首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Carbon dioxide(CO_2) is an important greenhouse gas that influences regional climate through disturbing the earth's energy balance. The CO_2 concentrations are usually prescribed homogenously in most climate models and the spatiotemporal variations of CO_2 are neglected. To address this issue,a regional climate model(RegCM4) is modified to investigate the non-homogeneous distribution of CO_2 and its effects on regional longwave radiation flux and temperature in East Asia. One-year simulation is performed with prescribed surface CO_2 fluxes that include fossil fuel emission, biomass burning, air-sea exchange, and terrestrial biosphere flux. Two numerical experiments(one using constant prescribed CO_2 concentrations in the radiation scheme and the other using the simulated CO_2 concentrations that are spatially non-homogeneous) are conducted to assess the impact of non-homogeneous CO_2 on the regional longwave radiation flux and temperature. Comparison of CO_2 concentrations from the model with the observations from the GLOBALVIEW-CO_2 network suggests that the model can well capture the spatiotemporal patterns of CO_2 concentrations. Generally, high CO_2 mixing ratios appear in the heavily industrialized eastern China in cold seasons, which probably relates to intensive human activities. The accommodation of non-homogeneous CO_2 concentrations in the radiative transfer scheme leads to an annual mean change of -0.12 W m~(-2) in total sky surface upward longwave flux in East Asia. The experiment with non-homogeneous CO_2 tends to yield a warmer lower troposphere.Surface temperature exhibits a maximum difference in summertime, ranging from -4.18 K to 3.88 K, when compared to its homogeneous counterpart. Our results indicate that the spatial and temporal distributions of CO_2 have a considerable impact on regional longwave radiation flux and temperature, and should be taken into account in future climate modeling.  相似文献   

2.
A regional surface carbon dioxide (CO2) flux inversion system, the Tan-Tracker-Region, was developed by incorporating an assimilation scheme into the Community Multiscale Air Quality (CMAQ) regional chemical transport model to resolve fine-scale CO2 variability over East Asia. The proper orthogonal decomposition-based ensemble four-dimensional variational data assimilation approach (POD-4DVar) is the core algorithm for the joint assimilation framework, and simultaneous assimilations of CO2 concentrations and surface CO2 fluxes are applied to help reduce the uncertainty in initial CO2 concentrations. A persistence dynamical model was developed to describe the evolution of the surface CO2 fluxes and help avoid the “signal-to-noise” problem; thus, CO2 fluxes could be estimated as a whole at the model grid scale, with better use of observation information. The performance of the regional inversion system was evaluated through a group of single-observation-based observing system simulation experiments (OSSEs). The results of the experiments suggest that a reliable performance of Tan-Tracker-Region is dependent on certain assimilation parameter choices, for example, an optimized window length of approximately 3 h, an ensemble size of approximately 100, and a covariance localization radius of approximately 320 km. This is probably due to the strong diurnal variation and spatial heterogeneity in the fine-scale CMAQ simulation, which could affect the performance of the regional inversion system. In addition, because all observations can be artificially obtained in OSSEs, the performance of Tan-Tracker-Region was further evaluated through different densities of the artificial observation network in different CO2 flux situations. The results indicate that more observation sites would be useful to systematically improve the estimation of CO2 concentration and flux in large areas over the model domain. The work presented here forms a foundation for future research in which a thorough estimation of CO2 flux variability over East Asia could be performed with the regional inversion system.  相似文献   

3.
Understanding the responses of mean and extreme precipitation to climate change is of great importance.Previous studies have mainly focused on the responses to prescribed sea surface warming or warming due to increases of CO2.This study uses a cloud-resolving model under the idealization of radiative-convective equilibrium to examine the responses of mean and extreme precipitation to a variety of climate forcings,including changes in prescribed sea surface temperature,CO2,solar insolation,surface albedo,stratospheric volcanic aerosols,and several tropospheric aerosols.The different responses of mean precipitation are understood by examining the changes in the surface energy budget.It is found that the cancellation between shortwave scattering and longwave radiation leads to a small dependence of the mean precipitation response on forcings.The responses of extreme precipitation are decomposed into three components(thermodynamic,dynamic,and precipitation efficiency).The thermodynamic components for all climate forcings are similar.The dynamic components and the precipitation-efficiency components,which have large spreads among the cases,are negatively correlated,leading to a small dependence of the extreme precipitation response on the forcings.  相似文献   

