首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The 2015/16 super El Ni?o event has been widely recognized as comparable to the 1982/83 and 1997/98 El Ni?o events.This study examines the main features of upper-ocean dynamics in this new super event,contrasts them to those in the two historical super events,and quantitatively compares the major oceanic dynamical feedbacks based on a mixed-layer heat budget analysis of the tropical Pacific.During the early stage,this new event is characterized by an eastward propagation of SST anomalies and a weak warm-pool El Ni?o;whereas during its mature phase,it is characterized by a weak westward propagation and a westward-shifted SST anomaly center,mainly due to the strong easterly wind and cold upwelling anomalies in the far eastern Pacific,as well as the westward anomalies of equatorial zonal current and subsurface ocean temperature.The heat budget analysis shows that the thermocline feedback is the most crucial process inducing the SST anomaly growth and phase transition of all the super events,and particularly for this new event,the zonal advective feedback also exerts an important impact on the formation of the strong warming and westward-shifted pattern of SST anomalies.During this event,several westerly wind burst events occur,and oceanic Kelvin waves propagate eastwards before being maintained over eastern Pacific in the mature stage.Meanwhile,there is no evidence for westward propagation of the off-equatorial oceanic Rossby waves though the discharging process of equatorial heat during the development and mature stages.The second generation El Ni?o prediction system of the Beijing Climate Center produced reasonable event real-time operational prediction during 2014–16,wherein the statistical prediction model that considers the preceding oceanic precursors plays an important role in the multi-method ensemble prediction of this super.  相似文献   

2.
The Indian summer monsoon of 1982 and 1997 depicts disparities, however, maximum sea surface temperature anomaly over Niño 3 region is observed in the following winter of both the years. The inter-annual variation of sea surface temperature anomaly shows maximum peak during 1982/83 and 1997/98 El Niño events. The inter-annual variation of multivariate ENSO index also supports the above observation. The analyses of the entire tropical Pacific basin including the equatorial region reveal an anomalous behavior of the mean sea level pressure (MSLP) and the convective activities. The observations further reveal that the negative anomaly in monsoon rainfall over India prevails throughout the monsoon season except for the month of August in 1982, while in the year 1997 the monsoon rainfall anomaly shows random variations. The comparison between the summer monsoon rainfall of 1982 and 1997 depicts that the magnitude of the positive anomaly is same in the month of August. The condition over tropical Pacific during 1982/83 and 1997/98 has been investigated through the variation of outgoing long wave radiation (OLR), MSLP and pressure vertical velocity. The time–longitude plots of OLR and MSLP reveal the changes in pressure distribution and convective pattern over the tropical equatorial Pacific. The zonal and meridional cross section of pressure vertical velocity over the tropical Pacific and tropical Indian Ocean facilitates to understand the strength of the vertical motion during the monsoons of 1982 and 1997.  相似文献   

3.
4.
The 2015/16 El Ni?o displayed a distinct feature in the SST anomalies over the far eastern Pacific(FEP)compared to the 1997/98 extreme case.In contrast to the strong warm SST anomalies in the FEP in the 1997/98 event,the FEP warm SST anomalies in the 2015/16 El Ni?o were modest and accompanied by strong southeasterly wind anomalies in the southeastern Pacific.Exploring possible underlying causes of this distinct difference in the FEP may improve understanding of the diversity of extreme El Ni?os.Here,we employ observational analyses and numerical model experiments to tackle this issue.Mixed-layer heat budget analysis suggests that compared to the 1997/98 event,the modest FEP SST warming in the 2015/16 event was closely related to strong vertical upwelling,strong westward current,and enhanced surface evaporation,which were caused by the strong southeasterly wind anomalies in the southeastern Pacific.The strong southeasterly wind anomalies were initially triggered by the combined effects of warm SST anomalies in the equatorial central and eastern Pacific(CEP)and cold SST anomalies in the southeastern subtropical Pacific in the antecedent winter,and then sustained by the warm SST anomalies over the northeastern subtropical Pacific and CEP.In contrast,southeasterly wind anomalies in the 1997/98 El Ni?o were partly restrained by strong anomalously negative sea level pressure and northwesterlies in the northeast flank of the related anomalous cyclone in the subtropical South Pacific.In addition,the strong southeasterly wind and modest SST anomalies in the 2015/16 El Ni?o may also have been partly related to decadal climate variability.  相似文献   

