首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xu  Wan-hai  Yang  Meng  Ai  Hua-nan  He  Ming  Li  Mu-han 《中国海洋工程》2020,34(2):172-184
Helical strakes have been widely applied for suppressing the vibration of flexible cylinders undergoing vortexshedding in offshore engineering. However, most research works have concerned on the application of helical strakes for the isolated flexible cylinder subjected to vortex-induced vibration(VIV). The effectiveness of helical strakes attached to side-by-side flexible cylinders in vibration reduction is still unclear. In this paper, the response characteristics of two side-by-side flexible cylinders with and without helical strakes were experimentally investigated in a towing tank. The configuration of the helical strakes used in the experiment had a pitch of 17.5D and a height of 0.25D(where D is the cylinder diameter), which is usually considered the most effective for VIV suppression of isolated marine risers and tendons. The center-to-center distance of the two cylinders was 3.0D. The uniform flow with a velocity ranging from 0.05 m/s to 1.0 m/s was generated by towing the cylinder models along the tank. Experimental results, including the displacement amplitude, the dominant frequency, the dominant mode,and the mean drag force coefficient, were summarized and discussed. For the case where only one cylinder in the two-cylinder system had helical strakes, the experimental results indicated that helical strakes can remarkably reduce the flow-induced vibration(FIV) of the staked cylinder. For the case of two straked cylinders in a side-by-side arrangement, it was found that the performance of helical strakes in suppressing the FIV is as good as that for the isolated cylinder.  相似文献   

2.
Till now, little information is available on the flow-induced vibration(FIV) of multiple flexible cylinders with unequal diameters. Some FIV characteristics of unequal-diameter cylinders can be predicted based on the knowledge of equal-diameter cylinders, while there are still other features remaining unrevealed. In this paper, the FIV characteristics of two flexible cylinders with unequal diameters arranged side-by-side are experimentally investigated. The diameter ratio of the small cylinder(Small Cyl.) to the large cylinder(Large Cyl.) is nearly 0.5.The aspect ratios and mass ratios of the two flexible cylinders are 350/181 and 1.90/1.47, respectively. The centre-tocentre spacing ratio in the cross-flow(CF) direction is kept constant as 6.0 and the two cylinders can oscillate freely in both the CF and in-line(IL) directions. The towing velocity varies from 0.05 m/s to 1.00 m/s. The dominant modes and frequencies, CF and IL displacement amplitudes and response trajectories are discussed. Compared with the case of two identical cylinders in our previous study, the FIV responses demonstrate some similarities and differences. The similarities are as follows. Both cylinders exhibit multi-mode vibration features and they interact with each other. Meanwhile, the IL FIV shows a more complex behaviour than that in the CF direction. The difference is that as the diameter of one cylinder is increased, the effect on the smaller cylinder becomes more significant. For Large Cyl., the FIV response is similar to its isolated counterpart, which indicates that Small Cyl. has a negligible effect on the FIV of the larger one. Whereas Large Cyl. perplexes the FIV of Small Cyl. during the vibration process. The spacing would change when both cylinders are oscillating. Proximity interference between the two cylinders and wake shielding effect of the Large Cyl. may occur. The dominant frequencies of Small Cyl. are reduced and the wake-induced flutter of Small Cyl. is observed from the response trajectories at different measuring points.  相似文献   

3.
Helical strake is a widely-used device for passive flow-induced vibration(FIV) control of cylindrical structures. It is omnidirectional and can effectively reduce FIV response amplitude. Studies on the passive FIV control for cylindrical structures are mainly concerned with a single isolated cylinder, while the influence of wake interference between multiple cylinders on FIV suppression devices is less considered up to now. In engineering applications,multiple flexible cylinders with large aspect ratios can be subjected to complex flow forces, and the effects of wake interference are obvious. The FIV suppression effect of helical strake of a common configuration(17.5 D pitch and0.25 D height, where D is the cylinder diameter) in two staggered cylinders system is still unknown. This paper systematically studied the FIV response of multiple cylinders system fitted with the helical strakes by model tests.The relative spatial position of the two cylinders is fixed at S = 3.0 D and T = 8.0 D, which ensures the cylindrical structures in the flow interference region. The experimental results show that the helical strakes effectively reduce the FIV response on staggered upstream cylinder, and the suppression efficiency is barely affected by the smooth or straked downstream cylinder. The corresponding FIV suppression efficiency on the downstream cylinder is remarkably reduced by the influence of the upstream wake flow. The wake-induced vibration(WIV) phenomenon is not observed on the staggered downstream cylinder, which normally occurs on the downstream straked cylinder in a tandem arrangement.  相似文献   

