首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on homogenized land surface air temperature (SAT) data (derived from China Homogenized Historical Temperature (CHHT) 1.0), the warming trends over Northeast China are detected in this paper, and the impacts of urban heat islands (UHIs) evaluated. Results show that this region is undergoing rapid warming: the trends of annual mean minimum temperature (MMIT), mean temperature (MT), and mean maximum temperature (MMAT) are 0.40 C decade?1, 0.32 C decade?1, and 0.23 C decade?1, respectively. Regional average temperature series built with these networks including and excluding “typical urban stations” are compared for the periods of 1954–2005. Although impacts of UHIs on the absolute annual and seasonal temperature are identified, UHI contributions to the long-term trends are less than 10% of the regional total warming during the period. The large warming trend during the period is due to a regime shift in around 1988, which accounted for about 51% of the regional warming.  相似文献   

2.
Temperature trends in Libya over the second half of the 20th century   总被引:1,自引:0,他引:1  
This paper investigates spatial variability of temperature trends over Libya in the second half of the 20th century. The study is based on complete and homogeneous time series of minimum, maximum, and mean temperature for ten observatories. During the investigated period (1951–1999), temperature trend analyses have experienced a downward trend in the maximum surface temperature (about –0.06°C decade–1) and an upward trend in the minimum surface temperature (about 0.23°C decade–1). Cooling tendency in maximum temperature is spatially more pronounced in inland stations compared to coastal stations. At the seasonal scale, maximum temperature cooling is more obvious in winter and spring, meanwhile minimum temperature warming is more pronounced in summer and fall. In accordance with global trends, the surface mean temperature has moderately risen at an average rate of 0.09°C decade–1. However, this trend has shown considerable temporal variability considering a more pronounced upward trend in summer and fall. In conjunction with other regional and global investigations, clear trends towards smaller diurnal range are presented (–0.28°C decade–1).  相似文献   

3.
High temperature accompanied with high humidity may result in unbearable and oppressive weather. In this study, future changes of extreme high temperature and heat stress in mainland China are examined based on daily maximum temperature (Tx) and daily maximum wet-bulb globe temperature (Tw). Tw has integrated the effects of both temperature and humidity. Future climate projections are derived from the bias-corrected climate data of five general circulation models under the Representative Concentration Pathways (RCPs) 2.6 and 8.5 scenarios. Changes of hot days and heat waves in July and August in the future (particularly for 2020–50 and 2070–99), relative to the baseline period (1981–2010), are estimated and analyzed. The results show that the future Tx and Tw of entire China will increase by 1.5–5°C on average around 2085 under different RCPs. Future increases in Tx and Tw exhibit high spatial heterogeneity, ranging from 1.2 to 6°C across different regions and RCPs. By around 2085, the mean duration of heat waves will increase by 5 days per annum under RCP8.5. According to Tx, heat waves will mostly occur in Northwest and Southeast China, whereas based on Tw estimates, heat waves will mostly occur over Southeast China and the mean heat wave duration will be much longer than those from Tx. The total extreme hot days (Tx or Tw > 35°C) will increase by 10–30 days. Southeast China will experience the severest heat stress in the near future as extreme high temperature and heat waves will occur more often in this region, which is particularly true when heat waves are assessed based on Tw. In comparison to those purely temperature-based indices, the index Tw provides a new perspective for heat stress assessment in China.  相似文献   

4.
Evapotranspiration is an important flux term in the water cycle that integrates atmospheric demand and surface conditions. Using the FAO Penman–Monteith method, we calculated monthly reference evapotranspiration (ET0) for 119 stations during 1961–2004 over Yunnan Province (YP), southwest China. Linear trend analysis shows that area-averaged annual and seasonal ET0 rates declined, with most remarkable decreases during pre-monsoon (?1.5 mm decade?1, Mar–May) and monsoon (?0.6 mm decade?1, Jun–Aug) seasons. Most of the stations with negative trends were concentrated in the eastern and northern parts of YP. Over the 44–year period, wind speed (WS), relative sunshine duration (SD) and relative humidity (RH) all showed decreasing trends, whereas maximum temperature (TMX) increased slightly. Multivariate regression analysis indicated that the variability of ET0 rates is most sensitive to the variations of SD, followed by RH, TMX and WS. The temporal evolution of these contributing factors was not stable during the study period, with an increasing contribution of SD and a decreasing contribution of TMX after the 1970s. Temporally changing contributions of climatic variables to ET0 should be taken into account when evapotranspiration rates are calculated with equations that rely on parameterization of climatic variables. Linking the changing contributions of climatic variables to ET0 rates to circulation features may help to better understand how ET0 responds to regional climatic change.  相似文献   

