首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
In the old mining area of Rodalquilar, mine wastes, soil and sediments were characterized and the results revealed high concentration of Au, Ag, As, Bi, Cu, Fe, Mn, Pb, Se, Sb and Zn in tailings and sediments. The contaminant of greatest environmental concern is As. The mean concentration in the tailings was 679.9, and 345 mg/kg in the sediments of Playazo creek. The groundwater samples from the alluvial aquifer showed high concentration of Al, As, Cd, Fe, Hg, Mn, Ni, Pb, Se, Sb and Zn and very high concentration of chloride and sulfate, which were above the concentration defined in the European standards for drinking water. The presence of As in groundwater may be caused by the oxidation of arsenian pyrite, the possible As desorption from goethite and ferrihydrite and the jarosite dissolution. Groundwater concentrations of Cd, Fe, Mn, and possibly Cu, were associated with low values of Eh, indicating the possible dissolution of oxy-hydroxides of Fe and Mn. The mobility of metals in the column experiments show the release of Al, Fe, Mn, Cr, Cu, Ni, V and Zn in significant concentrations but below the detected values in groundwater. However, As, Cd, Sb, Se Pb and Au, are generally mobilized in concentrations above the detected values in groundwater. The possible mass transfer processes that could explain the presence of the contaminants in the aquifer and the leachates was simulated with the PHREEQC numerical code and revealed the possible dissolution of the following mineral phases: jarosite, natrojarosite, arsenian pyrite, alunite, chlorite, kaolinite and calcite.  相似文献   

2.
The Pliocene aquifer receives inflow of Miocene and Pleistocene aquifer waters in Wadi El Natrun depression. The aquifer also receives inflow from the agricultural activity and septic tanks. Nine sediment samples were collected from the Pliocene aquifer in Wadi E1 Natrun. Heavy metal (Cu, Sr, Zn, Mn, Fe, Al, Ba, Cr, Ni, V, Cd, Co, Mo, and Pb) concentrations of Pliocene aquifer sediments were investigated in bulk, sand, and mud fractions. The determination of extractable trace metals (Cu, Zn, Fe, Mn, and Pb) in Pliocene aquifer sediments using sequential extraction procedure (four steps) has been performed in order to study environmental pathways (e.g., mobility of metals, bounding states). These employ a series of successively stronger chemical leaching reagents which nominally target the different compositional fractions. By analyzing the liquid leachates and the residual solid components, it is possible to determine not only the type and concentration of metals retained in each phase but also their potential ecological significance. Cu, Sr, Zn, Mn, Fe, and Al concentrations are higher in finer sediments than in coarser sediments, while Ba, Cr, Ni, V, Cd, Co, Mo, and Pb are enriched in the coarser fraction. The differences in relative concentrations are attributed to intense anthropogenic inputs from different sources. Heavy metal concentrations are higher than global average concentrations in sandstone, USEPA guidelines, and other local and international aquifer sediments. The order of trace elements in the bulk Pliocene aquifer sediments, from high to low concentrations, is Fe?>?Al?>?Mn?>?Cr?>?Zn?>?Cu?>?Ni?>?V?>?Sr?>?Ba?>?Pb?>?Mo?>?Cd?>?Co. The Pliocene aquifer sediments are highly contaminated for most toxic metals, except Pb and Co which have moderate contamination. The active soluble (F0) and exchangeable (F1) phases are represented by high concentrations of Cu, Zn, Fe, and Mn and relatively higher concentrations of Pb and Cd. This may be due to the increase of silt and clay fractions (mud) in sediments, which act as an adsorbent, retaining metals through ion exchange and other processes. The order of mobility of heavy metals in this phase is found to be Pb?>?Cd?>?Zn?>?Cu?>?Fe?>?Mn. The values of the active phase of most heavy metals are relatively high, indicating that Pliocene sediments are potentially a major sink for heavy metals characterized by high mobility and bioavailability. Fe–Mn oxyhydroxide phase is the most important fraction among labile fractions and represents 22% for Cd, 20% for Fe, 11% for Zn, 8% for Cu, 5% for Pb, and 3% for Mn. The organic matter-bound fraction contains 80% of Mn, 72% of Cu, 68% of Zn, 60% of Fe, 35% of Pb, and 30% of Cd (as mean). Summarizing the sequential extraction, a very good immobilization of the heavy metals by the organic matter-bound fraction is followed by the carbonate-exchangeable-bound fraction. The mobility of the Cd metal in the active and Fe–Mn oxyhydroxide phases is the highest, while the Mn metal had the lowest mobility.  相似文献   

