With cooling the hydrated mixture from partial melting of norite footwall and more mafic hanging wall crystallized in the sequence chromite-olivine-pyroxene-plagioclase, with peritectic loss of some olivine. Calculations of mass balance indicate that a significant proportion of the melt was lost from the melt-rich horizon. Variations in the development of the pegmatoid and associated lithologies and amount of modal olivine in the pegmatoids along the strike of the Merensky Reef resulted because the processes of hydration, melting and melt loss operated to varying extents.  相似文献   

6.
The Merensky Reef of the Bushveld Complex consists of two chromitite layers separated by coarse-grained melanorite. Microstructural analysis of the chromitite layers using electron backscatter diffraction analysis (EBSD), high-resolution X-ray microtomography and crystal size distribution analyses distinguished two populations of chromite crystals: fine-grained idiomorphic and large silicate inclusion-bearing crystals. The lower chromitite layer contains both populations, whereas the upper contains only fine idiomorphic grains. Most of the inclusion-bearing chromites have characteristic amoeboidal shapes that have been previously explained as products of sintering of pre-existing smaller idiomorphic crystals. Two possible mechanisms have been proposed for sintering of chromite crystals: (1) amalgamation of a cluster of grains with the same original crystallographic orientation; and (2) sintering of randomly orientated crystals followed by annealing into a single grain. The EBSD data show no evidence for clusters of similarly oriented grains among the idiomorphic population, nor for earlier presence of idiomorphic subgrains spatially related to inclusions, and therefore are evidence against both of the proposed sintering mechanisms. Electron backscatter diffraction analysis maps show deformation-related misorientations and curved subgrain boundaries within the large, amoeboidal crystals, and absence of such features in the fine-grained population. Microstructures observed in the lower chromitite layer are interpreted as the result of deformation during compaction of the orthocumulate layers, and constitute evidence for the formation of the amoeboid morphologies at an early stage of consolidation. An alternative model is proposed whereby silicate inclusions are incorporated during maturation and recrystallisation of initially dendritic chromite crystals, formed as a result of supercooling during emplacement of the lower chromite layer against cooler anorthosite during the magma influx that formed the Merensky Reef. The upper chromite layer formed from a subsequent magma influx, and hence lacked a mechanism to form dendritic chromite. This accounts for the difference between the two layers.  相似文献   

7.
We report in situ Sr isotope data for plagioclase of the Bushveld Complex. We found disequilibrium Sr isotopic compositions on several scales, (1) between cores and rims of plagioclase grains in the Merensky pyroxenite, the Bastard anorthosite, and the UG1 unit and its noritic footwall, (2) between cores of different plagioclase grains within thin sections of anorthosite and pyroxenite of the Merensky unit, the footwall anorthosite of the Merensky reef and the footwall norite of the UG1 chromitite. The data are consistent with a model of co-accumulation of cumulus plagioclase grains that had crystallized from different magmas, followed by late-stage overgrowth of the cumulus grains in a residual liquid derived from a different level of the compacting cumulate pile. We propose that the rocks formed through slumping of semi-consolidated crystal slurries at the top of the Critical Zone during subsidence of the center of the intrusion. Slumping led to sorting of crystals based on density differences, resulting in a layered interval of pyroxenites, norites and anorthosites.  相似文献   