5.
An overview of mainland China temperature change research   总被引:4,自引:2,他引:2       下载免费PDF全文
There has been significant effort devoted to investigating long-term trends in land surface air temperature over mainland China by Chinese scientists over the past 50 years, and much progress has been made in understanding dynamics of the changes. This review highlights research conducted by early Chinese climatologists, and particularly Professor Shaowu Wang from Peking University, with special focus on systematic work that has been conducted since the mid to late 1970s. We also discuss major issues that remain unresolved in past and current studies. The most recent analyses indicate that the country-average annual mean surface air temperature rose by 1.12°C over the past 115 years (1901–2015), with a rate of increase of about 0.10°C decade–1. Temperatures have risen more rapidly since the 1950s, with the rate of increase of more than 0.25°C decade-1. However, the recent increase in temperatures is in large part due to contamination by systematically biased data. These data are influenced by unprecedented urbanization in China, with a contribution of urbanization to the overall increase of annual mean temperatures in mainland China of about one third over the past half a century. If the bias is corrected, the rate of increase for the country-average annual mean surface air temperature is 0.17°C decade–1 over the last 50–60 years, which is approximately the same as global and Northern Hemispheric averages in recent decades. Future efforts should be focused towards the recovery and digitization of early-year observational records, the homogenization of observational data, the evaluation and adjustment of urbanization bias in temperature data series from urban stations, the analysis of extreme temperatures over longer periods including the first half of the 20th century, and the investigation of the observed surface air temperature change mechanisms in mainland China.  相似文献   

6.
Simulation and projection of the characteristics of heat waves over China were investigated using 12 CMIP5 global climate models and the CN05.1 observational gridded dataset. Four heat wave indices (heat wave frequency, longest heat wave duration, heat wave days, and high temperature days) were adopted in the analysis. Evaluations of the 12 CMIP5 models and their ensemble indicated that the multi-model ensemble could capture the spatiotemporal characteristics of heat wave variation over China. The inter-decadal variations of heat waves during 1961–2005 can be well simulated by multi-model ensemble. Based on model projections, the features of heat waves over China for eight different global warming targets (1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0 °C) were explored. The results showed that the frequency and intensity of heat waves would increase more dramatically as the global mean temperature rise attained higher warming targets. Under the RCP8.5 scenario, the four China-averaged heat wave indices would increase from about 1.0 times/year, 2.5, 5.4, and 13.8 days/year to about 3.2 times/year, 14.0, 32.0, and 31.9 days/year for 1.5 and 5.0 °C warming targets, respectively. Those regions that suffer severe heat waves in the base climate would experience the heat waves with greater frequency and severity following global temperature rise. It is also noteworthy that the areas in which a greater number of severe heat waves occur displayed considerable expansion. Moreover, the model uncertainties exhibit a gradual enhancement with projected time extending from 2006 to 2099.  相似文献   

7.
Peninsular India and Sri Lanka receive major part of their annual rainfall during the northeast monsoon season (October–December). The long-term trend in the northeast monsoon rainfall over the Indian Ocean and peninsular India is examined in the vicinity of global warming scenario using the Global Precipitation Climatology Project (GPCP) dataset available for the period 1979–2010. The result shows a significant increasing trend in rainfall rate of about 0.5 mm day?1 decade?1 over a large region bounded by 10 °S–10 °N and 55 °E–100 °E. The interannual variability of seasonal rainfall rate over peninsular India using conventional rain gauge data is also investigated in conjunction to the Indian Ocean dipole. The homogeneous rain gauge data developed by Indian Institute of Tropical Meteorology over peninsular India also exhibit the considerable upward rainfall trend of about 0.4 mm day?1 decade?1 during this period. The associated outgoing longwave radiation shows coherent decrease in the order of 2 W?m?2 decade?1 over the rainfall increase region.  相似文献   