4.
长波区间太阳辐射对气候模拟的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
长波区间的太阳辐射在气候模式中往往被忽略。利用国家气候中心BCC_AGCM2.0.1大气环流模式,采用矩阵算子辐射传输算法,研究了长波区间太阳辐射对气候模式辐射通量和温度模拟结果的影响。结果表明,以ISCCP和CERES辐射资料为标准,考虑长波区间太阳辐射后,长波区间晴空大气地表向下辐射通量平均误差减小2.05 W/m2,均方根误差减少1.29 W/m2;长波区间晴空大气模式顶向上辐射通量平均误差减小0.70 W/m2,均方根误差减小0.21 W/m2;长波区间有云大气地表向下辐射通量平均误差减小1.38 W/m2,均方根误差减小1.03 W/m2;长波区间有云大气模式顶向上辐射通量平均误差减小0.99 W/m2,均方根误差减小0.30 W/m2。以ECMWF再分析资料为标准,考虑长波区间太阳辐射后,赤道地区上对流层—下平流层区域温度的冷偏差得到改善,对流层顶温度平均误差减小0.27 K,均方根误差减小0.25 K。  相似文献   

5.
In this study, regional climate changes for seventy years (1980–2049) over East Asia and the Korean Peninsula are investigated using the Special Reports on Emission Scenarios (SRES) B1 scenario via a high-resolution regional climate model, and the impact of global warming on extreme climate events over the study area is investigated. According to future climate predictions for East Asia, the annual mean surface air temperature increases by 1.8°C and precipitation decreases by 0.2 mm day?1 (2030–2049). The maximum wind intensity of tropical cyclones increases in the high wind categories, and the intra-seasonal variation of tropical cyclone occurrence changes in the western North Pacific. The predicted increase in surface air temperature results from increased longwave radiations at the surface. The predicted decrease in precipitation is caused primarily by northward shift of the monsoon rain-band due to the intensified subtropical high. In the nested higher-resolution (20 km) simulation over the Korean Peninsula, annual mean surface air temperature increases by 1.5°C and annual mean precipitation decreases by 0.2 mm day?1. Future surface air temperature over the Korean Peninsula increases in all seasons due to surface temperature warming, which leads to changes in the length of the four seasons. Future total precipitation over the Korean Peninsula is decreased, but the intensity and occurrence of heavy precipitation events increases. The regional climate changes information from this study can be used as a fruitful reference in climate change studies over East Asia and the Korean peninsula.  相似文献   

6.
RegCM4对中国东部区域气候模拟的辐射收支分析   总被引:2,自引:0,他引:2       下载免费PDF全文
利用卫星和再分析数据,评估了区域气候模式Reg CM4对中国东部地区辐射收支的基本模拟能力,重点关注地表净短波(SNS)、地表净长波(SNL)、大气顶净短波(TNS)、大气顶净长波(TNL)4个辐射分量。结果表明:1)短波辐射的误差值在夏季较大,而长波辐射的误差值在冬季较大。但各辐射分量模拟误差的空间分布在冬、夏季都有较好的一致性。2)对于地表辐射通量,SNS表现为正偏差(向下净短波偏多),在各分量中误差最大,区域平均误差值近50 W/m2;SNL表现为负偏差(向上净长波偏多);对于大气顶辐射通量,TNS和TNL分别表现为"北负南正"的误差分布和整体正偏差。3)利用空间相关和散点线性回归方法对4个辐射分量的模拟误差进行归因分析,发现在云量、地表反照率、地表温度三个直接影响因子中,云量模拟误差的贡献最大,中国东部地区云量模拟显著偏少。  相似文献   