4.
A series of experimental tests of passive VIV suppression of an inclined flexible cylinder with round-sectioned helical strakes were carried out in a towing tank. During the tests, the cylinder models fitted with and without helical strakes were towed along the tank. The towing velocity ranged from 0.05 to 1.0 m/s with an interval of 0.05 m/s.Four different yaw angles(a=0°, 15°, 30° and 45°), defined as the angle between the axis of the cylinder and the plane orthogonal of the oncoming flow, were selected in the experiment. The main purpose of present experimental work is to further investigate the VIV suppression effectiveness of round-sectioned helical strakes on the inclined flexible cylinder. The VIV responses of the smooth cylinder and the cylinder with square-sectioned strakes under the same experimental condition were also presented for comparison. The experimental results indicated that the roundsectioned strake basically had a similar effect on VIV suppression compared with the square-sectioned one, and both can significantly reduce the VIV of the vertical cylinder which corresponded to the case of a=0°. But with the increase of yaw angle, the VIV suppression effectiveness of both round-and square-section strakes deteriorated dramatically, the staked cylinder even had a much stronger vibration than the smooth one did in the in-line(IL)direction.  相似文献   

5.
Liu  Cai  Gao  Yang-yang  Qu  Xin-chen  Wang  Bin  Zhang  Bao-feng 《中国海洋工程》2019,33(3):344-355
A series of three-dimensional numerical simulations is carried out to investigate the effect of inclined angle on flow behavior behind two side-by-side inclined cylinders at low Reynolds number Re=100 and small spacing ratio T/D=1.5 (T is the center-to-center distance between two side-by-side cylinders, D is the diameter of cylinder). The instantaneous and time-averaged flow fields, force coefficients and Strouhal numbers are analyzed. Special attention is focused on the axial flow characteristics with variation of the inclined angle. The results show that the inclined angle has a significant effect on the gap flow behaviors behind two inclined cylinders. The vortex shedding behind two cylinders is suppressed with the increase of the inclined angle as well as the flip-flop gap flow. Moreover, the mean drag coefficient, root-mean-square lift coefficient and Strouhal numbers decrease monotonously with the increase of the inclined angle, which follows the independent principle at small inclined angles.  相似文献   

6.
多柱体系统在石油开采逐渐向深海发展的过程中得到广泛的应用,由于波浪、流对多柱体的影响易导致其破坏。因此研究多柱体系统绕流具有重大价值。目前多不等直径多柱体绕流的研究还有待深入。本文利用Fluent模拟雷诺数Re=3 900,G/D为0.1~2.5,d/D为0.5、1.0情况下并列双圆柱的绕流过程,并根据模拟结果分析G/D和d/D的变化对大、小柱体涡脱落形态、升力系数Cl、阻力系数Cd和St值的影响。结果表明,随着G/D变化,涡脱落形态会呈现出不同的形式,绕流参数值也随之发生变化。当0G/D≤0.2时,柱后只有一个涡脱落,为单一涡脱落区,升、阻力系数值存在突变,St值小于单柱St值;当0.2G/D≤0.5~1.0时,柱后出现交替的偏斜流,为偏斜流区,升、阻力系数随着G/D的增大而减小,St值在两个极值之间变化;当0.5~1.0G/D≤2.5时,柱后有成对的涡旋,为双旋涡脱落区,升阻力系数值趋于稳定,St值稳定在0.2左右。偏斜流区与双旋涡脱落区之间的临界间距比G/D随着d/D的增大而增大;不等直径情况下,间隙流偏斜对大柱的影响小于对小柱的影响。  相似文献   