8.
We used daily maximum temperature data (1986–2100) from the COSMO-CLM (COnsortium for Small-scale MOdeling in CLimate Mode) regional climate model and the population statistics for China in 2010 to determine the frequency, intensity, coverage, and population exposure of extreme maximum temperature events (EMTEs) with the intensity–area–duration method. Between 1986 and 2005 (reference period), the frequency, intensity, and coverage of EMTEs are 1330–1680 times yr–1, 31.4–33.3°C, and 1.76–3.88 million km2, respectively. The center of the most severe EMTEs is located in central China and 179.5–392.8 million people are exposed to EMTEs annually. Relative to 1986–2005, the frequency, intensity, and coverage of EMTEs increase by 1.13–6.84, 0.32–1.50, and 15.98%–30.68%, respectively, under 1.5°C warming; under 2.0°C warming, the increases are 1.73–12.48, 0.64–2.76, and 31.96%–50.00%, respectively. It is possible that both the intensity and coverage of future EMTEs could exceed the most severe EMTEs currently observed. Two new centers of EMTEs are projected to develop under 1.5°C warming, one in North China and the other in Southwest China. Under 2.0°C warming, a fourth EMTE center is projected to develop in Northwest China. Under 1.5 and 2.0°C warming, population exposure is projected to increase by 23.2%–39.2% and 26.6%–48%, respectively. From a regional perspective, population exposure is expected to increase most rapidly in Southwest China. A greater proportion of the population in North, Northeast, and Northwest China will be exposed to EMTEs under 2.0°C warming. The results show that a warming world will lead to increases in the intensity, frequency, and coverage of EMTEs. Warming of 2.0°C will lead to both more severe EMTEs and the exposure of more people to EMTEs. Given the probability of the increased occurrence of more severe EMTEs than in the past, it is vitally important to China that the global temperature increase is limited within 1.5°C.  相似文献   

9.
Maximum Wind Speed Changes over China   总被引:1,自引:0,他引:1       下载免费PDF全文
In this study,the maximum wind speed(WSmax) changes across China from 1956 to 2004 were analyzed based on observed station data,and the changes of WS max for 2046-2065 and 2080-2099 are projected using three global climate models(GFDLCM20,CCCMACGCM3,and MRICGCM2) that have participated in the IPCC Fourth Assessment Report(AR4).The observed annual and seasonal WS max and the frequency of gale days showed obvious declining trends.The annual WS max decreased by approximately 1.46 m s-1 per decade,and the number of gale days decreased by 3.0 days per decade from 1956 to 2004.The amplitudes of the annual and seasonal WS max decreases are larger than those of the annual and seasonal average wind speeds(WSavg).The weakening of the East Asian winter and summer monsoons is the cause for the distinct decreases of both WS max and WS avg over the whole China.The decrease of WS max in the southeast coastal areas of China is related to the reduced intensity of cold waves in China and the decreasing number(and decreasing intensity) of land-falling typhoons originated in the Northwest Pacific Ocean.The global climate models GFDLCM20,MRICGCM2,and EBGCM(the ensemble of above mentioned three global climate models) consistently suggest that the annual and seasonal WS max values will decrease during 2046-2065 and 2080-2099 relative to 1981-2000.The models also suggest that decreases in WS max for whole China during 2046-2065 and 2080-2099 are related to both the reduced intensity of cold waves and the reduced intensity of the winter monsoon,and the decrease in WS max in the southeast coastal areas of China is corresponding to the decreasing number of tropical cyclones over the Northwest Pacific Ocean in the summer during the same periods.  相似文献   