8.
铂族元素在地壳中的富集:以布什维尔德杂岩为例   总被引:1,自引:0,他引:1  
地幔是地壳铂族元素富集的主要源库。铂族元素迁移主要有两个途径:(1)地幔部分熔融物质侵入地壳;(2)地幔板片就位于俯冲/碰撞带。前一途径比后一途径重要得多。地幔物质进入地壳造成铂族元素富集并成为可供开采的主矿产而非副产品,这一过程可包含许多成矿作用机制:(i)基性侵入体中Ni-Cu硫化物矿浆的发育,岩浆冷却与分离结晶作用导致富含Cu,Pt,Pd的硫化物矿浆的形成;(ii)层状侵入体一定层位形成高品位的铂族元素硫化物层,伴生或不伴生铬铁岩;(iii)富铂族元素及硫化物的岩浆沿着层状侵入体的边缘就位;(iv)直至层状侵入体结晶分异作用晚期的硫化物不混溶滞后分离;(v)不发育硫化物不混溶作用的铬铁矿结晶作用;(vi)低程度硫化物浸染带中的热液作用与铂族元素富集;(vii)乌拉尔-阿拉斯加型侵入体重结晶过程中的铂族元素与铬铁矿的次生富集作用,岩体在风化过程中形成砂矿床;(viii)黑色页岩形成过程中Pt的富集。南非布什维尔德火成杂岩蕴藏世界Pt资源的75%,Pd资源的54%,Rh资源的82%,并具有(ii)、(iii)、(iv)、(v)、(vi)成矿作用的实例。在这些作用中,作用(ii)形成的现有经济储量和资源量占90%,作用(iii)占9%。Merensky矿层(占总资源量30%)是一个铂族元素富集层位,它含1~3铬铁矿薄层,在可采宽度内硫化物平均含量为1%~3%(质量分数)。硫化物一般被认为是铂族元素的主要聚集体。该矿层由两个或两个以上含硫化物的基性热岩浆上升汇聚而成。这些岩浆的汇聚造成超镁铁质堆晶岩的厚度(主要是斜方辉石岩,某些地区包括橄榄岩)变化于50cm至数米之间。开采通常集中在厚度不到1m的地带。矿层的成因至今仍存在争议,一些观点认为铂族元素来自下部上升的热液流体,另一些观点认为铂族元素来自上部岩浆的硫化物沉降作用,并形成了Merensky辉石岩。已经知道矿层上覆的辉石岩、苏长岩和斜长岩中矿物来自两种岩浆类型:一种富含MgO(12%,质量分数)和Cr,而贫Al2O3(12%);另一种含典型的粒玄岩成分。UG-2铬铁岩含有全部经济资源量的58%,由一0.6~1m厚的铬铁岩层(有时见辉石岩夹层)和上覆的1~3层由铬铁矿所构成的薄层。虽然硫化物被认为至少是某些情况下对铂族元素的富集起作用,但UG-2的硫化物含量(0.5%~1.5%)显著低于Merensky矿层。UG-2层之下共有13个铬铁岩层位,所有的都含铂族元素,虽然铂族元素总含量和(Pt+Pd)/(Ru+Ir+Os)比值远低于UG-2。UG-2内所含的辉石岩"夹层"具高的87Sr/86Sr比值,说明与顶部熔融岩石的混合促进了铬铁岩和硫化物的形成。作用(iii)的主要实例是Platreef。目前它占总资源量的9%。不过,沿该带正积极开展找矿勘探工作,这一比例将来还会提高。这一矿层的厚度比Merensky和UG-2都要大,目前开采厚度达50多米。Platreef呈带状,上部为斜方辉石岩的堆晶岩;下部为辉石岩、长石辉石岩和苏长岩,它们与页岩、铁矿层和白云岩强烈相互作用,直接形成了底盘岩石。笔者认为Platreef是不同期次岩浆作用的结果,这些作用形成了不同的单元产物,包括布什维尔德主岩浆房的UG-2和Merensky矿层。新的岩浆进入主岩浆房会造成先存岩浆移位、岩浆错动并会冲破岩浆房的壁。圆筒状、带状岩管中的超镁铁岩含极高的Pt品位,在布什维尔德杂岩的下部切穿堆晶层,被认为是热液再活化的产物。它们现在未被开采,只是构成存封的铂族元素资源,对整个杂岩体资源没有重要的贡献。  相似文献   

9.
Northwest of Pretoria, the UG2-Merensky Reef interval overlies a Critical Zone-Lower Zone sequence that contains numerous large blocks of floor material. Nevertheless, individual layers can be correlated with equivalent units at Crocodile River mine, the Rustenburg, Impala, Union, and Amandelbult sections. Concentrations of platinum-group elements in two borehole intersections of the UG2 chromitite are 4 ppm over 1.2 m and 2.4 ppm over 2.2 m. Therefore, bulk PGE levels appear to be only moderately lower than those at Western Platinum mine. This renders models explaining PGE enrichment by upward percolating melt or fluids problematic. The Merensky Reef, although containing sulphides, is only weakly mineralized with PGE (0.6 ppm). The UG2 pyroxenite is separated from the UG2 chromitite by a 15 m noritic layer. The introduction of feldspathic cumulates between two units that elsewhere directly overly each other may be explained by the more evolved composition of resident magma in those parts of the chamber distally located with regard to a major feeder zone at Union Section. It also suggests that the UG2 unit is a multiple rather than a single cyclic unit.  相似文献   