3.
Metal and metalloid (As, Cd, Co, Cu, Pb and Zn) distribution in soils from the Katanga Copperbelt (Democratic Republic of Congo) is investigated in order to characterize the environmental impacts of mining and smelting activities in that area. The concentrations of Cu, Co, As, Zn, Pb and Cd in soils from mining sites are higher than in non-metalliferous sites and above permissible metal and metalloid concentrations in soils. Moreover, the fractionation and mobility of Co, and Cu in such environment is assessed using the application of both ammonium acetate-EDTA extraction and speciation modeling (WHAM 6). The resulting data set covers wide range of environmental conditions (pH, trace metals concentration, natural soils and soils affected by mining and ore processing). These extractions show that only a small fraction of Cu and Co is mobile, with variation depending on sites: mobility is higher in soils affected by mining and ore processing. The strong affinity of Mn-oxides for Co may explain lower Co mobility in Mn-rich soils. The high Mn and Fe contents of Cu–Co soils from Katanga may actually exert a protective effect against the toxic effects of Co. Finally, Cu–Co speciation modeling of contaminated sites emphasizes that organic matter strongly sorb Cu whereas Co speciation is mostly by Mn content. This type of study leads to a better understanding of metal fractionation and can guide to define different practices of phytoremediation.  相似文献   

4.
The present study was carried out in parts of Hindon-Yamuna interfluve region to evaluate the concentration of trace elements (Al, Cr, Mn, Fe, Ni, Co, Cu, Zn, As, Se, Cd, B and Pb) in groundwater. Pre-monsoon groundwater samples were collected in 2007 from 22 locations distributed throughout the study area, and were analyzed using Inductive Coupled Plasma Mass-Spectrophotometer (ICPMS). Trace element analyses show high concentration levels for Al and Cr in almost all groundwater samples. Relatively high values are also reported for Pb, Se, Fe and Mn (as per B.I.S (1991) standard for drinking water) in few samples. These high concentrations of metal ions in groundwater were probably due to discharge of untreated effluents from Textile, dyeing and other industries. As far as Al is concerned, its source is rather enigmatic.  相似文献   

5.
A 24-cm long sediment core from an oxic fjord basin in Ranafjord, Northern Norway, was sliced in 2 cm sections and analysed for As, Co, Cu, Ni, Hg, Pb, Zn, Mn, Fe, ignition loss and Pb-210. Partitioning of metals between silicate, non-silicate and non-detrital phases was assessed by leaching experiments, in an attempt to understand the mechanisms of surface metal enrichment in sediments. Relative to metal concentrations in sediments deposited in the 19th century, metals in near surface sediments were enriched in the following order: Pb > Mn > Hg > Zn > Cu > As > Fe. Cobalt and Ni showed no enrichment. The non-detrital fraction of Cu, Pb, Mn and Zn was significantly higher in the upper 10 cm than at greater depth in the core. This corresponds to sediments deposited since 1900, when mining activities started in the area. The enrichment of Cu, Pb and Zn is assumed to be mainly a result of mining, while Mn is apparently enriched in the surface due to migration of dissolved Mn and precipitation in the oxic surface layer. Elevated concentrations of As and Fe in the upper 4 cm are presumably due to discharges from a coke plant and an iron works respectively. The excess Hg present in the near surface sediments is tightly bound, either in coal particles or ore dust introduced by local industry, or via long distance transport of atmospheric particles. Calculations of metal flux to the sediments indicate an anthropogenic flux of Zn equal to its natural flux, while the flux of Pb shows a threefold increase above natural input.  相似文献   