10.
NCEP/NCAR reanalysis data and a 47-year precipitation dataset are utilized to analyze the relationship between an atmospheric heat source (hereafter called < Q1 >) over the Qinghai-Xizang Plateau (QXP) and its surrounding area and precipitation in northwest China. Our main conclusions are as follows: (1) The horizontal distribution of < Q1 > and its changing trend are dramatic over QXP in the summer. There are three strong centers of < Q1 > over the south side of QXP with obvious differences in the amount of yearly precipitation and the number of heat sinks predominate in the arid and semi-arid regions of northwest China (NWC), beside the northern QXP with an obvious higher intensity in years with less precipitation. (2) In the summer, the variation of the heat source's vertical structure is obviously different between greater and lesser precipitation years in eastern northwest China (ENWC). The narrow heat sink belt forms between the northeast QXP and the southwestern part of Lake Baikal. In July and August of greater precipitation years, the heating center of the eastern QXP stays nearly over 35oN, and at 400 hPa of the eastern QXP, the strong upward motion of the heating center constructs a closed secondary vertical circulation cell over the northeast QXP (40o--46oN), which is propitious to add precipitation over the ENWC. Otherwise, the heating center shifts to the south of 30oN and disappears in July and August of lesser precipitation years, an opposite secondary circulation cell forms over the northeast QXP, which is a disadvantage for precipitation. Meanwhile, the secondary circulation cell in years with more or less precipitation over the ENWC is also related to the heat source over the Lake Baikal. (3) The vertical structure of the heat source over the western QXP has obvious differences between greater and lesser precipitation years in western northwest China in June and July. The strong/weak heat source over the western QXP produces relatively strong/weak ascending motion and correspondingly constructs a secondary circulation cell in lesser/greater precipitation years.  相似文献   

11.
采用2009—2013年CFSR(Climate Forecast System Reanalysis)大气和海洋再分析资料对黄海海气间热量通量和动量通量的特征进行统计分析,并通过FVCOMSWAVE浪流耦合模式对典型寒潮过程中风浪的影响效果进行模拟研究与对比分析。统计结果显示,通量受海表大风、海气温差及海洋环流等因子影响,秋冬季节强烈,春夏季节相对较弱,在寒潮活跃的冷季该海域的海流处于弱流期,风浪对海面通量的作用明显增强。海温特征也显示冷季的不稳定性显著强于暖季,因此该海域冷季具有更强的海气热量通量。沿岸站点的比较显示,南部吕泗站面向更开阔的东海海域,其平均波高高出北部20%左右。这与沿海南部通量强于北部特征对应。数值模拟显示,在寒潮过程中,海气界面热量通量和动量通量输送比多年月平均状态显著增强,动量通量增大1~5倍,热量通量增大1~6倍。寒潮过程入海冷锋走向、强度、移动方向显著影响海面热量通量和动量通量大值区的分布。偏北路寒潮纬向型冷锋入海,其强度东部大于西部,造成通量大值区形成在黄海东北部,而偏西路寒潮经向型冷锋入海,其强度南部大于北部,造成通量大值区形成在黄海南部。同时偏北路径寒潮强度大于偏西路径,海气动量通量响应较偏西路径强约25%,热量通量强约50%。耦合风浪作用的模拟显示,海气间热量通量和动量通量明显增大,对不同强度风浪,浪高增加1.5倍,动量通量最大值增大约2倍,热量通量增大10~160 W/m2;浪高减弱至0.5倍,动量通量最大值则减弱约40%,热量通量减小10~55 W/m2。冷锋及其驱动的风浪强烈影响区域海气通量时空特征。  相似文献   

12.
Inclusion of the effects of vegetation feedback in a global climate change simulation suggests that the vegetation–climate feedback works to alleviate partially the summer surface warming and the associated heat waves over Europe induced by the increase in atmospheric CO2 concentrations. The projected warming of 4°C over most of Europe with static vegetation has been reduced by 1°C as the dynamic vegetation feedback effects are included.. Examination of the simulated surface energy fluxes suggests that additional greening in the presence of vegetation feedback effects enhances evapotranspiration and precipitation, thereby limiting the warming, particularly in the daily maximum temperature. The greening also tends to reduce the frequency and duration of heat waves. Results in this study strongly suggest that the inclusion of vegetation feedback within climate models is a crucial factor for improving the projection of warm season temperatures and heat waves over Europe.  相似文献   

13.
利用27个测站逐日最高气温资料,对1961~2016年四川盆地夏季高温热浪的时空演变特征进行研究。结果表明:(1)四川盆地高温热浪频次、强度和持续时间均呈增加趋势,其中热浪强度的增加趋势最为显著。三者都经历了先较弱增加后明显减少再明显增加的年代际变化过程。20世纪80年代是热浪低发期,2010~2016年为明显高发期。(2)盆地高温热浪气候平均空间分布大致呈东南多(强)西北少(弱),空间差异显著,多发区主要集中在重庆西南部一带。三项指标除盆地东南边缘小部分为减少趋势外,基本呈增加趋势,增幅大值带均沿重庆北部至四川南部呈东北-西南走向。相比而言,盆地西部增加趋势比盆地东部更加显著。(3)盆地高温热浪频次、强度和持续时间均存在显著的年际变化周期,且具有较为一致的2年周期。相关分析表明,三者均与西太平洋副高脊线和北界位置存在显著的正相关。   相似文献   

