首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Nematode species composition, trophic structure and body size distributions were followed over an annual production cycle in the central North Sea; to test responses to temporally changing food quality and quantity in the sediment. Changes in the phytoplankton concentration in the water column were quantitatively reflected in the concentration of chlorophyll a and breakdown products in the sediment, with higher concentrations in spring and autumn following blooms, and lower concentrations in summer and winter. The taxonomic and trophic structure of nematode communities differed significantly among stations over relatively short distances, potentially masking some of the temporal dynamics. Spatio-temporal differences in nematode species composition were linked to changes in the quality and quantity of organic material reaching the seabed, reflecting a species-specific response to the nutritional quality of sedimenting organic material and the biochemical changes in the sediment associated with its decomposition. The size distributions of selected nematode species indicated that most species bred continuously throughout the sampling period, although one species, the epigrowth feeder Spilophorella paradoxa, had periods of increased growth following the deposition of the spring phytoplankton bloom. There was no consistent temporal relationship between the trophic composition of nematode communities and spring chlorophyll a or carbon sedimentation, most likely a result of the trophic plasticity of most feeding types and the capacity of the community to use both freshly sedimented material as well as the subsequent breakdown products and refractory organic matter. Community metrics implied that there were small responses to the seasonal production cycle, but these belied strong responses of a few species with life histories that allowed them to track the availability of suitable food resources.  相似文献   

2.
Nematode species composition, trophic structure and body size distributions were followed over an annual production cycle in the central North Sea; to test responses to temporally changing food quality and quantity in the sediment. Changes in the phytoplankton concentration in the water column were quantitatively reflected in the concentration of chlorophyll a and breakdown products in the sediment, with higher concentrations in spring and autumn following blooms, and lower concentrations in summer and winter. The taxonomic and trophic structure of nematode communities differed significantly among stations over relatively short distances, potentially masking some of the temporal dynamics. Spatio-temporal differences in nematode species composition were linked to changes in the quality and quantity of organic material reaching the seabed, reflecting a species-specific response to the nutritional quality of sedimenting organic material and the biochemical changes in the sediment associated with its decomposition. The size distributions of selected nematode species indicated that most species bred continuously throughout the sampling period, although one species, the epigrowth feeder Spilophorella paradoxa, had periods of increased growth following the deposition of the spring phytoplankton bloom. There was no consistent temporal relationship between the trophic composition of nematode communities and spring chlorophyll a or carbon sedimentation, most likely a result of the trophic plasticity of most feeding types and the capacity of the community to use both freshly sedimented material as well as the subsequent breakdown products and refractory organic matter. Community metrics implied that there were small responses to the seasonal production cycle, but these belied strong responses of a few species with life histories that allowed them to track the availability of suitable food resources.  相似文献   

3.
Nematode assemblage composition, trophic structure and biodiversity were followed over an annual cycle in a sandy beach of the Taiping Bay of Qingdao, China. Nematode assemblage in the sandy beach maintained a high genus diversity (75 genera). Mlero- laimus and Bathylaimus were the dominant genus of the nematode assemblage, accounting for 66% of the total nematode abundance. The nematodes' dominant trophic structure changed seasonally as a response to the seasonal changes in food quality. Epigrowth-feeder nematodes (2A) were the dominant trophic groups in the trophic structure with the highest abundance in spring because of phytoplankton bloom, while the feeding type ( 1 B) showed higher abundance in summer that was due to the increasing of sediment detritus after spring bloom. Furthermore, species diversity and evenness calculated on nematodes identified to the genus level displayed significant temporal changes, which was also reflected by the index of trophic diversity. According to the cluster analysis, the nematode community structure of the whole year was clearly separated into two periods (A and B). Biota-Envlron- ment matching (BIOENV) results showed that seawater temperature, sediment Chl a and grain size were responsible for the nema- tode community structure variation in spring and summer period (Period A). However, seawater/interstitial water temperature, interstitial water dissolved oxygen concentration,interstitial water salinity, and sediment Ph a a were more important in constructing the autumn and winter period (Period B) nematode community structure.  相似文献   