6.
The aim of this study was to investigate spatiotemporal variations in groundwater heavy-metal concentrations at the Karaduvar agricultural-industrial district (Mersin, SE Turkey), where parts of the underlying coastal aquifer has been polluted by petroleum hydrocarbons (PHCs) from diverse sources. The water chemistry data for the present study is comprised of 275 samples collected during 2006–2010 from 55 water-supply wells. The samples were analyzed in situ for physical parameters (EC, DO, pH, and temperature) and in the laboratory for As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb and Zn using the ICP-MS method. Box–whisker plots and principal components analysis (PCA) method were employed to determine the seasonal changes occurring in heavy-metal concentrations and to identify source apportionment of pollution parameters in groundwater. During the monitoring period, in many wells, heavy-metal concentrations (except for Cd) exceeded the limit values set by Turkish Water Pollution Control Directive (No: 25687). Results from the PCA suggest that elevated Mn, Fe, Co, Ni and As concentrations may be linked to oxidation–reduction of geogenic Mn/Fe oxyhydroxides in PHC-contaminated parts. The high concentrations of Cu, Mo and probably Cd in background areas result from the agricultural and petrochemical activities conducted in the recent past. At the site, high Pb and Zn concentrations are probably related to agricultural activities in PHC-contaminated areas, whereas Cr can be solely attributed to lithogenic sources. At the Karaduvar site, heavy-metal pollution in groundwater is found to be much more persistent than PHC contamination.  相似文献   

7.
《Applied Geochemistry》2003,18(3):409-421
This study provides a geochemical partitioning pattern of Fe, Mn and potentially toxic trace elements (As, Cd, Cr, Cu, Ni, Pb, Zn) in sediments historically contaminated with acid mine drainage, as determined by using a 4-step sequential extraction scheme. At the upperstream, the sediments occur as ochreous precipitates consisting of amorphous or poorly crystalline oxy-hydroxides of Fe, and locally jarosite, whereas the estuarine sediments are composed mainly of detrital quartz, illite, kaolinite, feldspars, carbonates and heavy minerals, with minor authigenic phases (gypsum, vivianite, halite, pyrite). The sediments are severely contaminated with As, Cd, Cu, Pb and Zn, especially in the vicinity of the mining pollution sources and some sites of the estuary, where the metal concentrations are several orders of magnitude above background levels. Although a significant proportion of Zn, Cd and Cu is present in a readily soluble form, the majority of heavy metals are bonded to reducible phases, suggesting that Fe oxy-hydroxides have a dominant role in the metal accumulation. In the estuary, the sediments are potentially less reactive than in the riverine environment, because relevant concentrations of heavy metals are immobilised in the crystalline structure of minerals.  相似文献   

8.
In order to assess the pollution levels of selected heavy metals, 45 bottom sediment samples were collected from Al-Kharrar lagoon in central western Saudi Arabia. The concentrations of the heavy metals were recorded using inductively coupled plasma-mass spectrometer (ICP-MS). The results showed that the concentrations of Pb and Cd exceeded the environmental background values. However, the heavy metal contents were less than the threshold effect level (TEL) limit. The concentrations of heavy metals in lagoon bottom sediments varied spatially, but their variations showed similar trends. Elevated levels of metals were observed in the northern and southern parts of the lagoon. Evaluation of contamination levels by the sediment quality guidelines (SQG) of the US-EPA revealed that sediments were non-polluted-moderately to heavily polluted with Pb; non-polluted to moderately polluted with Cu; and non-polluted with Mn, Zn, Cd, and Cr. The geoaccumulation index showed that lagoon sediments were unpolluted with Cd, Mn, Fe, Hg, Mo, and Se; unpolluted to moderately polluted with Zn and Co; and moderately polluted with Pb, Cr, Cu, and As. The high enrichment factor values for Pb, As, Cu, Cr, Co, and Zn (>2) indicate their anthropogenic sources, whereas the remaining elements were of natural origins consistent with their low enrichment levels. The values of CF indicate that the bottom sediments of Al-Kharrar lagoon are moderately contaminated with Mn and Pb.  相似文献   