7.
In this study, CarbonTracker, an inverse modeling system based on the ensemble Kalman filter, was used to evaluate the effects of data assimilation parameters (assimilation window length and ensemble size) on the estimation of surface CO2 fluxes in Asia. Several experiments with different parameters were conducted, and the results were verified using CO2 concentration observations. The assimilation window lengths tested were 3, 5, 7, and 10 weeks, and the ensemble sizes were 100, 150, and 300. Therefore, a total of 12 experiments using combinations of these parameters were conducted. The experimental period was from January 2006 to December 2009. Differences between the optimized surface CO2 fluxes of the experiments were largest in the Eurasian Boreal (EB) area, followed by Eurasian Temperate (ET) and Tropical Asia (TA), and were larger in boreal summer than in boreal winter. The effect of ensemble size on the optimized biosphere flux is larger than the effect of the assimilation window length in Asia, but the importance of them varies in specific regions in Asia. The optimized biosphere flux was more sensitive to the assimilation window length in EB, whereas it was sensitive to the ensemble size as well as the assimilation window length in ET. The larger the ensemble size and the shorter the assimilation window length, the larger the uncertainty (i.e., spread of ensemble) of optimized surface CO2 fluxes. The 10-week assimilation window and 300 ensemble size were the optimal configuration for CarbonTracker in the Asian region based on several verifications using CO2 concentration measurements.  相似文献   

8.
The results of research of diurnal and seasonal dynamics of CO2 emission from the oligotrophic swamp surface in the southern taiga subzone of Western Siberia in 2005–2007 are under consideration. During the summertime, the intensity of CO2 emission increases from spring to the midsummer and then decreases by the fall. A mean CO2 emission value was 118 mg CO2/(m2 hour). The analysis of diurnal dynamics of CO2 emission showed that the maximum CO2 flux is observed at 16:00, while the minimum, at 07:00. Mean amplitude of diurnal variations of the CO2 emission is 74 mg CO2/(m2 hour). The relations established between air temperature and CO2 flux allowed calculating carbon dioxide emission for the periods between measurements. It was found that in the summertime, the period between 10:00 and 13:00 was optimal for measuring CO2 emission with a chamber method.  相似文献   

9.
ABSTRACT

Previous studies have shown that the recent summer climate (precipitation in particular) over East Asia is varying significantly. Here we extend the study to April, May, and June (AMJ) or the seasonal transition period associated with the onset of the summer monsoon. It is found that the average 1000–400?hPa AMJ tropospheric temperature (TT) experienced a sudden change at the end of the twentieth century. The change has a dipolar modal structure, with one pole over countries in Central Asia (Pakistan, Afghanistan, Uzbekistan, Kazakhstan, Kyrgyzstan, and Tajikistan.) and the other over the Tibetan Plateau. The difference in the TT between the centres of the two poles (?TT), which characterizes the zonal gradient of the TT over Asia, has seen a significant reduction since 1999. The causal relations of ?TT with the local circulation, outgoing longwave radiation (OLR), surface shortwave flux (SSWF), precipitation, etc. have been investigated using a newly developed rigorous causality analysis, which unambiguously reveals a one-way causality from ?TT to each of OLR, SSWF, and precipitation.  相似文献   

10.
A dynamic global vegetation model (DGVM) is coupled to an atmospheric general circulation model (AGCM) to investigate the influence of vegetation dynamics on climate change under conditions of global warming. The model results are largely in agreement with observations and the results of previous studies in terms of the present climate, present potential vegetation, present net primary productivity (NPP), and pre-industrial carbon budgets. The equilibrium state of climate properties are compared among pre-industrial, doubled, and quadrupled atmospheric CO2 values using DGVM–AGCM and current AGCM with fixed vegetation to evaluate the influence of dynamic vegetation change. We also separated the contributions of temperature, precipitation and CO2 fertilization on vegetation change. The results reveal an amplification of global warming climate sensitivity by 10% due to the inclusion of dynamic vegetation. The total effects of elevated CO2 and climate change also lead to an increase in NPP and vegetation coverage globally. The reduction of albedo associated with this greening results in enhanced global warming. Our separation analysis indicates that temperature alters vegetation at high latitudes such as Siberia or Alaska, where there is a switch from tundra to forest. On the other hand, CO2 fertilization provides the largest contribution to greening in arid/semi-arid region. Precipitation change did not cause any drastic vegetation shift.  相似文献   