4.
大亚湾生态监控区的浮游植物年际变化   总被引:2,自引:0,他引:2  
依据国家海洋局、国家海洋局第三海洋研究所等权威机构2004~2007年所获的数据和资料,对大亚湾生态监控区近4a长时间尺度的浮游植物群落年际变化进行分析,通过物种组成、丰度变化、优势类群演替、群落结构及赤潮灾害事件来反映生境的退化,探讨其变化的主要原因及趋势。结果表明,浮游植物群落由暖水种占绝对优势转变为广温广布种占主导地位。种类与丰度呈逐年下降的态势,浮游植物丰度的分布保持西高东低,近岸高于远岸的特征,浮游植物的高丰度与营养盐丰富及温排水有关。终年以硅藻为优势种群,优势种演替具有明显的季节与年际变化,细长翼根管藻(Rhizosolenia alataf.gracillima)是春季稳定的优势种,柔弱拟菱形藻(Pseudo-nitzschia delicatissma)是夏季稳定的优势种,春末甲藻的优势度增加明显。浮游植物群落多样性指数呈逐年下降趋势,均匀度呈逐年上升态势。浮游植物的异常增殖及过度集中导致多样性较低,种间比例不均匀,群落结构单一。赤潮季节性发生频繁,发生频率及引发种类呈上升趋势,海洋环境脆弱。  相似文献   

5.
透明胞外聚合颗粒物(Transparent exopolymer particles,TEPs)在海洋中分布广泛,其沉降被认为是海洋中生物碳沉降的途径之一。本研究于2011年春季和夏季调查了长江口邻近海域TEPs的浓度和沉降速率,并且估算了其碳沉降通量。研究发现,TEPs浓度春季介于40.00~1040.00 μg Xeq L-1,平均值为209.70±240.93 μg Xeq L-1;夏季介于56.67~1423.33 μg Xeq L-1,平均值为433.33±393.02 μg Xeq L-1。两个季节,TEPs在水华站位的浓度明显高于非水华站位。相关性分析表明,TEPs与水体叶绿素a浓度呈显著正相关性,表明在调查区浮游植物是TEPs的主要生产者。TEPs沉降速率在春季介于0.08~0.57 m d-1,平均值为0.28±0.14 m d-1;夏季介于0.10~1.08 m d-1,平均值为0.34±0.31 m d-1。经估算,TEPs碳沉降通量春季介于4.95~29.40 mg C m-2 d-1,平均值为14.66±8.83 mg C m-2 d-1;夏季介于6.80~30.45 mg C m-2 d-1,平均值为15.71±8.73 mg C m-2 d-1。TEPs的碳沉降通量可以占到浮游植物碳沉降通量的17.81%~138.27%。水华站位TEPs的碳沉降通量明显高于非水华站位,这是由于水华站位较高的TEPs浓度及沉降速率所致。本研究表明,TEPs的沉降在长江口邻近海域是碳沉降的有效途径,在相应的碳沉降相关研究中应该被考虑进来。  相似文献   

6.
Living benthic foraminiferal faunas of six stations from the continental shelf of the Bay of Biscay have been investigated during three successive seasons (spring, summer and autumn 2002). For the three investigated stations, bottom water oxygen concentration, oxygen penetration into the sediment and sediment organic carbon contents are all relatively similar. Therefore, we think that the density and the composition of the foraminiferal faunas is mainly controlled by the quantity and quality of organic input resulting from a succession of phytoplankton bloom events, occurring from late February to early September. The earliest blooms are positioned at the shelf break, late spring and early summer blooms occur off Brittany, whereas in late summer and early autumn, only coastal blooms appear, often in the vicinity of river outlets. In spring, the benthic foraminiferal faunas of central (B, C and D) and outer (E) continental shelf stations are characterised by strong dominance in the first area and strong presence in the second area of Nonionella iridea. In fact, station E does not serve as a major depocenter for the remains of phytoplankton blooms. If station E is not considered, the densities of this taxon show a clear gradient from the shelf-break, where the species dominates the assemblages, to the coast, where it attains very low densities. We explain this gradient as a response to the presence, in early spring, of an important phytoplankton bloom, mainly composed of coccolithophorids, over the shelf break. This observation is supported by the maximum particles flux values at stations close to the shelf break (18.5 g m− 2 h− 1) and lower values in a station closer to the coast (6.8 g m− 2 h− 1). In summer, the faunal density is maximum at station A, relatively close to more varied phytoplancton blooms that occur off Brittany until early June. We suggest that the dominant species, Nonion fabum, Cassidulina carinata and Bolivina ex. gr. dilatata respond to phytodetritus input from these blooms. In autumn, the rich faunas of inner shelf station G are dominated by N. fabum, B. ex. gr. dilatata, Hyalinea balthica and Nonionella turgida. These taxa seem to be correlated with the presence of coastal blooms phenomena, in front of river outlets. They may be favoured by an organic input with a significant contribution of terrestrial, rather low quality organic matter.  相似文献   