10.
Diamond drill core traverses across the Platreef were carried out at Tweefontein, Sandsloot, and Overysel in order to establish the relationship between crustal contamination and platinum group element (PGE) mineralization. The footwall rocks are significantly different at each of these sites and consist of banded iron formation and sulfidic shales at Tweefontein, of carbonates at Sandsloot, and of granites and granite gneisses at Overysel. As demonstrated in this study, Platreef rocks are characterized by two stages of crustal contamination. The first contamination event occurred prior to emplacement of the magma and is present in Platreef rocks at all three sites, as well as in the Merensky Reef. This event is readily identified on trace element spidergrams and trace element ratio scattergrams. The second contamination event was induced by interaction of the Platreef magma with the local footwall rocks. It is most easily identified at Tweefontein, where there is a large increase in the FeO content of the Platreef rocks, and at Sandsloot, where there is a large increase in their CaO and MgO contents, relative to Bushveld rocks that are uncontaminated by the local footwall rocks. At Overysel, the second contamination event did not result in pronounced changes in the major element composition of the Platreef rocks, but can be detected in their trace element chemistry. A strong inverse relationship between PGE tenors and S/Se ratios is interpreted to suggest that the PGE-rich sulfides were formed prior to emplacement of the Platreef magmas through assimilation of crustal S and became progressively enriched in the PGE during transport. Rather than promoting S-saturation, interaction of the Platreef magma with the footwall rocks diluted the metal tenors of the sulfides. Although both the Platreef and the Merensky Reef magmas were contaminated by the same crustal contaminant and were probably PGE-rich, they have radically different Pd/Pt ratios. Their Pd/Pt ratios suggest that whereas the Merensky Reef magma became PGE-rich due to dissolution of PGE-rich sulfides segregated from a pre-Merensky magma that had undergone relatively little fractionation prior to reaching S-saturation, the pre-Platreef magma had undergone greater fractionation prior to the sulfide saturation event, thereby increasing its Pd/Pt ratio. We suggest that the magmas that formed the Platreef and Merensky Reef may have simply been carrier magmas for sulfides that had formed elsewhere in the plumbing system of the Bushveld Complex by the interaction of earlier generations of magmas with the crustal rocks that underlie the Complex.  相似文献   

11.
Base-metal sulfides in magmatic Ni-Cu-PGE deposits are important carriers of platinum-group elements (PGE). The distribution and concentrations of PGE in pentlandite, pyrrhotite, chalcopyrite, and pyrite were determined in samples from the mineralized portion of four Merensky Reef intersections from the eastern and western Bushveld Complex. Electron microprobe analysis was used for major elements, and in situ laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) for trace elements (PGE, Ag, and Au). Whole rock trace element analyses were performed on representative samples to obtain mineralogical balances. In Merensky Reef samples from the western Bushveld, both Pt and Pd are mainly concentrated in the upper chromitite stringer and its immediate vicinity. Samples from the eastern Bushveld reveal more complex distribution patterns. In situ LA-ICP-MS analyses of PGE in sulfides reveal that pentlandite carries distinctly elevated PGE contents, whereas pyrrhotite and chalcopyrite only contain very low PGE concentrations. Pentlandite is the principal host of Pd and Rh in the ores. Palladium and Rh concentrations in pentlandite reach up to 700 and 130 ppm, respectively, in the samples from the eastern Bushveld, and up to 1,750 ppm Pd and up to 1,000 ppm Rh in samples from the western Bushveld. Only traces of Pt are present in the base-metal sulfides (BMS). Pyrrhotite contains significant though generally low amounts of Ru, Os, and Ir, but hardly any Pd or Rh. Chalcopyrite contains most of the Ag but carries only extremely low PGE concentrations. Mass balance calculations performed on the Merensky Reef samples reveal that in general, pentlandite in the feldspathic pyroxenite and the pegmatoidal feldspathic pyroxenite hosts up to 100 % of the Pd and Rh and smaller amounts (10–40 %) of the Os, Ir, and Ru. Chalcopyrite and pyrrhotite usually contain less than 10 % of the whole rock PGE. The remaining PGE concentrations, and especially most of the Pt (up to 100 %), are present in the form of discrete platinum-group minerals such as cooperite/braggite, sperrylite, moncheite, and isoferroplatinum. Distribution patterns of whole rock Cu, Ni, and S versus whole rock Pd and Pt show commonly distinct offsets. The general sequence of “offset patterns” of PGE and BMS maxima, in the order from bottom to top, is Pd in pentlandite?→?Pd in whole rock?→?(Cu, Ni, and S). The relationship is not that straightforward in general; some of the reef sequences studied only partially show similar trends or are more complex. In general, however, the highest Pd concentrations in pentlandite appear to be related to the earliest, volumetrically rather small sulfide liquids at the base of the Merensky Reef sequence. A possible explanation for the offset patterns may be Rayleigh fractionation.  相似文献   