5.
Recent extensive studies have suggested that the occurrence of warm-pool El Niño has increased since the late 1970s and will increase in future climate. Occurrence frequencies of cold-tongue and warm-pool El Niño have been investigated in the observational record (1980–2006) and in the future 50 years (2007–2056) based on 100 synthetic SST datasets with estimates of statistical confidence. In the observational record, 80% of the warm-pool El Niño occurred since 1980 over a period of 27 years; only 20% of the warm-pool El Niño occurred prior to 1980 over a period of 110 years. The 100 synthetic datasets, on average, produce 142 months of cold-tongue El Niño in 2007–2056 as opposed to an average 107 months in the same length of the observational data; this is a 20.7% increase in the occurrence of cold-tongue El Niño compared with the observational period. Warm-pool El Niño occurred for 112 months in 2007–2056 as opposed to an average occurrence of 42 months in the observational record; this is 2.5 times the occurrence frequency in the 1980–2006 period in the synthetic datasets. As a result, occurrence frequencies of cold-tongue and warm-pool El Niño in the period of 2007–2056 become quite comparable to each other in the synthetic datasets. It is expected in the next 50 years that warm-pool El Niño will be nearly as frequent as cold-tongue El Niño.  相似文献   

6.
7.
In the summers of 1998 and 2010, severe floods occurred in the middle and lower reaches of the Yangtze River. Although an El Niño event took place preceding each of the summer floods, significant differences between the two summer floods and the two El Niño events were identified. The 1997/98 El Niño is a conventional one with strongest warming in the central-eastern Pacific, whereas the 2009/10 event is an El Niño Modoki with strongest warming in the central Pacific. In this study, summer rainfall anomalies (SRA) in the two years were first compared based on the rainfall data at 160 stations in mainland China, and a significant difference in SRA was found. To understand the underlying mechanism for the difference, the atmospheric circulation systems, particularly the western North Pacific anticyclone (WNPAC), the western Pacific subtropical high (WPSH), and the low-level air flows, were compared in the two years by using the NCEP/NCAR reanalysis data. The results display that the WNPAC was stronger in 2010 than in 1998, along with a northwestward shift, causing weakened southwesterly from the Bay of Bengal to the South China Sea but intensified southerly in eastern China. This resulted in less water vapor transport from the tropical Indian Ocean and the South China Sea but more from the subtropical western Pacific to East Asia. Subsequently, the rainband in 2010 shifted northward. The difference in the WNPAC was caused by the anomalous ascending motion associated with the warming location in the two El Niño events. Furthermore, the role of tropical sea surface temperature (SST) in modulating these differences was investigated by conducting sensitivity experiments using GFDL AM2.1 (Geophysical Fluid Dynamics Laboratory Atmospheric Model). Two experiments were performed, one with the observed monthly SST and the other with June SST persisting through the whole summer. The results suggest that the model well reproduced the primary differences in the atmospheric circulation systems in the two years. It is found that the difference in El Niño events has shaped the rainfall patterns in the two years of 1998 and 2010. At last, the case of 2010 was compared with the composite of historical El Niño Modoki events, and the results indicate that the impact of El Niño Modoki varies from case to case and is more complicated than previously revealed.  相似文献   