7.
Seasonal deposition fluxes of sinking phytoplankton, zooplankton and major mass compounds (i.e. calcium carbonate, biogenic opal and organic matter), intercepted by deep-moored sediment traps, are contrasted with their sediment accumulation rates over the 2700 m deep central Walvis Ridge in the oligotrophic SE Atlantic. These data provide the first seasonally resolved record of biogenic particle fluxes in the South Atlantic Central Gyre and serve as the oligotrophic end member of a gradient across the Benguela system to the highly productive coastal upwelling off Namibia. Maximum fluxes at the central Walvis Ridge were deposited in early austral spring, following winter deepening of the surface mixed layer and associated nutrient entrainment. Nearly 25% of the annual mass flux arrived in October, when sea surface temperature rose, deep vertical mixing halted and surface production collapsed. The annual flux of diatoms was dominated by small specimens of Nitzschia bicapitata (60%) whereas Globorotalia inflata dominated the foraminiferal fluxes (25%). Diatom diversity dropped significantly during the bloom periods, when up to 80% was composed of small N. bicapitata, but foraminiferal diversity remained about constant. The diatom flux maximum, together with those of biogenic silica and organic matter, preceded those of the foraminifera, pteropods, carbonate and total mass by 1 week. Fluxes of the left- and right-coiled shells of the deep-dwelling foraminifer Globorotalia truncatulinoides peaked in different seasons, a distinctive ecological behaviour which merits their taxonomic recognition as separate species. These findings testify to recent evidence for the existence of several genetic species within G. truncatulinoides and now suggest that such species may also have different seasonal responses.The Benguela trophic gradient showed a shoreward increase in particle fluxes, but differences were surprisingly small, testifying to only moderately enhanced export productivity and deposition at the Namibian margin relative to the oligotrophic central gyre. From the open ocean toward coastal upwelling, small and weakly silicified diatoms were substituted by other, larger and more heavily silicified species, possibly in response to decreased silica limitation. Foraminiferal deposition fluxes were increasingly dominated by G. inflata, accompanied by a change-over from many warm- to few cold-water minor species. The late winter maximum at the Namibian margin and the early spring maximum at the central Walvis Ridge were generated by the same process of collapsing surface productivity in response to the shut down of nutrient entrainment at the winter to summer transition, although delayed by up to 2 months in the Central Gyre. At the sediment-water interface, intense degradation of organic matter and biogenic silica resulted in poor preservation accompanied by pronounced changes in the species composition of siliceous phytoplankton. Of all particle groups at the central Walvis Ridge, only the export of foraminiferal shells appeared to be fully transferred into the sediment, and through their species assemblage to provide a sedimentary record of past seasonal productivity conditions of the upper ocean.  相似文献   

8.
In an extended deep-sea study the response of the benthic community to seasonally varying sedimentation rates of organic matter were investigated at a fixed abyssal site in the NE Atlantic (BIOTRANS station or JGOFS station L2 at 47°N–20°W, water depth >4500 m) on four legs of METEOR expedition 21 between March and August 1992. The vertical flux at 3500 m depth and temporal variations in the chloroplastic pigment concentration, a measure of phytodetritus deposition, and of total adenylates and total phospholipids, measures of benthic biomass, and of activity of hydrolytic enzymes were observed. The flux patterns in moored sediment traps of total chlorophyll, POC and total flux showed an early sedimentation peak in March/April 1992, followed by low fluxes in May and intermediate ones from June to August. Thus 1992 differed from other years, in which one large flux peak after the spring phytoplankton bloom was observed. Unusually high concentrations of chloroplastic pigments were consistently observed in March 1992, reflecting the early sedimentation input. At the same time biomass of small benthic organisms (bacteria to meiobenthos) and activity of hydrolytic enzymes were higher compared to values from March 1985 and from the following months in 1992. In May and August 1992 pigment concentrations and biomass and activity parameters in the sediment were lower than during previously observed depositions of phytodetrital matter in summer. The data imply that the deep ocean benthic community reacts to small sedimentation events with transient increases in metabolic activity and only small biomass production. The coupling between pelagic and benthic processes is so close that interannual variability in surface water production is “mirrored” by deep-sea benthic processes.  相似文献   