12.
Summary Unusual facies of the Merensky Reef, the UG-2 and the UG-1 chromitite layers are developed in the western sector of the eastern Bushveld Complex. Within the basal pyroxenite of the Merensky unit, mineralization can be developed at up to four levels. Some of these contain significant mineralization with an increase in the Pt/Pd ratio upward in the succession.The UG-2 chromitite layer consists of a lower, sulphide-rich layer and an upper, sulphide-poor layer. Although these two layers are separated by a pyroxenite parting in places, both contain high platinum-group element (PGE) values. Textural features such as inclusions of base metal sulphides in chromite grains, and the moulding of sintered chromite grains around sulphides, indicates that immiscible sulphide liquid separated prior to or simultaneously with chromite crystallization. The presence of platinum minerals within the sulphides of the inclusions and enclosed in all the base metal sulphides interstitial to chromite, indicates that the PGE were extracted from the magma by the sulphide liquid.Textural and compositional evidence suggests that the sulphide enrichment in the UG-1 chromitite layer is also of magmatic origin, but that these sulphides underwent remobilization at high temperatures.Magma mixing processes are considered to have produced the chromitite layers. The high sulphide content associated with the chromitite layers in the upper critical zone in this sector is ascribed to favourable compositions and proportions of the magmas involved in the mixing process.
PGE-Vererzung im westlichen Sektor des östlichen Bushveld-Komplexes
Zusammenfassung Ungewöhnliche Fazies des Merensky-Reefes sowie der UG-2 und der UG-1 Chromitite kommen im westlichen Sektor des östlichen Bushveld Komplexes vor. In den basalen Pyroxeniten der Merensky-Einheit liegt Vererzung in bis zu vier verschiedenen Niveaus vor. Einige von diesen enthalten signifikante Metallgehalte, wobei das Pt/Pd Verhältnis gegen das Hangende hin zunimmt.Der UG-2 Chromitit besteht aus einer unteren, Sulfid-reichen, und einer oberen, Sulfid-armen Lage. Obwohl diese beiden Lagen stellenweise durch eine pyroxenitische Zwischenschicht getrennt sind, enthalten beide hohe Platin-Gruppen-Elementgehalte (PGE). Texturen wie z.B. Einschlüsse von Buntmetallsulfiden in Chromitkörnern, und die Anordnung von gesinterten Chromitkörnern um Sulfide herum weisen darauf hin, daß eine unmischbare Sulfidschmelze vor oder gleichzeitig mit der Chromitkristallisation abgetrennt wurde. Das Vorkommen von Platin-Mineralen in den Sulfiden der Einschlüsse, und in allen Buntmetallsulfiden die zwischen Chromitkörnern vorkommen, zeigen, daß die PGE durch eine Sulfidschmelze aus dem Magma entfernt worden sind.Texturelle und chemische Parameter zeigen, daß die Sulfidanreicherung in den UG-1 Chromititen auch einen magmatischen Ursprung hat, jedoch waren diese Sulfide später von einer Hochtemperatur-Mobilisation betroffen.Die Chromitit-Lagen werden durch Magmen-Mischung, der hohe Sulfid-Gehalt in den Chromitit-Lagen der oberen Kritischen Zone in diesem Sektor durch günstige Zusammensetzungen und Verhältnisse der Magmen, die an diesem Mischungsprozess teilgenommen haben erklärt.