8.
A relation between the timing of the El Niño onset and its subsequent evolution is examined by emphasizing its association with the Indian Ocean (IO) SST variation. Two types of El Niño events based on the timing of their onset are classified and their characteristics are examined and compared. In general, spring onset (SP) events grow greater in magnitude and their evolutions have a faster transition. On the contrary, summer onset (SU) events are relatively weaker in magnitude and have a slower transition. Moreover, in contrast to the SU events, the SP events have a strong tendency for accompanying an IO dipole and basin-wide type of warming pattern in the El Niño developing and mature phases, respectively. It is demonstrated here that the distinctive evolutions in transition phase of the two events are resulted from the difference in IO SST. The warm IO SST in the SP El Niño event, lead an anomalous easterlies over the western Pacific, which forces a fast termination of El Niño events.  相似文献   

9.
Being triggered by different physical processes, the eastern Pacific (EP) and central Pacific (CP) El Niño events have several different teleconnection features around the globe. Using the ERA-Interim re-analysis monthly data during the period 1980–2016, the El Niño-Southern Oscillation (ENSO) teleconnections on the global scale and their statistical significance are investigated, with an emphasis on the contrasting features of the EP and CP El Niño events. With some exceptions, the EP El Niño and La Niña have generally similar teleconnection patterns with the reversed sign, while in some parts of the globe different and occasionally contrasting teleconnections of the EP and CP El Niño events are identified. Compared to the CP El Niño, more regions of the world are influenced by the statistically significant positive surface pressure anomalies during the EP El Niño, particularly over the Indian Ocean, tropical Atlantic and Northern Africa. It is found that the mid-tropospheric geopotential height anomalies across the globe are significantly different during the EP and CP El Niño events. Associated with different surface pressure and mid-tropospheric geopotential height anomalies, precipitation anomalies in many regions of the world are found different during the EP and CP El Niño events, particularly over the tropical Pacific, central to eastern equatorial Atlantic and the eastern Sahara. While central and eastern equatorial Atlantic experience statistically significant negative (positive) rainfall anomalies during the EP El Niño (La Niña), the CP El Niño does not have a strong influence on the amount of annual rainfall over the equatorial Atlantic. For the first time, statistically significant anomalously dry conditions are found over some parts of the Middle East and Southwest Asia during La Niña, and over the eastern Sahara during the EP El Niño.  相似文献   

10.
Interadapted fields of main hydrophysical characteristics in the vicinity of hydrological sections carried out in 1997–1998 in the Barents Sea are obtained on the basis of model computations. The complex analysis of these materials and atmospheric situation in the region during 1997–1998 enabled to estimate quantitatively the variations of significant hydrodynamic conditions: the decrease in the inflow of rather warm and salty North Atlantic waters and the compensation inflow of polar waters, the decrease in total heat content and the weakening of water dynamics in the system of the general cyclonic circulation, and the increase in the ice coverage of the Barents Sea in anomalously cold winter 1997/98. It is revealed with a high degree of the confidence probability that the significant deviations from the normal conditions occur in response to the global El Niño disturbance which took place in the same years with the maximum values of the Southern Oscillation Index in January–March 1998.  相似文献   

11.
In a context of both long-term climatic changes and short-term climatic shocks, temporal dynamics profoundly influence ecosystems and societies. In low income contexts in the Tropics, where both exposure and vulnerability to climatic fluctuations is high, the frequency, duration, and trends in these fluctuations are important determinants of socio-ecological resilience. In this paper, the dynamics of six diverse socio-ecological systems (SES) across the Tropics – ranging from agricultural and horticultural systems in Africa and Oceania to managed forests in South East Asia and coastal systems in South America – are examined in relation to the 2015–16 El Niño, and the longer context of climatic variability in which this short-term ‘event’ occurred. In each case, details of the socio-ecological characteristics of the systems and the climate phenomena experienced during the El Niño event are described and reflections on the observed impacts of, and responses to it are presented. Drawing on these cases, we argue that SES resilience (or lack of) is, in part, a product of both long-term historical trends, as well as short-term shocks within this history. Political and economic lock-ins and dependencies, and the memory and social learning that originates from past experience, all contribute to contemporary system resilience. We propose that the experiences of climate shocks can provide a window of insight into future ecosystem responses and, when combined with historical perspectives and learning from multiple contexts and cases, can be an important foundation for efforts to build appropriate long-term resilience strategies to mediate impacts of changing and uncertain climates.  相似文献   