9.
The plankton community composition comprising heterotrophic bacteria, pro-/eukaryotes, heterotrophic nanoflagellates, microzooplankton and mesozooplankton was assessed during the spring bloom and at non-bloom stations in the English Channel and Celtic Sea between 6 and 12 April 2002. Non-bloom sites were characterised by a dominance of pro-/eukaryotic phytoplankton <20 μm, higher abundance of heterotrophic nanoflagellates, microzooplankton standing stocks ranging between 60 and 380 mg C m−2, lower mesozooplankton diversity and copepod abundance of between 760 and 2600 ind m−3. Within the bloom, the phytoplankton community was typically dominated by larger cells with low abundance of pro-/eukaryotes. Heterotrophic nanoflagellate cell bio-volume decreased leading to a reduction in biomass whereas microzooplankton biomass increased (360–1500 mg C m−2) due to an increase in cell bio-volume and copepod abundance ranged between 1400 and 3800 ind m−3. Mesozooplankton diversity increased with an increase in productivity. Relationships between the plankton community and environmental data were examined using multivariate statistics and these highlighted significant differences in the abiotic variables, the pro-/eukaryotic phytoplankton communities, heterotrophic nanoflagellate, microzooplankton and total zooplankton communities between the bloom and non-bloom sites. The variables which best described variation in the microzooplankton community were temperature and silicate. The spatial variation in zooplankton diversity was best explained by temperature. This study provides an insight into the changes that occur between trophic levels within the plankton in response to the spring bloom in this area.  相似文献   

10.
Biomass and respiration rates of bacteria, nematodes and macrobenthos were estimated in relation to the deposition of the spring phytoplankton bloom at two contrasting sites in the Southern North Sea: one with fine‐grained sediment close to the coastline and another with highly permeable sediments. Sediment community oxygen consumption (SCOC) was also measured. Bacterial biomass was relatively similar at both stations, whereas nematode and macrobenthic biomass were higher in fine‐grained sediment. In fine sediments, bacterial biomass increased quickly after deposition of the phytoplankton bloom, whereas the response of nematodes and macrobenthos was delayed. In coarser sediments, nematodes and macrobenthos also showed a fast response in terms of density and biomass. Respiration in permeable sediments was mainly dominated by bacteria at all periods of the year. Hence, nematode and macrobenthic respiration did not contribute strongly to SCOC. This is in contrast to the patterns observed in finer sediments, where both macrofauna and nematodes were important oxygen consumers as well. Macrobenthos contributed more to total SCOC than did nematodes in winter. However, shortly after the arrival of phytodetritus at the sea floor, nematodes and macrobenthos contributed equally to the total SCOC, indicating that all benthic size classes should be taken into account when investigating marine benthic respiration rates.  相似文献   

11.
Assemblages of living deep-sea benthic foraminifera, their densities, vertical distribution pattern, and diversity, were investigated in the intermonsoon period after the northeast monsoon in the Arabian Sea in spring 1997. Foraminiferal numbers show a distinct gradient from north to south, with a maximum of 623 foraminifera in 50 cm3 at the northern site. High percentages of small foraminifera were found in the western and northern part of the Arabian Sea. Most stations show a typical vertical distribution with a maximum in the first centimeter and decreasing numbers with increasing sediment depths. But at the central station, high densities can be found even in deeper sediment layers. Diversity is very high at the northern and western sites, but reduced at the central and southern stations. Data and faunal assemblages were compared with studies carried out in 1995. A principal component analysis of intermonsoon assemblages shows that the living benthic foraminifera can be characterized by five principal component communities. Dominant communities influencing each site differ strongly between the two years. In spring 1997, stations in the north, west and central Arabian Sea were dominated by opportunistic species, indicating the influence of fresh sedimentation pulses or enhanced organic carbon fluxes after the northeast monsoon.  相似文献   