With 7 Figures  相似文献   

13.
The Merensky Reef of the Bushveld Complex is one of the world'slargest resources of platinum group elements (PGE); however,mechanisms for its formation remain poorly understood, and manycontradictory theories have been proposed. We present precisecompositional data [major elements, trace elements, and platinumgroup elements (PGE)] for 370 samples from four borehole coresections of the Merensky Reef in one area of the western BushveldComplex. Trace element patterns (incompatible elements and rareearth elements) exhibit systematic variations, including small-scalecyclic changes indicative of the presence of cumulus crystalsand intercumulus liquid derived from different magmas. Ratiosof highly incompatible elements for the different sections areintermediate to those of the proposed parental magmas (CriticalZone and Main Zone types) that gave rise to the Bushveld Complex.Mingling, but not complete mixing of different magmas is suggestedto have occurred during the formation of the Merensky Reef.The trace element patterns are indicative of transient associationsbetween distinct magma layers. The porosity of the cumulatesis shown to affect significantly the distribution of sulphidesand PGE. A genetic link is made between the thickness of theMerensky pyroxenite, the total PGE and sulphide content, petrologicaland textural features, and the trace element signatures in thesections studied. The rare earth elements reveal the importantrole of plagioclase in the formation of the Merensky pyroxenite,and the distribution of sulphide. KEY WORDS: Merensky Reef; platinum group elements; trace elements  相似文献   

14.
The concentrations of platinum-group elements (PGE), Co, Re,Au and Ag have been determined in the base-metal sulphide (BMS)of a section of the Merensky Reef. In addition we performeddetailed image analysis of the platinum-group minerals (PGM).The aims of the study were to establish: (1) whether the BMSare the principal host of these elements; (2) whether individualelements preferentially partition into a specific BMS; (3) whetherthe concentration of the elements varies with stratigraphy orlithology; (4) what is the proportion of PGE hosted by PGM;(5) whether the PGM and the PGE found in BMS could account forthe complete PGE budget of the whole-rocks. In all lithologies,most of the PGE (65 up to 85%) are hosted by PGM (essentiallyPt–Fe alloy, Pt–Pd sulphide, Pt–Pd bismuthotelluride).Lesser amounts of PGE occur in solid solution within the BMS.In most cases, the PGM occur at the contact between the BMSand silicates or oxides, or are included within the BMS. Pentlanditeis the principal BMS host of all of the PGE, except Pt, andcontains up to 600 ppm combined PGE. It is preferentially enrichedin Pd, Rh and Co. Pyrrhotite contains, Rh, Os, Ir and Ru, butexcludes both Pt and Pd. Chalcopyrite contains very little ofthe PGE, but does concentrate Ag and Cd. Platinum and Au donot partition into any of the BMS. Instead, they occur in theform of PGM and electrum. In the chromitite layers the whole-rockconcentrations of all the PGE except Pd are enriched by a factorof five relative to S, Ni, Cu and Au. This enrichment couldbe attributed to BMS in these layers being richer in PGE thanthe BMS in the silicate layers. However, the PGE content inthe BMS varies only slightly as a function of the stratigraphy.The BMS in the chromitites contain twice as much PGE as theBMS in the silicate rocks, but this is not sufficient to explainthe strong enrichment of PGE in the chromitites. In the lightof our results, we propose that the collection of the PGE occurredin two steps in the chromitites: some PGM formed before sulphidesaturation during chromitite layer formation. The remainingPGE were collected by an immiscible sulphide liquid that percolateddownward until it encountered the chromitite layers. In thesilicate rocks, PGE were collected by only the sulphide liquid. KEY WORDS: Merensky Reef; Rustenburg Platinum Mine; sulphide; platinum-group elements; image analysis; laser ablation ICP-MS  相似文献   