11.
用 IAP/LASG GOALS模式模拟CO2增加引起的东亚地区气候变化   总被引:19,自引:0,他引:19  
Two simulations, one for the control run and another for the perturbation run, with a global coupled ocean-atmosphere-land system model (IAP / LASG GOALS version 4) have been carried out to study the global warming, with much detailed emphasis on East Asia. Results indicate that there is no climate drift in the control run and at the time of CO2 doubling the global temperature increases about 1.65℃. The GOALS model is able to simulate the observed spatial distribution and annual cycles of temperature and precipitation for East Asia quite well. But, in general, the model underestimates temperature and overestimates rainfall amount for regional annual average. For the climate change in East Asia, the temperature and precipitation in East Asia increase 2. l℃ and 5% respectively, and the maximum warming occurs at middle-latitude continent and the maximum precipitation increase occurs around 25°N with reduced precipitation in the tropical western Pacific.  相似文献   

12.
The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere/ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20–60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial/interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.  相似文献   

13.
Ocean acidification increases the amount of dissolved inorganic carbon (DIC) available in seawater which can benefit photosynthesis in those algae that are currently carbon limited, leading to shifts in the structure and function of seaweed communities. Recent studies have shown that ocean acidification-driven shifts in seaweed community dominance will depend on interactions with other factors such as light and nutrients. The study of interactive effects of ocean acidification and warming can help elucidate the likely effects of climate change on marine primary producers. In this study, we investigated the ecophysiological responses of Cystoseira tamariscifolia (Hudson) Papenfuss. This large brown macroalga plays an important structural role in coastal Mediterranean communities. Algae were collected from both oligotrophic and ultraoligotrophic waters in southern Spain. They were then incubated in tanks at ambient (ca. 400–500 ppm) and high CO2 (ca. 1200–1300 ppm), and at 20 °C (ambient temperature) and 24 °C (ambient temperature +4 °C). Increased CO2 levels benefited the algae from both origins. Biomass increased in elevated CO2 treatments and was similar in algae from both origins. The maximal electron transport rate (ETRmax), used to estimate photosynthetic capacity, increased in ambient temperature/high CO2 treatments. The highest polyphenol content and antioxidant activity were observed in ambient temperature/high CO2 conditions in algae from both origins; phenol content was higher in algae from ultraoligotrophic waters (1.5–3.0%) than that from oligotrophic waters (1.0–2.2%). Our study shows that ongoing ocean acidification can be expected to increase algal productivity (ETRmax), boost antioxidant activity (EC 50 ), and increase production of photoprotective phenols. Cystoseira tamariscifolia collected from oligotrophic and ultraoligotrophic waters were able to benefit from increases in DIC at ambient temperatures. Warming, not acidification, may be the key stressor for this habitat as COlevels continue to rise.  相似文献   

14.
This study reports the first assessment of the compounding effects of land-use change and greenhouse gas warming effects on our understanding of projections of future climate. An AGCM simulation of the potential impacts of tropical deforestation and greenhouse warming on climate, employing a version of NCAR Community Climate Model (CCM1-Oz), is presented. The joint impacts of tropical deforestation and greenhouse warming are assessed by an experiment in which removal of tropical rainforests is imposed into a greenhouse-warmed climate. Results show that the joint climate changes over tropical rainforest regions comprise large reductions in surface evapotranspiration (by about –180 mm yr–1) andprecipitation (by about –312 mm yr–1) over the Amazon Basin, along with anincrease of surface temperature by +3.0 K. Over Southeast Asia, similar but weaker changes are found in this study. Precipitation is decreased by –172 mmyr–1, together with the surface warming of 2.1 K. Over tropical Africa, changes in regional climate is much weaker and with some different features, such as the increase of precipitation by 25 mm yr–1. Energy budgetanalyses demonstrates that the large increase of surface temperature in the joint experiment is not solely produced by the increase of CO2concentration, but is a joint effect of the reduction of surface evaporation (due to deforestation) and the increase of downward atmospheric longwave radiation (due to the doubling of CO2 concentration). Furthermore, impactsof tropical deforestation on the greenhouse-warmed climate are estimated by comparing a pair of tropical deforestation simulations. It is found that in CCM1-Oz, deforestation has very similar impacts on greenhouse-warmed regional climates as on current climates over tropical rainforest regions. The extra-tropical climatic response to tropical deforestation is identified in both sets of tropical deforestation experiments. Statistically significant responses are seen in the large-scale atmospheric circulation such as changes in the velocity potential and vertically integrated kinetic and potential energy fields. Wave propagation patterns are identified in the large-scale circulation anomalies, which provides a mechanism for interpreting the model responses in the extra-tropics. In addition, this study suggests that land-use change such as tropical deforestation may affect projections of future climate.  相似文献   