12.
The plankton spring bloom in the northern North Sea was extensively investigated during a period of three months in 1976 at a fixed station occupied by the R.V. “Meteor”. Samples of different depth-profiles, representative of the phytoplankton development, were collected eleven times to analyze the concentration of fatty acids of the particulate matter. The water column was divided into an upper and lower layer according to the thermocline depths, because different processes take place in these layers. During the exponential growth phase the fatty acid concentration rose only slightly due to increases in polyunsaturated fatty acids (18:4, 20:5, 22:6), which are typical for marine plankton. With the exhaustion of nutrients the biochemical composition changed and the fatty acid concentration increased sharply from about 3 to 20 μmol C dm? finally to about 30% of the particulate carbon. The main proportion consisted of oleic acid (28.3%) and palmitic acid (24.2%). The first phytoplankton bloom, dominated by diatoms (Chaetoceros species), was characterized by the increase in fatty acids with 16 carbon atoms, whereas during the second smaller bloom, with dinoflagellates as the main species, more fatty acids with 18 carbon atoms occurred. After the stationary growth phase the phytoplankton biomass strongly decreased, resulting in an increase of particulate matter below the thermocline. The fatty acid pattern there was similar to that during the stationary phase of the phytoplankton bloom in the upper layer.  相似文献   

13.
Chlorophyll and carotenoid pigments were determined from the gut sediments of five species of bathyal holothurian in the NE Atlantic, sampled shortly after the spring/summer phytoplankton bloom in 2001 and prior to the spring bloom in 2002. Three species, Laetmogone violacea, Paroriza pallens and Bathyplotes natans, sampled within a similar depth range (900–1100 m) in the summer of 2001 showed significant differences in their chlorophyll and carotenoid pigment concentrations. This suggests they may select for slightly different components from the available food resource. Four species sampled in early spring 2002, Laetmogone violacea, Paroriza pallens, Benthogone rosea and Benthothuria funebris, also had significant differences in their pigment concentrations. These species were sampled over a wider depth range (1000–3100 m) showing a bathymetric trend in pigment concentrations. There was a distinct seasonal change in the composition and concentration of the pigments, linked to a reduction in the availability of fresh organic material during autumn and winter periods.Ovarian tissue was also examined. The carotenoid pigments found in the ovary also occurred in the OM ingested by the holothurians. The dominant gonadal carotenoid pigments were β-carotene, echinenone and zeaxanthin. The potential for using these carotenoids to gain a competitive advantage through selectivity of chlorophyll and carotenoid pigment biomarkers are discussed in relation to competition for food resources by deposit-feeders. The results were also compared with selectivity in abyssal species.  相似文献   

14.
The aim of this study was to investigate the cycling of dissolved inorganic and organic nutrients using moored instrumented buoys (SmartBuoys) during the spring bloom in the North Sea. The instrumentation on the buoys enabled high frequency measurements of water-column integrated irradiance and in situ chlorophyll to be made, and also preserved water sample collection which were used for dissolved inorganic and organic nutrient analyses. The SmartBuoys were located in the year-round well-mixed plume zone associated with the River Thames and in the summer stratified central North Sea. These site locations allowed comparison of nutrient concentrations and cycling, and spring bloom development at two contrasting sites. The spring bloom was expected to be initiated at both stations due to increasing insolation and decreasing suspended load leading to higher water-column integrated irradiance. Due to differences in suspended load between the sites, the spring bloom started ∼2 months earlier in the central North Sea. The spring bloom in the Thames plume also resulted in higher maximum phytoplankton biomass due to the higher pre-bloom nutrient concentrations associated with riverine input. The use of SmartBuoys is also shown to allow the cycling of dissolved organic nutrients to be examined over the critical, and often undersampled, spring bloom period. Dissolved Organic Nitrogen (DON) clearly increased during the spring bloom in the central North Sea compared to winter concentrations. DON also increased in the Thames plume although showing greater winter variability related to higher riverine and sedimentary dissolved organic matter input at this shallow (∼18 m) coastal site. DON increase during the spring bloom was therefore related to primary production at both sites probably due to active release by phytoplankton. At both stations DON decreased to pre-bloom concentrations as the bloom declined suggesting the released DON was bioavailable and removed due to heterotrophic uptake and production. The preserved nutrient samples from the central North Sea site were also suitable for Dissolved Organic Phosphorus (DOP) analysis due to their low suspended load with similar trends and cycling to DON, albeit at lower concentrations. This suggested similar processes controlling both DON and DOP. The variable timing of short term events such as the spring bloom makes sampling away from coastal regions difficult without the use of autonomous technology. This study demonstrates for the first time the applicability of using preserved samples from automated buoys for the measurement of dissolved organic nutrients.  相似文献   