12.
A diagnostic study of the impact of El Niño on the precipitation in China   总被引:20,自引:0,他引:20  
The impact of El Niño on the precipitation in China for different seasons are investigated diagnostically. It is found that El Niño can influence the precipitation in China significantly during its mature phase. In the Northern winter, spring and autumn, the positive precipitation anomalies are found in the southern part of China during the El Niño mature phase. In the Northern summer, the patterns of the precipitation anomalies in the El Niño mature phase are different from those in the other seasons. The negative precipitation anomalies appear in both southern and northern parts of China, while in between around the lower reaches of the Yangtze River and the Huaihe River valleys the precipitation anomalies tend to be positive. In the Northern winter, spring and autumn, the physical process by which El Niño affects the precipitation in the southern part of China can be explained by the features of the circulation anomalies over East Asia during the El Niño mature phase (Zhang et al., 1996). The appearance of an anticyclonic anomaly to the north of the maritime continent in the lower troposphere during the El Niño mature phase intensifies the subtropical high in the western Pacific and makes it shift westward. The associated southwesterly flow is responsible for the positive precipitation anomalies in the southern part of China. In the Northern summer, the intensified western Pacific subtropical high covers the southeastern periphery of China so that the precipitation there becomes less. In addition, the weakening of the Indian monsoon provides less moisture inflow to the northern part of China.  相似文献   

13.
Present work compares impacts of El Niño Modoki and El Niño on anomalous climate in the Pacific rim during boreal winters of 1979–2005. El Niño Modoki (El Niño) is associated with tripole (dipole) patterns in anomalies of sea-surface temperature, precipitation, and upper-level divergent wind in the tropical Pacific, which are related to multiple “boomerangs” of ocean-atmosphere conditions in the Pacific. Zonal and meridional extents of those “boomerangs” reflect their independent influences, which are seen from lower latitudes in the west to higher latitudes in the east. In the central Pacific, more moisture is transported from the tropics to higher latitudes during El Niño Modoki owing to displacement of the wet “boomerang” arms more poleward toward east. Discontinuities at outer “boomerang” arms manifest intense interactions between tropical and subtropical/extratropical systems. The Pacific/North American pattern and related climate anomalies in North America found in earlier studies are modified in very different ways by the two phenomena. The seesaw with the dry north and the wet south in the western USA is more likely to occur during El Niño Modoki, while much of the western USA is wet during El Niño. The moisture to the southwestern USA is transported from the northward shifted ITCZ during El Niño Modoki, while it is carried by the storms traveling along the southerly shifted polar front jet during El Niño. The East Asian winter monsoon related anticyclone is over the South China Sea during El Niño Modoki as compared to its position over the Philippine Sea during El Niño, causing opposite precipitation anomalies in the southern East Asia between the two phenomena.  相似文献   

14.
The oceanic and atmospheric conditions and the related climate impacts of the 2015/16 ENSO cycle were analyzed, based on the latest global climate observational data, especially that of China. The results show that this strong El Niño event fully established in spring 2015 and has been rapidly developing into one of the three strongest El Niño episodes in recorded history. Meanwhile, it is also expected to be the longest event recorded, attributable to the stable maintenance of the abnormally warm conditions in the equatorial Pacific Ocean since spring 2014. Owing to the impacts of this strong event, along with climate warming background, the global surface temperature and the surface air temperature over Chinese mainland reached record highs in 2015. Disastrous weather in various places worldwide have occurred in association with this severe El Niño episode, and summer precipitation has reduced significantly in North China, especially over the bend of the Yellow River, central Inner Mongolia, and the coastal areas surrounding Bohai Bay. Serious drought has occurred in some of the above areas. The El Niño episode reached its peak strength during November-December 2015, when a lower-troposphere anomalous anticyclonic circulation prevailed over the Philippines, bringing about abnormal southerlies and substantially increased precipitation in southeastern China. At the same time, a negative phase of the Eurasia-Pacific teleconnection pattern dominated over the mid-high latitudes, which suppressed northerly winds in North China. These two factors together resulted in high concentrations of fine particulate matter (PM2.5) and frequent haze weather in this region. Currently, this strong El Niño is weakening very rapidly, but its impact on climate will continue in the coming months in some regions, especially in China.  相似文献   