14.
基于黑球湿球温度识别了中国复合热浪,并定量分析了城市化和西太平洋副热带高压(简称西太副高)对中国复合热浪的协同作用。结果表明:1979—2019年中国复合热浪的发生天数、强度和影响范围都在逐步上升,尤其在2010年以后出现跃升,比20世纪80年代增大了4倍左右;城市化快速发展和西太副高增强协同加剧了中国复合热浪;较早发展的城市化对热浪天数、强度、范围增长的贡献分别是9.2%、12.5%、7.5%,而同期西太副高的增强对三类热浪指数有约30%的正贡献,甚至在考虑全球变暖对西太副高的加强作用时,西太副高的贡献增至70%左右。这表明,快速发展的城市化和全球变暖背景下增强的西太副高的协同作用可以解释80%以上21世纪初中国复合热浪的跃升。  相似文献   

15.
北京地区城郊极端温度事件的变化趋势及差异分析   总被引:1,自引:0,他引:1  
利用北京地区城郊16个气象观测站1979~2008年逐日平均、最高和最低温度的均一化资料,分析了近30年北京地区城、郊区极端温度事件发生频次(强度)的变化趋势,并对比了城郊差异以及城市热岛强度对城郊差异的影响.研究结果显示:从发生频次来看,近30年城区极端低温事件的减小幅度[5.94 d (10 a)-1]高于郊区的减小幅度[-5.28 d (10 a)-1],而极端高温事件的增加幅度在城区[4.33 d (10 a)-1]和郊区[4.42 d (10 a)-1]之间差别不大,定量化的诊断结果进一步证明了城区和郊区在极端温度事件发生频次上的差别很小.从发生强度来看,近30年城区极端温度事件的年平均发生强度明显高于郊区,但在变化趋势上,城区极端低温事件的减弱幅度略高于极端高温事件的增强幅度,相差0.042℃(10 a)-1,而在郊区极端低温事件的减弱幅度却略低于极端高温事件的增强幅度,相差0.052℃(10 a)-1.城郊差异的定量化分析结果表明,极端温度事件在城区强度一般大于郊区强度,城区与郊区强度差值均为正值(除1982年和1985年极端高温事件强度差值为负).热岛强度与极端温度事件城郊差异的相关性统计发现,极端温度事件发生频次和发生强度在城郊之间的差别与热岛强度均没有明显的相关特征,该结果说明城市热岛效应对北京超大城市市区和郊区影响基本一致,其差异性是有限的.  相似文献   

16.
2009年夏季中国高温分析   总被引:5,自引:3,他引:2  
张玛  高庆九  蒋薇 《气象科学》2011,31(5):582-590
用常规气温资料及NCEP/NCAR再分析资料,对2009年夏季中国高温过程进行了研究。结果发现:(1)2009年中国中东部地区发生的高温日数相对历史同期偏多,集中在华北和长江以南地区。(2)大陆暖高压是导致6月华北黄淮一带高温过程的主要环流系统,7、8月副高的持续偏强和西伸是导致7、8月高温过程的主要环流系统。南亚高压与副热带高压有很好的响应关系,随着南亚高压的增强(减弱)东伸(西撤),副高强度进而增强(减弱)西伸(东撤),江南地区日最高温度分布范围也相应增大(缩小)。低层辐散、副热带西风急流轴偏北、急流中心偏西等有利于2009年夏季高温的发生和维持。(3)整层垂直积分大气加热场正异常可以作为高温的维持机制。  相似文献   

17.
Heat waves are occurring more frequently across the globe and are likely to increase in intensity and duration under climate change. Much work has already been completed on attributing causes of observed heat waves and on modeling their future occurrence, but such efforts are often lacking in exploration of spatial relationships. Based on principles of landscape ecology, we utilized fragmentation metrics to examine the spatiotemporal changes in heat wave shape and occurrence across North America. This methodological approach enables us to examine area, shape, perimeter, and other key metrics. The application of these shape metrics to high-resolution historical (1950–2013) climate data reveals that the total number and spatial extent of heat waves are increasing over the continent, but at an individual heat wave patch level, they are becoming significantly smaller in extent and more complex in shape, indicating that heat waves have become a more widespread and fragmented phenomena.  相似文献   

18.