15.
On the ecology of meiofauna in an organically polluted estuarine mudflat   总被引:1,自引:0,他引:1  
The structure, distribution and seasonal changes of the benthic meiofauna in an organically polluted, tidal, brackish-water mudflat in the Ems-Dollart estuary were analysed. Towards the outfall of polluted fresh water, macrofauna disappeared, numbers of meiofauna increased but the diversity of the meiofauna decreased. In the area surrounding the outfall the numbers and biomass of nematodes and oligochaetes increased rapidly in spring and remained high until autumn (c. 13 × 106 individuals m−2; c. 2gCm−2). The benthic fauna comprised small numbers of species, dominated by a few fast-growing diatom-feeding nematodes (Eudiplogaster pararmatus and Dichromadora geophila) and oligochaetes (Amphichaeta sannio and Paranais litoralis). Eudiplogaster pararmatus exhibits brood care and it tolerates low salinities. Dichromadora geophila which is oviparous, behaved similarly regarding tolerances, life cycle and feeding but this species was less successful than Eudiplogaster in colonizing the mudflats near the outfall. The success of the two naidid oligochaete species results from their method of reproduction by means of binary fission.Most organisms fed on benthic diatoms. In spite of intensive mineralization in the mudflat, only one bacteria-feeding organism was found in abundance (the nematode Leptolaimus papilliger). The absence of macrofaunal organisms, e.g. Nereis diversicolor, is probably also responsible for the development of high densities of meiofauna in the upper sediment layers of the mudflats in the vicinity of the outfall.The heavy load of organic waste entering the Dollart reduced the diversity within the benthic ecosystem, but nevertheless a simple system remained, based on the recurrent reoxidation of the sediment surface.  相似文献   

16.
Fatty acids present in suspended particles were examined following the onset of a phytoplankton bloom in an experimental marine mesocosm set up in Patricia Bay, Saanich Inlet, British Columbia, Canada. The predominantly diatom bloom, triggered by the addition of nutrients at the commencement of the experiment, was succeeded by several other phytoplankton forms, which in turn led to changes in particulate chl a, and organic carbon, and nitrogen within the experimental enclosure. An examination of individual fatty acids indicated that the variation of individual fatty acids can be classified into three groups, although the variation pattern of individual fatty acids differed from one another. An attempt was made to establish the factors controlling particulate fatty acid concentrations by principal component analysis. After Varimax rotation, six factors were extracted, of which four factors contributed to 83% of the data matrix. These were mainly dependent on the source of the particles i.e., diatoms, dinoflagellates, and bacteria.Fatty acid concentrations obtained by analysis of different lipid class fractions indicated that the production of fatty acids was distinctly related to the growth stage of the phytoplankton bloom. Fatty acids in triglycerides peaked during stationary phase, whereas fatty acids in polar lipids were high during the stage of an increase of phytoplankton biomass. However, fatty acid composition in both lipid classes changed under the influence of species succession of the phytoplankton population. This strongly suggested that species succession of the phytoplankton exerted the most significant control on fatty acid composition of particulate matter.  相似文献   

17.
In order to detect iron (Fe) stress in micro-sized (20–200 μm) diatoms in the Oyashio region, western subarctic Pacific during spring, immunological ferredoxin/flavodoxin assays were applied to samples collected from the surface layer in May 2005. Concomitantly, the community composition of the micro-sized phytoplankton and hydrographic conditions, including dissolved Fe and macronutrient concentrations, were also examined. Chlorophyll (Chl) a concentrations were <2 mg m−3 at all sampling stations, except at a station where the Chl a level was 9.0 mg m−3 and a micro-sized diatom bloom occurred. A high abundance of ferredoxin in micro-sized diatoms was detected only at a rather near-shore station where dissolved Fe and macronutrient concentrations were higher, indicating that the micro-sized diatoms did not suffer from iron deficiency. On the other hand, flavodoxin in micro-sized diatoms was often observed at the other stations, including the bloom station, where macronutrients were replete but dissolved Fe concentration was low (0.31 nM). A significant amount of chlorophyllide a, a degradation product of Chl a, was also observed at the bloom station, suggesting a decline of the diatom bloom. The micro-sized phytoplankton species at all the stations were mainly composed of the diatoms Thalassiosira, Chaetoceros, and Fragilariopsis spp. Our study indicates that micro-sized diatoms were stressed by Fe bioavailability during the spring season in the Oyashio region  相似文献   