15.
This study uses multiple sea surface temperature(SST) datasets to perform a parallel comparison of three super El Ni os and their effects on the stratosphere. The results show that, different from ordinary El Ni os, warm SST anomalies appear earliest in the western tropical Pacific and precede the super El Ni o peak by more than 18 months. In the previous winter,relative to the mature phase of El Ni o, as a precursor, North Pacific Oscillation-like circulation anomalies are observed. A Pacific–North America(PNA) teleconnection appears in the extratropical troposphere during the mature phase, in spite of the subtle differences between the intensities, as well as the zonal position, of the PNA lobes. Related to the negative rainfall response over the tropical Indian Ocean, the PNA teleconnection in the winter of 1997/98 is the strongest among the three super El Ni os. The northern winter stratosphere shows large anomalies in the polar cap temperature and the circumpolar westerly, if the interferences from other factors are linearly filtered from the circulation data. Associated with the positive PNA response in a super El Ni o winter, positive polar cap temperature anomalies and circumpolar easterly anomalies,though different in timing, are also observed in the mature winters of the three super El Ni os. The stratospheric polar vortex in the next winter relative to the 1982/83 and 1997/98 events is also anomalously weaker and warmer, and the stratospheric circulation conditions remain to be seen in the coming winter following the mature phase of the 2015/16 event.  相似文献   

16.
The composite analysis of the structure of anomalies of vertical motions revealed disturbances in the Walker and Hadley circulations in the whole tropical zone associated with the two types of El Niño. The Eastern Pacific El Niño is characterized by the suppressed convection over the Maritime Continent and by the intensification of ascending motions in the central and eastern Pacific. The Central Pacific El Niño is characterized by the double Walker circulation cell with ascending motions in the central Pacific and descending motions in the western and eastern Pacific. Significant differences in the pattern of vertical circulation anomalies outside the Pacific region are also found in the north and west of the Indian Ocean and in the area of South America and the Caribbean.  相似文献   

17.
This paper investigates possible warming effects of an E1 Nifio event on the sea surface temperature anomaly (SSTA) in the northwestern Indian Ocean. Most pure positive Indian Ocean dipole (IOD) events (without an E1 Nifio event co-occurring) have a maximum positive SSTA mainly in the central Indian Ocean south of the equator, while most co-occurrences with an E1 Nifio event exhibit a northwest-southeast typical dipole mode. It is therefore inferred that warming in the northwestern Indian Ocean is closely related to the E1 Nifio event. Based on the atmospheric bridge theory, warming in the northwestern Indian Ocean during co-occurring cases may be primarily caused by relatively less latent heat loss from the ocean due to reduced wind speed. The deepened thermocline also contributes to the warming along the east coast of Africa through the suppressed upwelling of the cold water. Therefore, the E1 Nifio event is suggested to have a modulating effect on the structure of the dipole mode in the tropical Indian Ocean.  相似文献   