7.
- The wave-current forces on vertical piles in side-by-side arrangement induced by irregular waves with opposing current are investigated experimentally in this paper. The characteristics in both time and frequency domain of in-line, lift and resultant forces are analyzed. The grouping effect coefficients of inline, lift and resultant forces on piles related to KC number and relative spacing parameters are given. These results are compared with those in the case of irregular waves combined with following currents. It is found that the results in these two cases are quite different. The range of KC number tested is 10- 60, the range of Reynolds number is (0.55-3.43) ×104.  相似文献   

8.
Laboratory tests were conducted on a flexible riser with and without helical strakes. The aim of the present work is to further understand the response performance of the vortex induced vibration(VIV) for a riser with helical strakes. The experiment was accomplished in the towing tank and the relative current was simulated by towing a flexible riser in one direction. Based on the modal analysis method, the displacement responses can be obtained by the measured strain. The strakes with different heights are analyzed here, and the response parameters like strain response and displacement response are studied. The experimental results show that the in-line(IL) response is as important as the cross-flow(CF) response, however, many industrial analysis methods usually ignore the IL response due to VIV. The results also indicate that the response characteristics of a bare riser can be quite distinct from that of a riser with helical strakes, and the response performance depends on the geometry on the helical strakes closely. The fatigue damage is further discussed and the results show that the fatigue damage in the CF direction is of the same order as that in the IL direction for the bare riser. However, for the riser with helical strakes, the fatigue damage in the CF direction is much smaller than that in the IL direction.  相似文献   

9.
高云  付世晓  曹静  陈一帆 《海洋工程》2015,29(5):673-690
Laboratory tests were conducted on a flexible riser with and without helical strakes. The aim of the present work is to further understand the response performance of the vortex induced vibration (VIV) for a riser with helical strakes. The experiment was accomplished in the towing tank and the relative current was simulated by towing a flexible riser in one direction. Based on the modal analysis method, the displacement responses can be obtained by the measured strain. The strakes with different heights are analyzed here, and the response parameters like strain response and displacement response are studied. The experimental results show that the in-line (IL) response is as important as the cross-flow (CF) response, however, many industrial analysis methods usually ignore the IL response due to VIV. The results also indicate that the response characteristics of a bare riser can be quite distinct from that of a riser with helical strakes, and the response performance depends on the geometry on the helical strakes closely. The fatigue damage is further discussed and the results show that the fatigue damage in the CF direction is of the same order as that in the IL direction for the bare riser. However, for the riser with helical strakes, the fatigue damage in the CF direction is much smaller than that in the IL direction.  相似文献   

10.
为深入研究安装螺旋导板的深水立管涡激振动规律,设计一种月牙凸起型螺旋导板抑振装置,月牙凸起采用橡胶材料,在凸起两端肋高最低处连接成螺旋状。通过变化螺旋导板的螺旋数、螺距及螺高等形状参数,在风-浪-流联合水槽中进行安装该抑振装置的立管涡激振动试验,研究该抑振装置对涡激振动的抑制效率及其对立管动力响应的影响规律。研究结果表明,凸起型螺旋导板可取得优异的抑制效率,有效地降低由漩涡脱落引起的横向振动幅值;随着螺旋数的增加,螺旋导板抑制效率有所提高,但增幅降低,增加螺距对抑制效率影响不大,而随着螺高的增加,抑制效率有较大增幅;同时该抑振装置能有效地扰乱立管振动的主导频率,各抑振立管模型在示波区间内基本没有出现明显的主导频率。  相似文献   

11.
The spatial evolution of vortices and transition to three-dimensionality in the wake of two circular cylinders in tandem arrangement have been numerically studied. An improved virtual body method developed from the virtual boundary method is used here. A Reynolds number range between 220 and 270 has been considered, and the spacing between two cylinders is selected as L/D = 3 and L/D = 3.5. When L/D = 3, the secondary vortices of Mode-A are seen to appear at Re = 240 and persist over the range of the Reynolds number of 240 - 270. When L/D = 3.5, the similar critical Reynolds number has been found at Re = 250. No obvious discontinuity has been found in the Strouhal-Reynolds number relationship, and this is different from three-dimensional flow around a single cylinder at the critical Reynolds number. The spanwise wavelength is about four times the diameter of the cylinder, and it is the characteristic wavelength for ModeA instability. This paper can give some foremost insight into the three-dimensional instability of flow by complicated geometrical configuration.  相似文献   