18.
Temporal variations of sinking particle flux, together with their organic chemical properties, were monitored in the deep basin of Sagami Bay, Japan, using sediment traps with very high time resolutions from March 1997 to August 1998. At a height of 350 m above the bottom (about 1200 m water depth), the averaged total mass flux was more than 1000 mg/m2/day, which is about 10 times higher than those obtained for open ocean regions near Sagami Bay. While large amounts of phytodetritus, derived from phytoplankton blooms in the surface water, were transported downward in spring, the following extraordinary patterns in the temporal variability of sinking particle flux were also observed: (1) A sustained large flux of sinking particles during low productive periods from summer to winter in 1997. (2) An episodic increase of sinking particle flux in June 1998. (3) A difference in the temporal variability of sinking particles between the spring bloom periods of 1997 and 1998. The content of total organic carbon (TOC) and the stable carbon isotopic ratio (δ13C) of TOC demonstrated that the large fluxes observed in (1) and (2) could be attributed to the resuspension of phytodetritus deposited on the sea floor during the spring bloom period, and the abrupt erosion of surface sediment on the continental slope, respectively. The concentration of suspended particles in the deep water column affect the apparent flux of sinking particles. At the same time, sinking particles exported from surface waters during the spring bloom both decrease and increase suspended particle concentration through scavenging and rebound processes, respectively. Finally, the apparent difference in sinking particle flux between 1997 and 1998, (3), could be explained by differences in the extent of the scavenging process, which depend on the flux and quality of exported particles from the surface waters.  相似文献   

19.
《Journal of Sea Research》1999,41(3):163-178
The Koljö fjord on the Swedish west coast is a silled fjord characterised by strong stratification and stagnant bottom water, with periodically occurring hypoxic or anoxic conditions. In the Koljö fjord, renewal of the deep water generally occurs during winter. This study investigates how living benthic foraminifera react to hydrographic variations, periodic oxygen deficiency and variations in primary production. A series of monthly hydrographic measurements was made from August 1993 to December 1994, combined with sediment sampling along a (12–43 m) depth transect at five different sites. Monthly values of surface chlorophyll-a were available. Two periods of hypoxia to anoxia with one intervening period of oxic conditions, together with two autumn phytoplankton blooms and a spring phytoplankton bloom, made it possible to achieve the aims of this study. Below the pycnocline, three foraminiferal species: Elphidium excavatum clavatum, Elphidium incertum and Elphidium magellanicum represented more than 95% of the fauna. When oxygen content was very low, the foraminiferal fauna decreased but did not die out completely. A deep-water inflow in January 1994 caused the oxygen content to rise, but the foraminiferal population did not start to grow until three months later when the spring phytoplankton bloom sedimented out. Under oxic conditions, food availability seemed to limit the foraminiferal population. In itself, a very high organic content in the sediments does not seem to be a suitable food source; it is more likely that fresh phytoplankton is a potent food for these foraminifera. Reproduction of E. excavatum clavatum and E. incertum seems to have been triggered by increased food supply and sudden fluctuations in hydrographic variables. These foraminifera appear to grow from juvenile to adult in less than a month.  相似文献   

20.
Marine sediments in continental shelf ecosystems harbor a rich biodiversity of benthic communities. In this study, the spatial and temporal diversity and community assemblages of free‐living marine nematodes were studied by sampling at six depths and over 3 years from the southwest continental shelf off Bay of Bengal, one of the least explored tropical shelf ecosystems. The dominant marine nematode species were related with abiotic variables as part of this study. The effects of sediment granulometry generally decreased with increasing depth and the highest nematode density and species diversity were recorded on coarse sand (shallower depths). Multivariate analysis of the nematode community data showed that community structure differed significantly among depths as well as among years. Statistical analyses showed significant correlations between the nematode community and abiotic variables. Sediment texture, organic matter, water pressure and depth profile were crucial factors for determining diversity, vertical profile and feeding types of the nematode community. Other environmental factors, including anthropogenic pressure, did not have an effect on nematode diversity except for the presence of some tolerant species (Metachromadora spp., Sabatieria spp. and Siplophorella sp.). This study represents a baseline of knowledge of free‐living marine nematode communities that can be used in the future to compare nematode assemblages from temperate shelf ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号