9.
Total concentrations of chemical elements in soils may not be enough to understand the mobility and bioavailability of the elements. It is important to characterise the degree of association of chemical elements in different physical and chemical phases of soil. Another geochemical characterisation methodology is to apply sequential selective chemical extraction techniques. A seven-step sequential extraction procedure was used to investigate the mobility and retention behaviour of Al, Fe, Mn, Cu, Zn, Pb, Cr, Co, Ni, Mo, Cd, Bi, Sn, W, Ag, As and U in specific physical–chemical and mineral phases in mine tailings and soils in the surroundings of the abandoned Ervedosa mine. The soil geochemical data show anomalies associated with mineralised veins or influenced by mining. Beyond the tailings, the highest recorded concentrations for most elements are in soils situated in mineralised areas or under the influence of tailings. The application of principal components analysis allowed recognition of (a) element associations according to their geochemical behaviour and (b) distinction between samples representing local geochemical background and samples representing contamination. Some metal cations (Mn, Cd, Cu, Zn, Co, Cr, Ni) showed important enrichment in the most mobilisable and bioavailable (i.e., water-soluble and exchangeable) fractions due likely to the acidic conditions in the area. In contrast, oxy-anions such as Mo and As showed lower mobility because of adsorption to Fe oxy-hydroxides. The residual fraction comprised largest proportions of Sn and Al and to a lesser extent Zn, Pb, Ni, Cr, Bi, W, and Ag, which are also present at low concentrations in the bioavailable fractions. The elements in secondary mineral phases (mainly Fe, Mn, Cu, Zn, Cd, Pb, W, Bi, Mo, Cr, Ni, Co, As and U) as well as in organic matter and sulphides are temporarily withheld, suggesting that they may be released to the environment by changes in physico-chemical conditions.  相似文献   

10.
The town of Salihli is situated in Gediz Graben in the western Anatolia. This region is important in terms of industry, mining, geothermal energy, water sources, and agricultural production. Geothermal flow and anthropogenic activities in Salihli threaten the surrounding environment due to the contamination of cold groundwater, surface water, and soil. The goal of the present study is to determine the environmental effects of the geothermal and anthropogenic activities in Salihli on soil, stream sediments, and water. Stream sediments and farm soil have been contaminated by substances derived from geothermal and industrial effluents. To this end, the quality review of the water was completed and the heavy metal levels in stream sediment samples were measured to determine the extent of contamination. The elements As, B, Br, Fe, and Ni are the major contaminants present in surface water and groundwater in the study area. The concentrations of these elements excess tolerance limits of international water standards. Gibbsite, K-mica, kaolinite, sepiolite, halite, sulfur, willemite, and Pb(OH)2 might be precipitated as scales at low temperatures on the soil; this could be interpreted as a resultant from soil contamination. The concentrations of 17 elements (As, Ba, B, Cd, Co, Cr, Cu, Fe, Hg, Li, Mo, Mn, Ni, Pb, Sb, Sr, and Zn) were measured in samples from stream sediments and surface soils. In the study area, especially geothermal and anthropogenic activities give rise to environmental pollution.  相似文献   

11.
Nador Lagoon sediments show low trace element concentrations, and, in relation to the lagoon geochemical baseline, only some anomalies for As, Cd, Cu and Pb in the NW of the lagoon deserve to be outstanding. The distribution of major, minor and trace elements in the lagoon allows a breakdown in four zones. Between “Beni Ensar” and “Atelouane” (zone A), a quite confined zone rich in organic matter and S, the most important trace-element anomalies (As, Cd, Co, Cu, Mn, Pb, Zn) were found, mainly around industry and old mining activities. In the surrounding of the city of Nador (zone B), the anomalies correspond to Mn, Cu and Zn. The coastal barrier and Kebdana channel (zone C) show moderately concentrations of Cd, Cr and Ni at specific sites. The less polluted area is the SE of the lagoon (zone D), with no outstanding anomaly. In lagoon sediments, metal bioavailability is very low. The metal partitioning patterns show that Cu, Pb and Zn present a low availability because they are bounded to the residual, non-mobile phases of the sediments. Only in some sites, the fraction was associated with organic matter, which could be liberated easily. Arsenic is concentrated in both the residual phases and the organic matter, the latter being more available. Cadmium is mainly concentrated in some samples in the interchangeable fraction, which could be considered as a potentially toxic element because it is easily released. Concerning the origin of these trace elements, those found in zone A correspond mostly to a natural source by weathering of mount Gourougou volcanic rocks (As, Co, Cu, Pb and Zn), and to an anthropogenic origin (Cd) owing to the presence of industry and old mines. In zone B, contributions of Cu and Zn enter the lagoon through soil weathering and river-borne, and as anthropogenic pollution from urban wastes. In zone C the most important pollutant is Cd deduced to be of anthropogenic origin from the close industry and intensive agriculture area. In spite of the intense socio-economic activities developed in the Nador Lagoon (agriculture, industry, fishing, tourism) trace element concentrations in the sediments are low and with scarce bioavailability. Only the NW sector is relativity polluted because of geogenic features.  相似文献   