15.
The genesis of the pegmatitic pyroxenite that often forms thebase of the Merensky Unit in the Bushveld Complex is re-examined.Large (>1 cm) orthopyroxene grains contain tricuspidate inclusionsof plagioclase, and chains and rings of chromite grains, whichare interpreted to have grown by reaction between small, primaryorthopyroxene grains and superheated liquid. This superheatedliquid may have been an added magma or be due to a pressurereduction as a result of lateral expansion of the chamber. Therewould then have been a period of non-accumulation of grains,permitting prolonged interaction with the crystal mush at thecrystal–liquid interface. Crystal ageing and grain enlargementof original orthopyroxene grains would ensue. Only after thepegmatitic pyroxenite had developed did another layer of chromiteand pyroxenite, with normal grain size, accumulate above it.Immiscible sulphide liquids formed with the second pyroxenite,but percolated down as a result of their density contrast, evenas far as the footwall anorthosite in some cases. Whole-rockabundances of incompatible trace elements in the pegmatiticpyroxenite are comparable with or lower than those of the overlyingpyroxenite, and so there is no evidence for addition and/ortrapping of large proportions of interstitial liquid, or ofan incompatible-element enriched liquid or fluid in the productionof the pegmatitic rock. Because of the coarse-grained natureof the rock, modal analysis, especially for minor minerals,is unreliable. Annealing has destroyed primary textures, suchthat petrographic studies should not be used in isolation todistinguish cumulus and intercumulus components. Geochemicaldata suggest that the Merensky pyroxenite (both pegmatitic andnon-pegmatitic) typically consists of about 70–80% cumulusorthopyroxene and 10–20% cumulus plagioclase, with a further10% of intercumulus minerals, and could be considered to bea heteradcumulate. KEY WORDS: Bushveld Complex; Merensky Reef; pegmatitic textures; cumulate processes; heteradcumulates; recrystallization; incompatible trace elements  相似文献   

16.
The northern lobe of the Bushveld Complex is currently a highly active area for platinum-group element (PGE) exploration. This lobe hosts the Platreef, a 10–300-m thick package of PGE-rich pyroxenites and gabbros, that crops out along the base of the lobe to the north of Mokopane (formerly Potgietersrus) and is amenable to large-scale open pit mining along some portions of its strike. An early account of the geology of the deposit was produced by Percy Wagner where he suggested that the Platreef was an equivalent PGE-rich layer to the Merensky Reef that had already been traced throughout the eastern and western lobes of the Bushveld Complex. Wagner’s opinion remains widely held and is central to current orthodoxy on the stratigraphy of the northern lobe. This correlates the Platreef and an associated cumulate sequence that includes a chromitite layer—known as the Grasvally norite-pyroxenite-anorthosite (GNPA) member—directly with the sequence between the UG2 chromitite and the Merensky Reef as it is developed in the Upper Critical Zone of the eastern and western Bushveld. Implicit in this view of the magmatic stratigraphy is that similar Critical Zone magma was present in all three lobes prior to the development of the Merensky Reef and the Platreef. However, when this assumed correlation is examined in detail, it is obvious that there are significant differences in lithologies, mineral textures and chemistries (Mg# of orthopyroxene and olivine) and the geochemistry of both rare earth elements (REE) and PGE between the two sequences. This suggests that the prevailing interpretation of the stratigraphy of the northern lobe is not correct. The “Critical Zone” of the northern lobe cannot be correlated with the Critical Zone in the rest of the complex and the simplest explanation is that the GNPA-Platreef sequence formed from a separate magma, or mixture of magmas. Chilled margins of the GNPA member match the estimated initial composition of tholeiitic (Main Zone-type) magma rather than a Critical Zone magma composition. Where the GNPA member is developed over the ultramafic Lower Zone, hybrid rocks preserve evidence for mixing between new tholeiitic magma and existing ultramafic liquid. This style of interaction and the resulting rock sequences are unique to the northern lobe. The GNPA member contains at least seven sulphide-rich horizons with elevated PGE concentrations. Some of these are hosted by pyroxenites with similar mineralogy, crystallisation sequences and Pd-rich PGE signatures to the Platreef. Chill zones are preserved in the lowest Main Zone rocks above the GNPA member and the Platreef and this suggests that both units were terminated by a new influx of Main Zone magma. This opens the possibility that the Platreef and GNPA member merge laterally into one another and that both formed in a series of mixing/quenching events involving tholeiitic and ultramafic magmas, prior to the main influx of tholeiitic magma that formed the Main Zone.  相似文献   