12.
An experimental study on a bare flexible cylinder as well as cylinders fitted with two types of cross-sectioned helical strakes was carried out in a towing tank. The main purpose of this paper is to investigate the effects of strakes’ cross-section on the vortex-induced vibrations (VIV) suppression of a flexible cylinder. The square-sectioned and round-sectioned helical strakes were selected in the experimental tests. The uniform current was generated by towing the cylinder models along the tank using a towing carriage. The Reynolds number was in the range of 800–16000. The strain responses were measured by the strain gages in cross-flow (CF) and in-line (IL) directions. A modal analysis method was adopted to obtain the displacement responses using the strain signals in different measurement positions. The comparison of the experimental results among the bare cylinder, square-sectioned straked cylinder and round-sectioned straked cylinder was performed. The helical strakes can effectively reduce the strain amplitude, displacement amplitude, response frequencies and dominant modes of a flexible cylinder excited by VIV. And the mean drag coefficients of straked cylinders were approximately consistent with each other. In addition, the square-sectioned and round-sectioned strakes nearly share the similar VIV reduction behaviors. Sometimes, the strakes with round-section represent more excellent effects on the VIV suppression of response frequency than those with square-section.  相似文献   

13.
The dynamic response of two flexible model risers in tandem arrangement immersed in a stepped current was analyzed. The risers, with an external diameter of 20 mm and a total length of 6200 mm, had an aspect ratio of 310. They were hinged to the support structure at the center-to-center distances away 3?12 times the external diameter. The top 1200 mm was exposed to a uniform current at a speed which was up to 0.9 m/s (the Reynolds number was 18000) and the rest in still water. The dynamic responses, which were obtained through the Fiber Bragg Grating strain gauges mounted on the surface, were analyzed by studying the cross-flow amplitudes and modal weights. The cross-flow vibration were observed up to the third mode, and the modal transformation from the second mode to the third mode was clearly observed. The experiment confirmed that the typical vortex-induced vibration (VIV) had occurred on the up-stream riser. But for the down-stream riser, the main excitation mechanism was wake-induced vibration (WIV). The modal transformation of WIV was more complex than that of VIV, which might be helpful for other researchers to study the interference effect.  相似文献   

14.
Xu  Wan-hai  Li  Yu-han  Jia  Kun  Lai  Jiang 《中国海洋工程》2021,35(6):878-890
China Ocean Engineering - Flow-induced vibration (FIV) of a group of long, flexible cylinders involves a complex interaction between fluid and structures. Although a substantial number of studies...  相似文献   

15.
A Forced System of Two Cylinders with Various Spacings   总被引:3,自引:0,他引:3  
The spectrum characteristics and wake structures for a circular cylinder oscillating in a wake are investigated by use of the currently modified virtual boundary method. A forced system of two cylinders with a small spacing ( the downstream one is made to oscillate in the transverse direction) is studied and interesting flow characteristics are observed. A vortex switch and the change of vortex modes (between 2S mode and 2P mode) are observed in the “lock-in“ region. Vortex bands are formed and lost with the increasing excitation frequency. Information concerning saddle points in the flow field is obtained for different excitation frequencies. For a forced system of two cylinders with a large spacing, the upstream cylinder sheds vortexes because there is no downstream cylinder oscillating in the wake. No distinct “lock-in“ response is found for the downstream cylinder.  相似文献   

