首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A significant degree of mass segregation inconsistent with the effects of standard two-body relaxation has been observed in a number of young star clusters. In this paper we present the results of a survey of N-body simulations aimed at exploring the origin and the dynamical evolution of young mass-segregated star clusters. Our simulations show that large segregated clusters can form from the merger of small clumps that are either initially segregated or in which segregation is produced before the merger is complete; the large cluster produced at the end of the merger process inherits the progenitor clumps’ segregation. We show that, in a young mass-segregated cluster, the effect of early mass loss associated with stellar evolution is, in general, more destructive than for an unsegregated cluster with the same density profile, and leads to shorter lifetimes, a faster initial evolution towards less-concentrated structure and a faster flattening of the stellar initial mass function.  相似文献   

2.
In this contribution we examine the problem of inferring ages and initial cluster masses from synthesis models at the limit of low-mass clusters (M≤ a few ×104 M). We show that it is not possible to apply directly synthesis models using standard methods to such clusters, since the basic hypothesis implicit in the models (a fixed proportionality between the number of stars in different evolutionary phases) is not fulfilled due to an insufficient number of stars for a reliable sampling of the stellar initial mass function. The consequence of this incomplete sampling is a non-Gaussian distribution of the mass–luminosity relation for clusters that share the same evolutionary conditions (age, metallicity and stellar initial mass distribution function). We review some tests, that can be performed before the start of the analysis, to estimate if the observed cluster can be analyzed with synthesis models following traditional procedures (like χ 2 minimization) or if it is necessary make use of synthesis models in a probabilistic framework. Finally, we show the implications of these results for estimating the low-mass tail in the initial cluster mass distribution function.  相似文献   

3.
The recent fast growth of a population of millisecond pulsars with precisely measured mass provides an excellent opportunity to characterize these compact stars at an unprecedented level. This is because the stellar parameter values can be accurately computed for known mass and spin rate and an assumed equation of state (EoS) model. For each of the 16 such pulsars and for a set of EoS models from nucleonic, hyperonic, strange quark matter and hybrid classes, we numerically compute fast spinning stable stellar parameter values considering the full effect of general relativity. This first detailed catalogue of the computed parameter values of observed millisecond pulsars provides a testbed to probe the physics of compact stars, including their formation, evolution and EoS. We estimate uncertainties on these computed values from the uncertainty of the measured mass, which could be useful to quantitatively constrain EoS models. We note that the largest value of the central density ρc in our catalogue is ∼5.8 times the nuclear saturation density ρsat, which is much less than the expected maximum value 13ρsat. We argue that the ρc-values of at most a small fraction of compact stars could be much larger than 5.8ρsat. Besides, we find that the constraints on EoS models from accurate radius measurements could be significantly biased for some of our pulsars, if stellar spinning configurations are not used to compute the theoretical radius values.  相似文献   

4.
The mass of unresolved young star clusters derived from spectrophotometric data may well be off by a factor of 2 or more once the migration of massive stars driven by mass segregation is accounted for. We quantify this effect for a large set of cluster parameters, including variations in the stellar initial mass function (IMF), the intrinsic cluster mass, and mean mass density. Gas-dynamical models coupled with the Cambridge stellar evolution tracks allow us to derive a scheme to recover the real cluster mass given measured half-light radius, one-dimensional velocity dispersion and age. We monitor the evolution with time of the ratio of real to apparent mass through the parameter η. When we compute η for rich star clusters, we find non-monotonic evolution in time when the IMF stretches beyond a critical cut-off mass of  25.5 M  . We also monitor the rise of colour gradients between the inner and outer volume of clusters: we find trends in time of the stellar IMF power indices overlapping well with those derived for the Large Magellanic Cloud cluster NGC 1818 at an age of 30 Myr. We argue that the core region of massive Antennae clusters should have suffered from much segregation despite their low ages. We apply these results to a cluster mass function, and find that the peak of the mass distribution would appear to observers shifted to lower masses by as much as 0.2 dex. The star formation rate derived for the cluster population is then underestimated by from 20 to 50 per cent.  相似文献   