17.
A new geological map of the Rustenburg Layered Suite south of the Ysterberg–Planknek fault of the northern/Potgietersrus limb of the Bushveld Complex is presented, displaying features that were not available for publication in the past and are considered contributing to the complexity of this region. The northern limb is known for the Platreef, atypical mafic lithologies in sections of the layered sequence and the unusual development of the ultramafic Lower Zone as satellite bodies or offshoots at the base of the intrusion. The outcrop and suboutcrop pattern of Lower Zone Grasvally body and its relation to the surrounding geology of Main Zone, Critical Zone, and floor rocks is described. The extent of the base metal sulfide (BMS) and platinum-group element (PGE)-mineralized cyclic unit 11 of the Drummonlea harzburgite–chromitite sub zone is shown. Only that which is considered to be the equivalents of the mafic Upper Critical Zone has thus far been traced south of Potgietersrus/Mokopane. The Platreef is traced from the farm Townlands and further northwards. The presence of Platreef proper south of Potgietersrus/Mokopane appears to be speculative. However, Merensky Reef, UG 2, and equivalent layers outcrop or were intersected to the south of the town. The Kleinmeid Syncline comprising Main Zone/Critical Zone layers and its structure is discussed. The lateral lithological transfomation of the Merensky Reef/UG 2 and equivalent layers south of the Ysterberg–Planknek fault to Platreef north of this fault is recorded. Attenuation of both the Main Zone and Upper Zone is observed from the northwest towards the town and resulted in only the lower units being developed. The lateral change of Main Zone and Upper Zone lithologies from the northwest towards the town is described. The PGE and BMS economic potential south of the town are briefly tabulated.  相似文献   

18.
The Ala-Penikka PGE reefs in the Penikat layered intrusion,Northern Finland   总被引:1,自引:0,他引:1  
Summary The PGE mineralized zones referred to as the Ala-Penikka PGE Reefs (AP I and AP II) are located about 250 m and 340 m above the base of megacyclic unit IV in the Penikat layered intrusion, both mineralizations being hosted by plagioclase-augitebronzite and narrow poikilitic plagioclase cumulates. A depression structure (pothole) about 300 m long and 100 m deep is encountered in the area of the AP I Reef, and it is in this structure that the AP I Reef, which is normally 30 cm thick, attains its maximum thickness of 20 m.The dominant sulphide paragenesis in AP I is pyrrhotite-chalcopyrite-pentlanditepyrite and that in AP II chalcopyrite-pentlandite-pyrite. The platinum-group minerals identified comprise almost thirty species, the most common being Pd-Te-(Bi) and Pd-As-Sb minerals and sperrylite (PtAs2).The AP Reefs are interpreted as having been formed from an upward-migrating fluid-enriched intercumulus melt in which PGE, S, Ni, Cu and related elements occurred in the fluid phase. The poikilitic plagioclase cumulate in both of the AP Reefs acted as a layer which trapped the upward-migrating intercumulus melt at its lower contact. The depression structure developed when a disturbance of some kind in the magma chamber caused the unconsolidated cumulate layers to collapse.
Die PGE Reefs von Ala-Penikka in der Penikat-Intrusion, Nord-Finnland
Zusammenfassung Die als Ala-Penikka Platin Reefs (AP I und AP 11) bezeichneten vererzten Zonen liegen ungefähr 250 m und 340 m oberhalb der Basis der vierten megazyklischen Einheit in der Penikat-Intrusion. Beide Vererzungen kommen in Plagioklas-Augit-Bronzit und dünnen Bändern poikilitischer Plagioklas-Kumulate vor. Eine Depressions-Struktur (Pothole) von etwa 300 m Länge und 100 m Tiefe kommt im Bereich des AP 1 Reefes vor. Hier erreicht das AP I Reef, das durchschnittlich nur 30 cm mächtig ist, seine maximale Mächtigkeit von 20 m.Die wichtigste Sulfidparagenese in AP I ist Magnetkies-Kupferkies-Pentlandit-Pyrit, und die in AP II Kupferkies-Pentlandit-Pyrit. An die dreißig verschiedene Platin-Minerale konnten identifiziert werden; die verbreitetsten sind Pd-Te-(Bi) und Pd-As-Sb Minerale, sowie Sperrylit (PtAs2).Die AP-Reefs haben sich aus einer aufwärts migrierenden Fluid-angereicherten Interkumulusschmelze gebildet, in der PGE, S, Ni, Cu und assoziierte Elemente in der fluiden Phase vorkommen. Das poikilitische Plagioklas-Kumulat in beiden AP Reefs fungierte als eine Barriere die für die aufwärts migrierende Interkumulusschmelze undurchlässig war. Eine Störung in der Magmenkammer, die die noch nicht konsolidierten Kumulat-Lagen betraf, wird für die Entstehung der Depressions-Struktur verantwortlich gemacht.