15.
Terrestrial vegetation dynamics and global climate controls   总被引:2,自引:0,他引:2  
Monthly data from the moderate resolution imaging spectroradiometer (MODIS) and its predecessor satellite sensors was used to reconstruct vegetation dynamics in response to climate patterns over the period 1983–2005. Results suggest that plant growth over extensive land areas of southern Africa and Central Asia were the most closely coupled of any major land area to El Niño–southern oscillation (ENSO) effects on regional climate. Others land areas strongly tied to recent ENSO climate effects were in northern Canada, Alaska, western US, northern Mexico, northern Argentina, and Australia. Localized variations in precipitation were the most common controllers of monthly values for the fraction absorbed of photosynthetically active radiation (FPAR) over these regions. In addition to the areas cited above, seasonal FPAR values from MODIS were closely coupled to rainfall patterns in grassland and cropland areas of the northern and central US. Historical associations between global vegetation FPAR and atmospheric carbon dioxide (CO2) anomalies suggest that the terrestrial biosphere can contribute major fluxes of CO2 during major drought events, such as those triggered by 1997–1998 El Niño event.  相似文献   

16.
Climate is simulated for reference and mitigation emissions scenarios from Integrated Assessment Models using the Bern2.5CC carbon cycle–climate model. Mitigation options encompass all major radiative forcing agents. Temperature change is attributed to forcings using an impulse–response substitute of Bern2.5CC. The contribution of CO2 to global warming increases over the century in all scenarios. Non-CO2 mitigation measures add to the abatement of global warming. The share of mitigation carried by CO2, however, increases when radiative forcing targets are lowered, and increases after 2000 in all mitigation scenarios. Thus, non-CO2 mitigation is limited and net CO2 emissions must eventually subside. Mitigation rapidly reduces the sulfate aerosol loading and associated cooling, partly masking Greenhouse Gas mitigation over the coming decades. A profound effect of mitigation on CO2 concentration, radiative forcing, temperatures and the rate of climate change emerges in the second half of the century.  相似文献   

17.
A new complex earth system model consisting of an atmospheric general circulation model, an ocean general circulation model, a three-dimensional ice sheet model, a marine biogeochemistry model, and a dynamic vegetation model was used to study the long-term response to anthropogenic carbon emissions. The prescribed emissions follow estimates of past emissions for the period 1751–2000 and standard IPCC emission scenarios up to the year 2100. After 2100, an exponential decrease of the emissions was assumed. For each of the scenarios, a small ensemble of simulations was carried out. The North Atlantic overturning collapsed in the high emission scenario (A2) simulations. In the low emission scenario (B1), only a temporary weakening of the deep water formation in the North Atlantic is predicted. The moderate emission scenario (A1B) brings the system close to its bifurcation point, with three out of five runs leading to a collapsed North Atlantic overturning circulation. The atmospheric moisture transport predominantly contributes to the collapse of the deep water formation. In the simulations with collapsed deep water formation in the North Atlantic a substantial cooling over parts of the North Atlantic is simulated. Anthropogenic climate change substantially reduces the ability of land and ocean to sequester anthropogenic carbon. The simulated effect of a collapse of the deep water formation in the North Atlantic on the atmospheric CO2 concentration turned out to be relatively small. The volume of the Greenland ice sheet is reduced, but its contribution to global mean sea level is almost counterbalanced by the growth of the Antarctic ice sheet due to enhanced snowfall. The modifications of the high latitude freshwater input due to the simulated changes in mass balance of the ice sheet are one order of magnitude smaller than the changes due to atmospheric moisture transport. After the year 3000, the global mean surface temperature is predicted to be almost constant due to the compensating effects of decreasing atmospheric CO2 concentrations due to oceanic uptake and delayed response to increasing atmospheric CO2 concentrations before.  相似文献   