12.
The technique of diffusive gradients in thin films (DGT) was applied to obtain high-resolution vertical profiles of trace metals in sediment porewater of a eutrophic lake, Lake Chaohu. All sampling sediments were under anaerobic conditions with Eh values below 0, the redox potential profile in M4 was relatively stable, and higher Eh values in M4 than that in M1 were observed due to hydrodynamic effects. Fe, Mn and As exhibited closely corresponding profiles due to the co-release of Fe and Mn oxides and the reduction of As. Higher Fe and Mn concentrations and lower As concentrations were observed in M1 of the western half-lake than those in M4 of the eastern half-lake due to different sources and metal contamination levels in the two regions. Cu and Zn showed increasing concentrations similar to Mn and Fe at 1–2 cm depth of sediments, while DGT measured Co, Ni, Cd and Pb concentrations decreased down to 3–4 cm in the profiles. Co, Ni, Cu, Zn, Cd and Pb showed insignificant regional concentration variances in the western and eastern half-lakes. According to the R(C DGT/C centrifugation) values, the rank order of metal labilities decrease as follows: Fe (>1) > Cu, Pb, Zn (>0.9) > Co, Ni, Cd (>0.3) > Mn, As (>0.1).  相似文献   

13.
The concentrations of heavy metals (Cr, Co, Ni, Cu, Zn, Pb, Cd, As, Hg, and Fe) in sediments of the Yangtze River, China, were investigated to evaluate levels of contamination and their potential sources. The lowest heavy metal concentrations were found in the source regions of the river basin. Relatively high concentrations of metals, except Cr, were found in the Sichuan Basin, and the highest concentrations were in the Xiangjiang and Shun’anhe rivers. All concentrations, except Ni, were higher than global averages. Principal component analysis and hierarchical cluster analysis showed that Zn, Pb, As, Hg, and Cd were derived mainly from the exploitation of various multi-metal minerals, industrial wastewater, and domestic sewage. Cu, Co, and Fe were derived mainly from natural weathering (erosion). Cr and Ni were derived mainly from agricultural activities, municipal and industrial wastewater. Sediment pollution was assessed using the geoaccumulation index (I geo) and enrichment factor (EF). Among the ten heavy metals assessed, Cd and Pb had the highest I geo values, followed by Cu, As, Zn, and Hg. The I geo values of Fe, Cr, Co, and Ni were <0 in all sediments. EF provided similar information to I geo: no enrichment was found for Cr, Co, and Ni. Cu, Zn, As, and Hg were relatively enriched at some sites while Cd and Pb showed significant enrichment.  相似文献   

14.
Surface sediments of nine islands of Lakshadweep were evaluated for their heavy metal concentration (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn). Sediments of thirteen seagrass and seven non seagrass sites were collected randomly and analysed for heavy metal concentration using Inductively Coupled Plasma Optical Emission Spectrometer. Heavy metals like Cu, Ni and Zn were found in higher concentrations in the seagrass sediments, whereas other heavy metals such as Cd, Co, Cr, Fe, Mn and Pb were higher in non seagrass sediments. Different pollution indices were calculated to evaluate contamination level of all heavy metals in the sediments. Cadmium recorded higher contamination factor (1.733–21.067), enrichment factor (276.10–12,270) and Geo-accumulation Index (0.208–3.811) both in seagrass and nonseagrass sediments. Multivariate statistical analysis such as principal component analysis and cluster analysis coupled together with correlation co-efficient was used to identify the possible sources of heavy metal pollution in the region. Average concentrations of Cd in Lakshadweep islands were slightly higher than effective range, low but still below effective range medium. All other metals were still below these ranges indicating fairly uncontaminated sediment in the region.  相似文献   