18.
In this study the observed non-linearity in the spatial pattern and time evolution of El Niño Southern Oscillation (ENSO) events is analyzed. It is shown that ENSO skewness is not only a characteristic of the amplitude of events (El Niños being stronger than La Niñas) but also of the spatial pattern and time evolution. It is demonstrated that these non-linearities can be related to the non-linear response of the zonal winds to sea surface temperature (SST) anomalies. It is shown in observations as well as in coupled model simulations that significant differences in the spatial pattern between positive (El Niño) versus negative (La Niña) and strong versus weak events exist, which is mostly describing the difference between central and east Pacific events. Central Pacific events tend to be weak El Niño or strong La Niña events. In turn east Pacific events tend to be strong El Niño or weak La Niña events. A rotation of the two leading empirical orthogonal function modes illustrates that for both El Niño and La Niña extreme events are more likely than expected from a normal distribution. The Bjerknes feedbacks and time evolution of strong ENSO events in observations as well as in coupled model simulations also show strong asymmetries, with strong El Niños being forced more strongly by zonal wind than by thermocline depth anomalies and are followed by La Niña events. In turn strong La Niña events are preceded by El Niño events and are more strongly forced by thermocline depth anomalies than by wind anomalies. Further, the zonal wind response to sea surface temperature anomalies during strong El Niño events is stronger and shifted to the east relative to strong La Niña events, supporting the eastward shifted El Niño pattern and the asymmetric time evolution. Based on the simplified hybrid coupled RECHOZ model of ENSO it can be shown that the non-linear zonal wind response to SST anomalies causes the asymmetric forcings of ENSO events. This also implies that strong El Niños are mostly wind driven and less predictable and strong La Niñas are mostly thermocline depth driven and better predictable, which is demonstrated by a set of 100 perfect model forecast ensembles.  相似文献   

19.
The spring asymmetric mode over the Tropical Indian Ocean (TIO) is characterized by contrasting patterns of rainfall and surface wind anomalies north and south of Equator. The asymmetric pattern in rainfall has evolved as a leading mode of variability in the TIO and is strongly correlated with El Niño-Southern Oscillation (ENSO) and positive Indian Ocean Dipole (IOD). The evolution of the asymmetric pattern in rainfall and surface wind during pure El Niño/IOD and co-occurrence years are examined in the twentieth century reanalysis for the period of 1871–2008 and atmospheric general circulation model (AGCM) simulations. The study revealed that spring asymmetric mode is well developed when El Niño co-occurred with IOD (positive) and is driven by the associated meridional gradients in sea surface temperature (SST) and sea level pressure (SLP). The pure El Niño composites are characterized by homogeneous (spatially) SST anomalies (positive) and weaker SLP gradients and convection, leading to weak asymmetric mode. The asymmetric mode is absent in the pure IOD (positive) composites due to the persistence of east west SST gradient for a longer duration than the co-occurrence years. The meridional gradient in SST anomalies over the TIO associated with the ENSO-IOD forcing is therefore crucial in developing/strengthening the spring asymmetric mode. The northwest Pacific anticyclonic circulation further strengthen the asymmetric mode in surface winds by inducing northeasterlies in the north Indian Ocean during pure El Niño and co-occurrence years. The simulations based on AGCM, forced by observed SSTs during the period of 1871–2000 supported the findings. The analysis of available station and ship track data further strengthens our results.  相似文献   

20.
The present study aims at studying the role played by high-frequency wind variability, wave reflection and easterly wind anomalies in the western Pacific in the onset, growth and termination phases of the 1997–1998 El Niño using the Trident intermediate coupled model and observations. While the anomalous strength of the trade winds in 1996 favored the initiation of a warm event in 1997 (via western Pacific boundary Rossby wave reflection), the actual timing of the onset and the amplitude of the event resulted from the large March 1997 wind event. Once initiated, high-frequency westerly winds strongly contributed to the rapid growth of the warm event and to the displacement of the eastern edge of the warm-pool. Moreover, both easterly and westerly high-frequency wind variability in 1997–1998 contributed to the amplitude of the event, set the evolution of the warm event and potentially influenced the equatorial Pacific conditions at least one year after the El Niño event. In addition, eastern boundary reflection also significantly contributed to the amplitude and duration of the warm event, whereas its termination was a combination of various factors: reflection of upwelling Rossby waves at the western boundary and large easterly wind anomalies observed in the western Pacific from November 1997 to early 1998. These factors were sufficient to terminate the event and to switch temperature anomalies from warm to cold. To conclude, understanding the coupling between the high- and low-frequency wind variability, i.e., studying ENSO as a multi-scale phenomenon, will certainly lead to a better comprehension of the diversity of its behavior and potentially to an improvement of its predictability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号