5.
We have analyzed the formation, structure, and dynamical evolution of the population of stars that escaped from open clusters by numerical simulations using S. Aarseth’s modified NBODY6 code. In the Galactic tidal field, the population of stars that escaped from a cluster is shown to be elongated along the orbit of the cluster symmetrically about its core in the form of stellar tails of increasing sizes. We analyze the parameters of stellar tails as a function of such initial simulation conditions as the number of stars, the cluster density, the eccentricity of the Galactic cluster orbit in the plane of the Galactic disk, and the z velocity component. As a result, we constructed a grid of model stellar tails of open clusters. The grid includes such time-dependent parameters of the stellar tails as the length, the cross section, the number of stars, the velocity distribution, etc. Our simulations allow us to clarify the origin of moving clusters and stellar streams and to assess the role of star clusters in forming the stellar velocity field in the solar neighborhood.  相似文献   

6.
We study relation between stellar mass and halo mass for high-mass halos using a sample of galaxy clusters with accurate measurements of stellar masses from optical and ifrared data and total masses from X-ray observations. We find that stellar mass of the brightest cluster galaxies (BCGs) scales as M*,BCG ∝ M 500 αBCG with the best fit slope of αBCG ≈ 0.4 ± 0.1. We measure scatter of M*,BCG at a fixed M500 of ≈0.2 dex. We show that stellar mass-halo mass relations from abundance matching or halo modelling reported in recent studies underestimate masses of BCGs by a factor of ~2?4. We argue that this is because these studies used stellar mass functions (SMF) based on photometry that severely underestimates the outer surface brightness profiles of massive galaxies. We show that M*?M relation derived using abundance matching with the recent SMF calibration by Bernardi et al. (2013) based on improved photometry is in a much better agreement with the relation we derive via direct calibration for observed clusters. The total stellar mass of galaxies correlates with total mass M500 with the slope of ≈0.6 ± 0.1 and scatter of 0.1 dex. This indicates that efficiency with which baryons are converted into stars decreases with increasing cluster mass. The low scatter is due to large contribution of satellite galaxies: the stellar mass in satellite galaxies correlates with M500 with scatter of ≈0.1 dex and best fit slope of αsat ≈ 0.8 ± 0.1. We show that for a fixed choice of the initial mass function (IMF) total stellar fraction in clusters is only a factor of 3?5 lower than the peak stellar fraction reached in M ≈ 1012M halos. The difference is only a factor of ~1.5?3 if the IMF becomes progressively more bottom heavy with increasing mass in early type galaxies, as indicated by recent observational analyses. This means that the overall efficiency of star formation in massive halos is only moderately suppressed compared to L* galaxies and is considerably less suppressed than previously thought. The larger normalization and slope of the M*?M relation derived in this study shows that feedback and associated suppression of star formation in massive halos should be weaker than assumed in most of the current semi-analytic models and simulations.  相似文献   

7.
Dust particles exposed to the stellar radiation and wind drift radially inward by the Poynting-Robertson (P-R) drag and pile up at the zone where they begin to sublime substantially. The reason they pile up or form a ring is that their inward drifts due to the P-R drag are suppressed by stellar radiation pressure when the ratio of radiation pressure to stellar gravity on them increases during their sublimation phases. We present analytic solutions to the orbital and mass evolution of such subliming dust particles, and find their drift velocities at the pileup zone are almost independent of their initial semimajor axes and masses. We derive analytically an enhancement factor of the number density of the particles at the outer edge of the sublimation zone from the solutions. We show that the formula of the enhancement factor reproduces well numerical simulations in the previous studies. The enhancement factor for spherical dust particles of silicate and carbon extends from 3 to more than 20 at stellar luminosities L?=0.8-500L, where L is solar luminosity. Although the enhancement factor for fluffy dust particles is smaller than that for spherical particles, sublimating particles inevitably form a dust ring as long as their masses decrease faster than their surface areas during sublimation. The formulation is applicable to dust ring formation for arbitrary shape and material of dust in dust-debris disks as well as in the Solar System.  相似文献   