15.
The Haraz River flows northwards through the Iranian Alborz mountains in the central region of Mazandaran province and empties into the Caspian Sea. This area has been a rich source of minerals from times immemorial. About 45 mines (coal, limestone, sand and gravel, etc.) have been operational for the last eight decades. Towards the estuary, the river receives a discharge of industrial, agricultural and urban wastes. Eight sediment samples from the Haraz River and its main tributaries were collected and analyzed for base metals as well as Sr and Fe. The chemical partitioning of metals (Cu, Zn, As, Cd, Pb, Fe, Ni, Cr, Co and Sr) in each sample was determined in four fractions (acid-soluble, reducible, oxidizable and residual). The total content of each metal was also determined. The results showed relatively higher concentrations of Cd, As, Sr and Pb in comparison to that of shale. However, based on the chemical partitioning of metals, it is found that Pb, Co, Cd and Sr are the most mobile metals. In spite of the high As concentrations in sediments, it is not likely that this element is a major hazard for the aquatic environment, since it is found mainly in the residual fraction. Cadmium is the metal that showed the highest percentages in the acid-soluble fraction (the most labile) and the lowest in the residual fraction. However, Fe, Cr and Ni are present in the greatest percentages in the residual fraction, which implies that these metals are strongly linked to the sediments.  相似文献   

16.
The speciation of Fe, Mn, Zn, Cu, Co, Ni, Cr, Pb, and Cd was studied in 52 samples of bottom sediments collected during Cruise 49 of the R/V Dmitrii Mendeleev in estuaries of the Ob and Yenisei rivers in the southwestern Kara Sea. Immediately after sampling, the samples were subjected to on-board consecutive extraction to separate metal species according to their modes of occurrence in the sediments: (1) adsorbed, (2) amorphous Fe-Mn hydroxides and related metals, (3) organic + sulfide, and (4) residual, or lithogenic. The atomic absorption spectroscopy of the extracts was carried out at a stationary laboratory. The distribution of Fe, Zn, Cu, Co, Ni, Cr, Pb, and Cd species is characterized by the predominance of lithogenic or geochemically inert modes (70–95% of the bulk content), in which the metals are bound in terrigenous and clastic mineral particles and organic detritus. About half of the total Mn amount and 15–30% Zn and Cu is contained in geochemically mobile modes. The spatiotemporal variations in the proportions of metal species in the surface layer of sediments along the nearly meridional sections and through the vertical sections of bottom sediments cores testify that Mn and, to a lesser extent, Cu are the most sensitive to changes in the sedimentation environment. The role of their geochemically mobile species notably increases under reducing conditions.  相似文献   

17.
The chemical forms of Fe, Mn, Zn, Cu, Cr, Pb and Cd in the Huanghe River sediments have been studied by sequential extraction techniques and the comparison with data from the Rhine River sediments has been made. In the Huanghe River sediments the average contents of metals, without exception, are below their respective contents in average shales and very close to their levels in Ca-poor granites. The major portion of metals is combined with the detrital and moderately reducible phases. Both in the Huanghe River and in the Rhine River sediments the distribution ratios of metals between the moderately reducible and the easily reducible phases are generally more than unity. However, the distribution ratios of Mn, Zn and Cd are obviously lower than those of Fe, Cr, Cu and Pb. As a result of contamination, the ratios of Fe, Cr, Cu and Pb show an apparent increase, but no remarkable ratio variation is observed for Mn, Zn and Cd. Metals in the Huanghe River sediments, especially Cu and Zn, show a tendency to be associated with the organic phase. The effect of carbonate on metal association preference seems to be less important than that in the Rhine River although there is higher content of carbonate in the Huanghe River sediments. Cd has a greater percentage of the exchangeable phase, which is similar to the result from the Rhine River sediments.  相似文献   

18.
Surface sediments were collected from different sites of a freshwater reservoir, Pakistan, and analyzed for eight metals (Cd, Co, Cr, Cu, Fe, Mn, Pb and Zn) using flame atomic absorption spectrometry. The estimated metals levels were found higher than other reported studies. The environmental indices including geoaccumulation index, enrichment factor and contamination factor identified Cd, Co, Pb and Zn as the priority pollutants of concern. Chromium, Cu and Mn were also found to be enriched in some areas. The pollution load index (≥1) indicated progressive deterioration of the sediments quality. Principal component and cluster analyses revealed that Cd, Co, Pb and Zn were mainly originated from agricultural activities, domestic wastes, road runoffs and recreational activities. Chromium, Cu, Fe and Mn were mainly derived from natural sources though Cr, Cu and Mn were partially contributed by human inputs. Based on spatial distribution, inlet and middle sites of the reservoir were found more contaminated. This study would drive urgent attention to develop preventive actions and remediation processes for aquatic system protection and future restoration of the reservoir.  相似文献   