With 7 Figures  相似文献   

19.
The Platreef is the main platinum group element (PGE)-bearingfacies of the northern limb of the Bushveld complex, but unlikethe Merensky Reef of the eastern and western limbs, it is indirect contact with the country rock. Mineral separate  相似文献   

20.
The Potosí Mine is located in the Moa-Baracoa massif in the easternmost part of the Cuban Ophiolitic Belt. Chromite mineralization occurs within the mantle-crust transition zone. Two events of magma intrusion overprint the chromitite bodies: one gave rise to the crystallization of pegmatitic olivine-norite dikes, and the other produced pegmatitic gabbro dikes. Sulfide-poor chromite ores, brecciated chromite ores, and sulfide-rich chromite ores can be distinguished in the different chromitite bodies. Sulfide-poor ores represent more than 80 vol% of the chromitites. This type occurs far from the zones intruded by pegmatitic gabbro dikes and shows petrographic and chemical features similar to other chromitite bodies described in the Moa-Baracoa massif. Brecciated chromite ores occur within pegmatitic gabbro dikes. In this type, chromite crystals occur included within chromian diopside and plagioclase. These silicates often contain droplet-like sulfide aggregates. Sulfide-rich ores are spatially associated to the contacts between sulfide-poor chromite and pegmatitic olivine-norite dikes. These ores mainly consist of recrystallized (coarse) chromite with interstitial pyrrhotite, pentlandite, cubanite, and chalcopyrite. Chromite from sulfide-rich ores exhibits TiO2, FeO, V2O3, MnO, and especially, Fe2O3 contents, higher than those of chromite from brecciated ores and much higher than those of chromite from sulfide-poor ores. The sulfide-rich ores are PGE-rich (up to 1,113 ppb of total PGE), and show nearly flat chondrite-normalized PGE patterns, slightly above 0.1 times chondritic values. Mineralogical and chemical data indicate that the chromite ores of the Potosí Mine were modified by the intrusions of olivine-norite and gabbro dikes. The interaction between pre-existing sulfide-poor chromite ores and the intruding volatile-rich silicate melts produced strong brecciation, partial dissolution, and recrystallization (coarsening) of chromite. The sulfide assemblage formed by fractionation of the immiscible sulfide melt segregated from the volatile-rich silicate melt that generated the pegmatitic olivine-norite. The segregation of the sulfide melt can be interpreted as the consequence of chemical interaction between intruding melts and the host chromite. The variable extent of this interaction produced chromite ores with variable sulfide ratios. The magmatic nature of the sulfide mineralization is supported by sulfur isotope data, which range from -0.4 to +0.9‰. Sulfide melt collected incompatible PGE (Rh, Pt, Pd) to produce the typical flat chondrite-normalized pattern of sulfide-rich chromite ores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号