8.
This paper explores if, and to what an extent, the stellar populations of early-type galaxies can be traced through the colour distribution of their globular cluster (GC) systems. The analysis, based on a galaxy sample from the Virgo Advanced Camera for Surveys data, is an extension of a previous approach that has been successful in the cases of the giant ellipticals NGC 1399 and NGC 4486, and assumes that the two dominant GC populations form along diffuse stellar populations sharing the cluster chemical abundances and spatial distributions. The results show that (a) integrated galaxy colours can be matched to within the photometric uncertainties and are consistent with a narrow range of ages; (b) the inferred mass to luminosity ratios and stellar masses are within the range of values available in the literature; (c) most GC systems occupy a thick plane in the volume space defined by the cluster formation efficiency, total stellar mass and projected surface mass density. The formation efficiency parameter of the red clusters shows a dependency with projected stellar mass density that is absent for the blue globulars. In turn, the brightest galaxies appear clearly detached from that plane as a possible consequence of major past mergers; (d) the stellar mass–metallicity relation is relatively shallow but shows a slope change at   M *≈ 1010 M  . Galaxies with smaller stellar masses show predominantly unimodal GC colour distributions. This result may indicate that less massive galaxies are not able to retain chemically enriched interstellar matter.  相似文献   

9.
We combined optical Hubble Space Telescope ACS images with mid-infrared Spitzer data of the two young star clusters NGC346 and NGC602 in the Small Magellanic Cloud, to study how local and global conditions may affect the process of star formation. We found that, while general conditions such as metallicity, or the mass or morphological type of the parent galaxy do not strongly affect the process of star formation, local conditions such as the gas and stellar density can affect both how star formation occurs and propagates, and also the evolution of a star cluster from early times.  相似文献   

10.
We have monitored S Ori 45, a young, low-mass (20 M j up) brown dwarf of the σ Orionis cluster (~3 Myr, 352 pc), using optical and near-infrared filters. S Ori 45 (spectral type M8.5) is found to be multi-periodic with a dominant modulation at 2.5–3.5 h, and a short modulation at about 46 min. We ascribe the longer of these modulations to a rotation period. After comparing these results with observations of more massive cluster brown dwarfs and field brown dwarfs, we conclude that substellar objects present rotational and angular momentum evolution. We have also obtained intermediate-resolution near-infrared spectroscopy of S Ori 70, which is a T-class, free-floating planetary candidate member in the σ Orionis cluster. Its observed spectrum has been compared to data of field brown dwarfs of similar types and to theoretical spectra computed for different surface temperatures and gravities. We conclude that S Ori 70 has a significantly cool, low-gravity atmosphere. This supports the young age of this object and its membership in the cluster. From state-of-the-art evolutionary models, the mass of S Ori 70 is estimated at 3 times the Jovian mass (+5 ?2 M j up), challenging current stellar/substellar formation models. S Ori 70 remains the lowest mass object so far identified in any open cluster.  相似文献   

11.
We analyse the K -band Hubble diagram for a sample of brightest cluster galaxies (BCGs) in the redshift range 0< z <1. In good agreement with earlier studies, we confirm that the scatter in the absolute magnitudes of the galaxies is small (0.3 mag). The BCGs exhibit very little luminosity evolution in this redshift range: if q 0=0.0, we detect no luminosity evolution; for q 0=0.5, we measure a small negative evolution (i.e., BCGs were about 0.5 mag fainter at z =1 than today). If the mass in stars of these galaxies had remained constant over this period of time, substantial positive luminosity evolution would be expected: BCGs should have been brighter in the past, since their stars were younger. A likely explanation for the observed zero or negative evolution is that the stellar mass of the BCGs has been assembled over time through merging and accretion, as expected in hierarchical models of galaxy formation. The colour evolution of the BCGs is consistent with that of an old stellar population ( z for>2) that is evolving passively. We can thus use evolutionary population synthesis models to estimate the rate of growth in stellar mass for these systems. We find that the stellar mass in a typical BCG has grown by a factor ≃2 since z ≃1 if q 0=0.0, or by factor ≃4 if q 0=0.5. These results are in good agreement with the predictions of semi-analytic models of galaxy formation and evolution set in the context of a hierarchical scenario for structure formation. The models predict a scatter in the luminosities of the BCGs that is somewhat larger than the observed one, but that depends on the criterion used to select the model clusters.  相似文献   

12.
In this work, I examine the environmental dependence of galaxy age, stellar velocity dispersion and stellar mass in the LOWZ sample of the Sloan Digital Sky Survey Data Release 10 (SDSS DR10). I measure the projected local density Σ5, divide the LOWZ sample into subsamples with a redshift binning size of Δz = 0.02 and analyze the environmental dependence of galaxy age, stellar velocity dispersion and stellar mass in each redshift bin. It is found that galaxy age, stellar velocity dispersion and stellar mass in the LOWZ galaxy sample are very weakly correlatedwith the local environment, like the one in theCMASS galaxy sample does.  相似文献   