16.
A vortex-induced vibration(VIV) experiment on three side-by-side risers subjected to a uniform flow was carried out in a combined wave-current flume. The dynamic features of interference effect on three side-by-side risers were investigated by varying fluid velocity and inter-riser spacing. The distributions of dimensionless displacement,dominant frequency, and displacement trajectory of the model risers were measured using mode decomposition and wavelet transform techniques. The coupled interference of inter-riser fluid to adjacent risers at different spacings was disclosed by introducing the interference ratio concept. The results show that at spacings smaller than 6.0 D, the three model risers display appreciable deviations in their displacement responses in cross-flow or in-line direction,attributable to the strong proximity disturbance and wake interference between the risers. When the spacing is increased to 8.0 D, wake interference still makes great difference to the dynamic response of the risers in both directions. As reduced velocity increases, the three risers show higher agreement with an isolated riser in overall dominant vibration frequency in CF direction than that in IL direction at all spacings and the side risers, although symmetrically placed, do not vibrate symmetrically, as a result of the steady deflection of clearance flow within the riser group. Interference effect results in a remarkable unsteady mode competition within the risers; quantitation of the interference levels for the three risers at different spacings with interference ratio revealed that under low flow velocities and large spacing ratios, clearance flow constitutes a non-neglectable interferer for three side-by-side risers.  相似文献   

17.
Vortex-induced vibration(VIV) for flexible cylinders under combined uniform and oscillatory flow is a challenging and practical issue in ocean engineering. In this paper, a time domain numerical model is adopted to investigate the characteristics of cross-flow VIV response and fatigue damage under different combined flow cases. Firstly, the adopted VIV model and fatigue analysis procedure are validated well against the published experimental results of a4-m cylinder model under pure oscillatory flows. Then, forty-five combined flow cases of the same cylinder model are designed to reveal the VIV response characteristics with different non-dimensional oscillation period T* and combined ratio r. The combined flow cases are classified into three categories to investigate the effect of r on cylinder's dynamic response, and the effect of T* is described under long and short period cases. Finally, fatigue analysis is carried out to investigate how the structural fatigue damage varies with the variations of r and T*. The captured characteristics of structural response and fatigue damage are explained through the VIV mechanism analysis.  相似文献   

18.
The multi-body system has been a popular form for offshore operations in terms of high efficiency. The wind effects are crucial which directly affect the relative positions of floating bodies and operating security. In this study, the aerodynamic characteristics for two coupled semi-submersibles were analyzed in a wind tunnel to fill the gaps in literature related to the wind sheltering on offshore platforms. The influences of separation distance were also investigated. According to the results, substantial shielding effects were observed and wind forces on the shielded vessel decreased dramatically: a reduction in the transverse force could be up to 74%. Moreover, the longitudinal wind load was amplified by the platform abreast in a side-by-side configuration. As expected, the interference level became more pronounced with a decreasing separation distance. For cases in which wind interaction decayed rapidly with distance, logarithmic functions were preferable for describing the relationship between them. Whereas linear fitting was reasonable for the transverse wind force when there was still evident sheltering at a quite large distance.The length of shielding area was another important factor that there was approximately a linear relationship between it and the shielding level for two platforms in close proximity at various wind attack angles. Based on the two parameters, a preliminary wind loads estimation method considering shielding effects was proposed. This approach can aid the industry to have a qualitative assessment of wind sheltering especially at early stages.  相似文献   

19.
Wave forces on two side-by-side boxes in close proximity under wave actions were analyzed using the OpenFOAM package. The upstream box heaved freely under wave actions, whereas the downstream box remained fixed. For comparison, a configuration in which both boxes were fixed was also considered. The effects of the heave motion of the upstream box on the wave loads, including the horizontal wave forces, vertical wave forces, and moments on the boxes, were the focus of this study. Numerical analyses showed that all frequencies at which the maximum horizontal wave forces, maximum vertical wave forces, and maximum moment appeared are dependent on the heave motion of the upstream box and that the effects of the heave motion on these frequencies are different. Furthermore,these frequencies were observed to deviate from the corresponding fluid resonant frequency. Moreover, the heave motion of the upstream box reduced the wave forces acting on both boxes and altered the variation trends of the wave forces with the incident wave frequency.  相似文献   

20.
Marine equipments such as marine risers and oil pipelines operate in complex underwater environments and are usually attached by animals, plants and microorganisms. The attachment of marine fouling organisms will accelerate the corrosion damage of offshore structure and greatly reduce the service life. Studies have shown that non-smooth bionic surfaces with specific microstructures can inhibit fouling formation. Based on the idea of bionics, this paper proposes a new type of underwater flexible ...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号