18.
Land–sea surface air temperature (SAT) contrast, an index of tropospheric thermodynamic structure and dynamical circulation, has shown a significant increase in recent decades over East Asia during the boreal summer. In Part I of this two-part paper, observational data and the results of transient warming experiments conducted using coupled atmosphere–ocean general circulation models (GCMs) are analyzed to examine changes in land–sea thermal contrast and the associated atmospheric circulation over East Asia from the past to the future. The interannual variability of the land–sea SAT contrast over the Far East for 1950–2012 was found to be tightly coupled with a characteristic tripolar pattern of tropospheric circulation over East Asia, which manifests as anticyclonic anomalies over the Okhotsk Sea and around the Philippines, and a cyclonic anomaly over Japan during a positive phase, and vice versa. In response to CO2 increase, the cold northeasterly winds off the east coast of northern Japan and the East Asian rainband were strengthened with the circulation pattern well projected on the observed interannual variability. These results are commonly found in GCMs regardless of future forcing scenarios, indicating the robustness of the East Asian climate response to global warming. The physical mechanisms responsible for the increase of the land–sea contrast are examined in Part II.  相似文献   

19.
Tropical forests are responsible for a large proportion of the global terrestrial C flux annually for natural ecosystems. Increased atmospheric CO2 and changes in climate are likely to affect the distribution of C pools in the tropics and the rate of cycling through vegetation and soils. In this paper, I review the literature on the pools and fluxes of carbon in tropical forests, and the relationship of these to nutrient cycling and climate. Tropical moist and humid forests have the highest rates of annual net primary productivity and the greatest carbon flux from soil respiration globally. Tropical dry forests have lower rates of carbon circulation, but may have greater soil organic carbon storage, especially at depths below 1 meter. Data from tropical elevation gradients were used to examine the sensitivity of biogeochemical cycling to incremental changes in temperature and rainfall. These data show significant positive correlations of litterfall N concentrations with temperature and decomposition rates. Increased atmospheric CO2 and changes in climate are expected to alter carbon and nutrient allocation patterns and storage in tropical forest. Modeling and experimental studies suggest that even a small increase in temperature and CO2 concentrations results in more rapid decomposition rates, and a large initial CO2 efflux from moist tropical soils. Soil P limitation or reductions in C:N and C:P ratios of litterfall could eventually limit the size of this flux. Increased frequency of fires in dry forest and hurricanes in moist and humid forests are expected to reduce the ecosystem carbon storage capacity over longer time periods.  相似文献   

20.
An overview of radiative climate feedbacks and ocean heat uptake efficiency diagnosed from idealized transient climate change experiments of 14 CMIP5 models is presented. Feedbacks explain about two times more variance in transient climate response across the models than ocean heat uptake efficiency. Cloud feedbacks can clearly be identified as the main source of inter-model spread. Models with strong longwave feedbacks in the tropics feature substantial increases in cloud ice around the tropopause suggestive of changes in cloud-top heights. The lifting of the tropical tropopause goes together with a general weakening of the tropical circulation. Distinctive inter-model differences in cloud shortwave feedbacks occur in the subtropics including the equatorward flanks of the storm-tracks. Related cloud fraction changes are not confined to low clouds but comprise middle level clouds as well. A reduction in relative humidity through the lower and mid troposphere can be identified as being the main associated large-scale feature. Experiments with prescribed sea surface temperatures are analyzed in order to investigate whether the diagnosed feedbacks from the transient climate simulations contain a tropospheric adjustment component that is not conveyed through the surface temperature response. The strengths of the climate feedbacks computed from atmosphere-only experiments with prescribed increases in sea surface temperatures, but fixed CO2 concentrations, are close to the ones derived from the transient experiment. Only the cloud shortwave feedback exhibits discernible differences which, however, can not unequivocally be attributed to tropospheric adjustment to CO2. Although for some models a tropospheric adjustment component is present in the global mean shortwave cloud feedback, an analysis of spatial patterns does not lend support to the view that cloud feedbacks are dominated by their tropospheric adjustment part. Nevertheless, there is positive correlation between the strength of tropospheric adjustment processes and cloud feedbacks across different climate models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号