13.
In the present paper we combine an N-body code that simulates the dynamics of young dense stellar systems with a massive star evolution handler that accounts in a realistic way for the effects of stellar wind mass loss. We discuss two topics.
  1. The formation and the evolution of very massive stars (with masses >120 M) is followed in detail. These very massive stars are formed in the cluster core as a consequence of the successive (physical) collisions of the 10–20 most massive stars in the cluster (this process is known as ‘runaway merging’). The further evolution is governed by stellar wind mass loss during core hydrogen and core helium burning (the WR phase of very massive stars). Our simulations reveal that, as a consequence of runaway merging in clusters with solar and supersolar values, massive black holes can be formed, but with a maximum mass ≈70 M. In low-metallicity clusters, however, it cannot be excluded that the runaway-merging process is responsible for pair-instability supernovae or for the formation of intermediate-mass black holes with a mass of several 100 M.
  2. Massive runaways can be formed via the supernova explosion of one of the components in a binary system (the Blaauw scenario), or via dynamical interaction of a single star and a binary or between two binaries in a star cluster. We explore the possibility that the most massive runaways (e.g. ζ Pup, λ Cep, BD+43°3654) are the product of the collision and merger of two or three massive stars.
  相似文献   

14.
We analyse a   z < 0.1  galaxy sample from the Sloan Digital Sky Survey focusing on the variation in the galaxy colour bimodality with stellar mass     and projected neighbour density Σ, and on measurements of the galaxy stellar mass functions. The characteristic mass increases with environmental density from about  1010.6  to     (Kroupa initial mass function,   H 0= 70  ) for Σ in the range  0.1–10 Mpc−2  . The galaxy population naturally divides into a red and blue sequence with the locus of the sequences in colour–mass and colour–concentration indices not varying strongly with environment. The fraction of galaxies on the red sequence is determined in bins of 0.2 in  log Σ  and     bins). The red fraction   f r   generally increases continuously in both Σ and     such that there is a unified relation:     . Two simple functions are proposed which provide good fits to the data. These data are compared with analogous quantities in semi-analytical models based on the Millennium N -body simulation: the Bower et al. and Croton et al. models that incorporate active galactic nucleus feedback. Both models predict a strong dependence of the red fraction on stellar mass and environment that is qualitatively similar to the observations. However, a quantitative comparison shows that the Bower et al. model is a significantly better match; this appears to be due to the different treatment of feedback in central galaxies.  相似文献   

15.
《New Astronomy》2002,7(7):395-433
The stellar initial mass function at high redshift is an important defining property of the first stellar systems to form and may also play a role in various dark matter problems. We here determine the faint stellar luminosity function in an apparently dark-matter-dominated external galaxy in which the stars formed at high redshift. The Ursa Minor dwarf spheroidal galaxy is a system with a particularly simple stellar population—all of the stars being old and metal-poor—similar to that of a classical halo globular cluster. A direct comparison of the faint luminosity functions of the UMi dSph and of similar metallicity, old globular clusters is equivalent to a comparison of the initial mass functions and is presented here, based on deep HST WFPC2 and STIS imaging data. We find that these luminosity functions are indistinguishable, down to a luminosity corresponding to ∼0.3 M. Our results show that the low-mass stellar IMF for stars that formed at very high redshift is apparently invariant across environments as diverse as those of an extremely low-surface-brightness, dark-matter-dominated dwarf galaxy and a dark-matter-free, high-density globular cluster within the Milky Way.  相似文献   

16.
In the previous years, p-mode oscillations (pressure oscillations stochastically excited by convection) have been detected in several solar-like stars thanks to the ground-based spectroscopic and space spectroscopic and photometric observations. We study the importance of seismic constraints on stellar modeling and the impact of their accuracy on reducing the uncertainties of global stellar parameters (i.e. mass, age, etc.). We use the Singular Value Decomposition (SVD) method to analyze the sensitivity of stellar models to seismic constraints. In this context, we construct a grid of evolutionary sequences for solar-like stars with varying age and mass. Around each model of this grid, we evaluate the partial derivatives with respect to a large set of free parameters: mass ?, age τ, mixing-length parameter α, initial helium abundance Y 0, and initial metallicity Z/X 0. Masses between 0.9 and 1.55 M and central hydrogen abundances from Xc=0.7 to 0.05 have been considered in this study.  相似文献   