Measurement of solar radiation was initiated in Girona, northeast of the Iberian Peninsula, in the late 1980s. Initially, two pyranometers were installed, one of them equipped with a shadowband for measuring the diffuse component. Two other pyranometers currently exist, both ventilated and one of them shadowed, with a sphere, and a pyrheliometer for measuring direct radiation. Additional instruments for other shortwave and longwave components, clouds, and atmospheric aerosols have been installed in recent years. The station is subject to daily inspection, data are saved at high temporal resolution, and instruments are periodically calibrated, all in accordance with the directions of the Baseline Surface Radiation Network. The present paper describes how the entire series of global solar radiation (1987–2014) and diffuse radiation (1994–2014) were built, including the quality control process. Appropriate corrections to the diffuse component were made when a shadowband was employed to make measurements. Analysis of the series reveals that annual mean global irradiance presents a statistically significant increase of 2.5 W m−2 (1.4 %) decade−1 (1988–2014 period), mainly due to what occurs in summer (5.6 W m−2 decade−1). These results constitute the first assessment of solar radiation trends for the northeastern region of the Iberian Peninsula and are consistent with trends observed in the regional surroundings and also by satellite platforms, in agreement with the global brightening phenomenon. Diffuse radiation has decreased at −1.3 W m−2 (−2 %) decade−1 (1994–2014 period), which is a further indication of the reduced cloudiness and/or aerosol load causing the changes.

  相似文献   

19.
Temperature differences among days of the week and their long-term trends were evaluated using 29 years of hourly data from the Automated Meteorological Data Acquisition System network of Japan. Stations were categorized with respect to the population density around each site, and an urban temperature anomaly (δT*) was defined as a departure from the spatial average of nearby rural stations. On Saturdays and holidays (Sundays and national holidays), δT* was lower than on weekdays by 0.2–0.25°C at Tokyo, by 0.1–0.2°C at Osaka, and by about 0.02°C at stations where the population density was 300 to 1,000 km–2. Moreover, δT* showed a relative decreasing trend over the long term on Mondays and an increasing trend on Fridays, at a rate of about 0.05–0.1°C decade–1 at Tokyo and about 0.02°C decade–1 at stations where the population density was 100 to 1,000 km–2, but no significant difference in δT* trends was observed between weekdays and weekend days.  相似文献   

20.
Global warming exerts a lengthening effect on the growing season, with observational evidences emerging from different regions over the world. However, the difficulty for a global overview of this effect for the last century arises from limited availability of the long-term daily observations. In this study, we find a good linear relationship between the start (end) date of local growing season (LGS) and the monthly mean temperature in April (October) using the global gridded daily temperature dataset for 1960–1999. Using homogenized daily temperature records from nine stations where the time series go back to the beginning of the twentieth century, we find that the rate of change in the start (end) date of the LGS for per degree warming in April (October) mean temperature keeps nearly constant throughout the time. This enables us to study LGS changes during the last century using global gridded monthly mean temperature data. The results show that during the period 1901–2009, averaged over the observation areas, the LGS length has increased by a rate of 0.89 days decade?1, mainly due to an earlier start (?0.58 days decade?1). This is smaller than those estimates for the late half of the twentieth century, because of multidecadal climate variability (MDV). A MDV component of the LGS index series is extracted by using Ensemble Empirical Mode Decomposition method. The MDV exhibits significant positive correlation with the Atlantic Multi–decadal Oscillation (AMO) over most of the Northern Hemisphere lands, but negative in parts of North America and Western Asia for start date of LGS. These are explained by analyzing differences in atmospheric circulation expressed by sea level pressure departures between the warm and cool phases of AMO. It is suggested that MDV in association with AMO accelerates the lengthening of LGS in Northern Hemisphere by 53 % for the period 1980–2009.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号