19.
A sediment core collected from coastal zone near the Qiao Island in the Pearl River Estuary was analyzed for total metal concentrations, chemical partitioning, and physico-chemical properties. Three vertical distribution patterns of the heavy metals in the sediment core were identified, respectively. The dominant binding phases for Cu, Pb, Cr, and Zn were the residual and Fe/Mn oxides fractions. Cd in all sediments was mainly associated with exchangeable fraction. Influences of total organic carbon content and cation exchange capacity on the total concentrations and fractions of almost all the metals were not evident, whereas sand content might play an important role in the distributions of residual phases of Cr, Cu, Pb, and Zn. In addition, sediment pH had also an important influence on the Fe/Mn oxides, organic/sulfide and residual fractions of Cr, Cu, and Zn. Contamination assessment on the heavy metals in the sediment core adopting Index of Geoaccumulation showed that Cr, V, Be, Se, Sn, and Tl were unpolluted, while Cu, Ni, Pb, Zn, Cd, and Co were polluted in different degrees throughout the core. It was remarkable that the various pollution levels of the metals from moderate (for Cu, Pb, and Zn) to strong (for Cd) were observed in the top 45 cm of the profiles. The relative decrease of the residual fraction in the upper 45 cm of the core is striking, especially for Zn and Cu, and, also for Pb, and Cr. The change in fraction distribution in the upper 45 cm, which is very much contrasting to the one at larger depths, confirms that the residual fraction is related to the natural origin of these metals, whereas in the upper part, the non-residual fractions (mainly the Fe/Mn oxides fraction) are increased due to pollution in the last decade. The possible sources for Cu, Pb, Zn, and Cd contaminations were attributed to the increasing municipal and industrial wastewater discharges, agricultural runoff, atmospheric inputs, and runoff from upstream mining or smelting activities, which may be associated with an accelerating growth of economy in the Pearl River Delta region in the past decade.  相似文献   

20.
The heavy metal contents of Mn, Ni, Cu, Zn, Cr, Co, Pb, Cd, Fe, and V in the surface sediments from five selected sites of El Temsah Lake was determined by graphite furnace atomic absorption spectrophotometer. Geochemical forms of elements were investigated using four-step sequential chemical extraction procedure in order to identify and evaluate the mobility and the availability of trace metals on lake sediments, in comparison with the total element content. The operationally defined host fractions were: (1) exchangeable/bound to carbonate, (2) bound to Fe/Mn oxide, (3) bound to organic matter/sulfides, and (4) acid-soluble residue. The speciation data reveals that metals Zn, Cd, Pb, Ni, Mn, Cu, Cr, Fe, and V are sink primarily in organic and Fe–Mn oxyhydroxides phases. Co is mainly concentrated in the active phase. This is alarming because the element is enriched in Al Sayadin Lagoon which is still the main site of open fishing in Ismailia. Average concentration of the elements is mostly above the geochemical background and pristine values of the present study. There is a difference on the elemental composition of the sediment collected at the western lagoon (Al Sayadin Lagoon), junction, the shoreline shipyard workshops, and eastern beach of the lake. Depending upon the nature of elements and local pollution source, high concentration of Zn, Pb, and Cu are emitted by industrial wastewater flow (shoreline workshops), while sanitary and agricultural wastewater (El Bahtini and El Mahsama Drains) emit Co and Cd in Al Sayadin Lagoon. On the other hand, there is a marked decrease in potentially toxic heavy metal concentrations in the sediments at the most eastern side of the lake, probably due to the successive sediment dredging and improvements in water purification systems for navigation objective. These result show that El Temsah receives concentrations in anthropogenic metals that risk provoking more or less important disruptions, which are harmful and irreversible on the fauna and flora of this lake and on the whole ecobiological equilibrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号