17.
We report the present day mass functions (PDMFs) of 4 young open clusters over a mass range from 30 Jupiter masses to 3M_ . Three of these clusters have been chosen to have a similar age of ∼100 Myr. Their PDMFs are remarkably similar and are comparable to the field mass function. This suggests little impact of initial conditions (stellar density, metallicity) on the mass distribution and raises some issues concerning the currently debated star and brown dwarf formation theories. The fourth cluster is older (600 Myr) which allow us to investigate the effect of the cluster dynamical evolution on the shape of the mass function. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
We have obtained and analyzed UBVRI CCD frames of the young, 4–10 Myr, open cluster NGC 3293 and the surrounding field in order to study its stellar content and determine the cluster’s IMF. We found significantly fewer lower mass stars, M≤2.5M , than expected. This is particularly so if a single age for the cluster of 4.6 Myr is adopted as derived from fitting evolutionary models to the upper main sequence. Some intermediate-mass stars near the main sequence in the HR diagram imply an age for the cluster of about 10 Myr. When compared with the Scalo (The stellar initial mass function. ASP conference series, vol. 24, p. 201, 1998) IMF scaled to the cluster IMF in the intermediate mass range, 2.5≤M/M ≤8.0 where there is good agreement, the high mass stars have a distinctly flatter IMF, indicating an over abundance of these stars, and there is a sharp turnover in the distribution at lower masses. The radial density distribution of cluster stars in the massive and intermediate mass regimes indicate that these stars are more concentrated to the cluster core whereas the lower-mass stars show little concentration. We suggest that this is evidence supporting the formation of massive stars through accretion and/or coagulation processes in denser cluster cores at the expense of the lower mass proto-stars. R.W. Slawson and E.P. Horch are guest investigators at the University of Toronto Southern Observatory, Las Campanas, Chile.  相似文献   

19.
We independently redetermine the reddening and age of the globular cluster (GC) 037−B327 in M31 by comparing independently obtained multicolour photometry with theoretical stellar population synthesis models. 037−B327 has long been known to have a very large reddening value, which we confirm to be   E ( B − V ) = 1.360 ± 0.013  , in good agreement with the previous results. We redetermine its most likely age at  12.4 ± 3.2 Gyr  .
037−B327 is a prime example of an unusually bright early counterpart to the ubiquitous 'super' star clusters presently observed in most high-intensity star-forming regions in the local Universe. In order to have survived for a Hubble time, we conclude that its stellar initial mass function (IMF) cannot have been top-heavy. Using this constraint, and a variety of simple stellar population (SSP) models, we determine a photometric mass of     , somewhat depending on the SSP models used, the metallicity and age adopted and the IMF representation. This mass, and its relatively small uncertainties, makes this object the most massive star cluster of any age in the Local Group. Assuming that the photometric mass estimate thus derived is fairly close to its dynamical mass, we predict that this GC has a (one-dimensional) velocity dispersion of the order of  (72 ± 13) km s−1  . As a surviving 'super' star cluster, this object is of prime importance for theories aimed at describing massive star cluster evolution.  相似文献   

20.
We present N -body simulations of galaxy groups embedded in a common halo of matter. We study the influence of the different initial conditions upon the evolution of the group and show that denser configurations evolve faster, as expected. We then concentrate on the influence of the initial radial density profile of the common halo and of the galaxy distribution. We select two kinds of density distributions, a singular profile (modelled by a Hernquist distribution) and a profile with a flat core (modelled by a Plummer sphere). In all cases we witness the formation of a central massive object owing to mergings of individual galaxies and to accretion of stripped material, but both its formation history and its properties depend heavily on the initial distribution. In Hernquist models the formation is caused by a 'burst' of mergings in the inner parts, owing to the large initial concentration of galaxies in the centre. The merging rate is much slower in the initial phases of the evolution of a Plummer distribution, where the contribution of accretion to the formation of the central object is much more important. The central objects formed within Plummer distributions have projected density profiles which are not in agreement with the radial profiles of observed brightest cluster members, unless the percentage of mass in the common halo is small. In contrast, the central object formed in initially cusped models has projected radial profiles in very good agreement with those of brightest cluster members, sometimes also showing luminosity excess over the r 1/4 law in the outer parts, as is observed in cD galaxies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号